Web Structure Mining

Community Detection and Evaluation

Community

Community. It is formed by individuals such that those within a group interact with each other more frequently than with those outside the group, a.k.a. **group**, **cluster**, **cohesive subgroup**, **module** in different contexts

Community detection: discovering groups in a network where individuals' group memberships are not explicitly given

Why communities in social media?

- Human beings are social
- Easy-to-use social media allows people to extend their social life in unprecedented ways
- Difficult to meet friends in the physical world, but much easier to find friend online with similar interests
- Interactions between nodes can help determine communities

Community in Social Media

Two types of groups in social media

- Explicit Groups: formed by user subscriptions
- Implicit Groups: implicitly formed by social interactions

Some social media sites allow people to join groups, is it necessary to extract groups based on network topology?

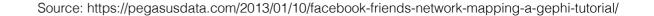
- Not all sites provide community platform
- Not all people want to make effort to join groups
- Groups can change dynamically

Network interaction provides rich informa-on about the relationship between users

- Can complement other kinds of information
- Help network visualization and navigation
- Provide basic informa-on for other tasks

Community Detection

Subjectivity in Community Detection



Taxonomy of Community Criteria

Criteria vary depending on the tasks

Community detection methods can be divided into 4 categories (not exclusive):

1 - Node-Centric Community

Each node in a group satisfies certain properties

2 - Group-Centric Community

Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level

3 - Network-Centric Community

Partition the whole network into several disjoint sets

4 - Hierarchy-Centric Community

Construct a hierarchical structure of communities

Node-Centric Community Detection

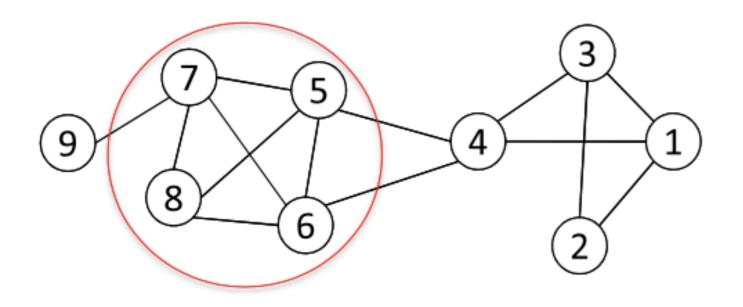
Nodes satisfy different properties

- Complete Mutuality
 - Cliques
- Reachability of members
 - k-clique, k-clan, k-club
- Nodal degrees
 - k-plex, k-core
- Relative frequency of Within-Outside Ties
 - LS sets, Lambda sets

Commonly used in traditional social network analysis Here, we discuss some representative ones

Complete Mutuality: Cliques

A clique is a complete maximal subgraph



Nodes 5, 6, 7 and 8 form a clique

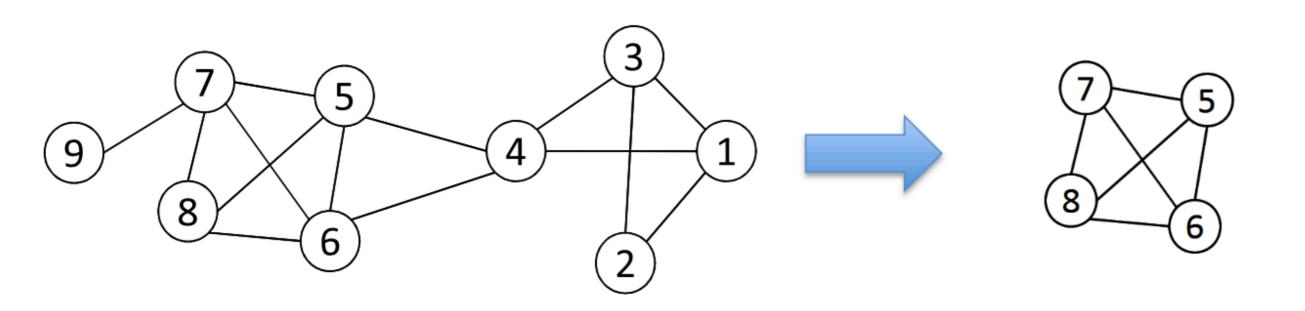
NP-hard to find the maximum clique in a network

Straightforward implementation to find cliques is very expensive in time complexity

Finding the Maximum Clique

- In a clique of size k, each node has a degree >= k-1
- Nodes with degree < k-1 will not be included in the maximum clique
- Recursive pruning procedure :
 - Sample a sub-network from the given network, and find a clique in the subnetwork, say, by a greedy approach
 - Suppose the clique above is size k, in order to find out a *larger* clique, all nodes with degree <= k-1 should be removed
- Repeat until the network is small enough
- In social media, many nodes are removed as social networks follow a power law distribution for node degrees

Maximum Clique Example

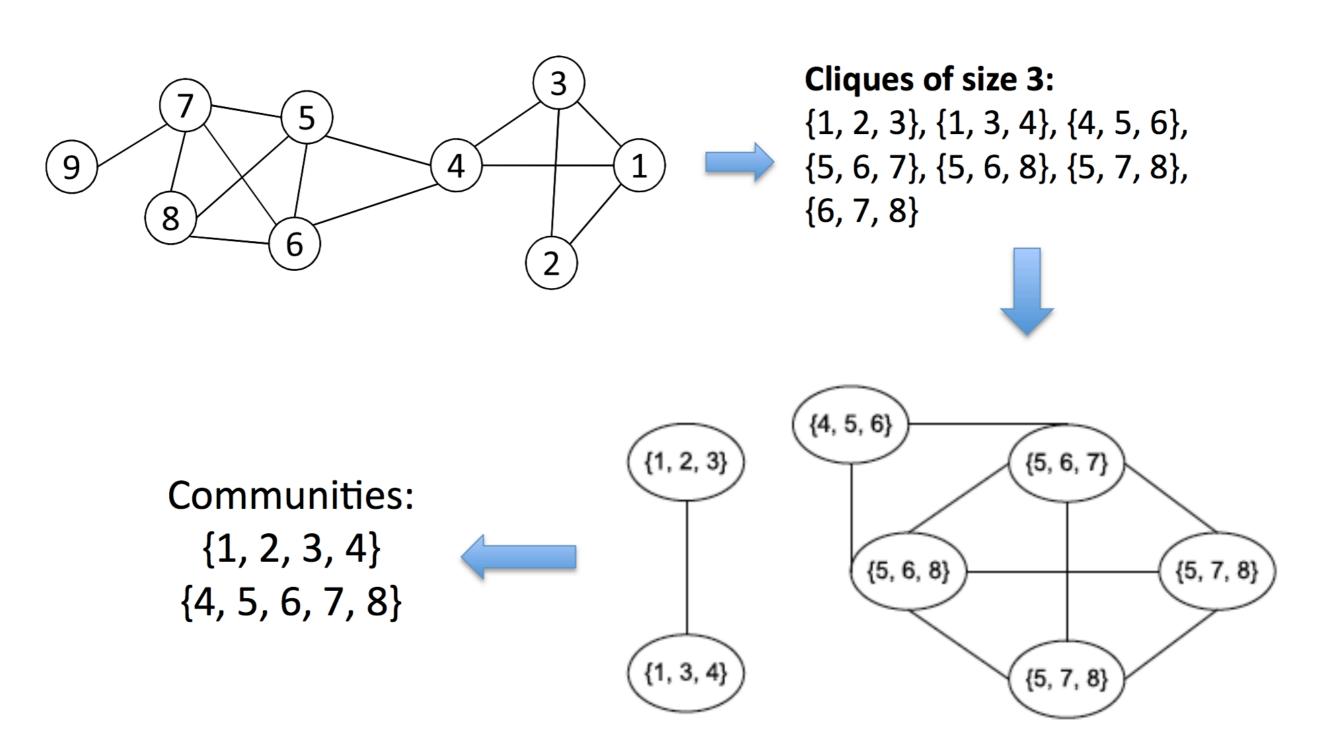


- Suppose we sample a sub-network with nodes 1 to 5 and find a 3-clique {1,2,3}
- In order to find a clique > 3, remove nodes with degree ≤ 2

Clique Percolation Method (CPM)

- Clique is a very strict definition, unstable
- Normally use cliques as a core or a seed to find larger communities
- CPM is such a method to find overlapping communities
 - Input
 - A parameter k, and a network
 - Procedure
 - Find out all cliques of size k in a given network
 - Construct a clique graph. Two cliques are adjacent if they share k-1 nodes
 - Each connected components in the clique graph form a community

CPM Example



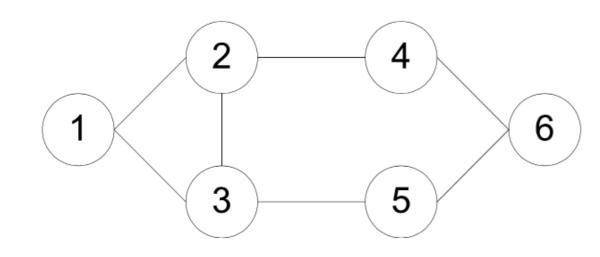
Reachability

k-clique and k-club

Any node in a group should be reachable in k hops

k-clique: a maximal subgraph in which the largest geodesic distance between any nodes <= k

k-club: a substructure of diameter <= k



Cliques: {1, 2, 3} 2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1,2,3,4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

A k-clique might have diameter larger than k in the subgraph

Commonly used in traditional SNA

Often involves combinatorial optimization

Group-Centric Community Detection Density-Based Groups

The group-centric criterion requires the whole group to satisfy a certain condition E.g., the group density >= a given threshold

A subgraph $G_s(V_s, E_s)$ is a γ -dense quasi-clique if:

$$\frac{|E_s|}{|V_s|(|V_s|-1)/2} \ge \gamma$$

A similar strategy to that of cliques can be used

- Sample a subgraph, and find a maximal γ -dense quasi-clique (say, of size k)
- Remove nodes with degree < $k\gamma$

Network-Centric Community Detection

Network-centric criterion needs to consider the connections within a network globally

Goal: partition nodes of a network into disjoint sets

Approaches:

- Clustering based on vertex similarity
- Latent space models
- Block model approximation
- Spectral clustering
- Modularity maximization

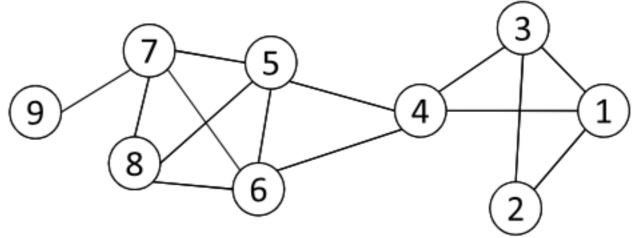
Clustering Based on Vertex Similarity

Apply k-means or similarity-based clustering to nodes

Vertex similarity is defined in terms of the similarity of their neighborhood

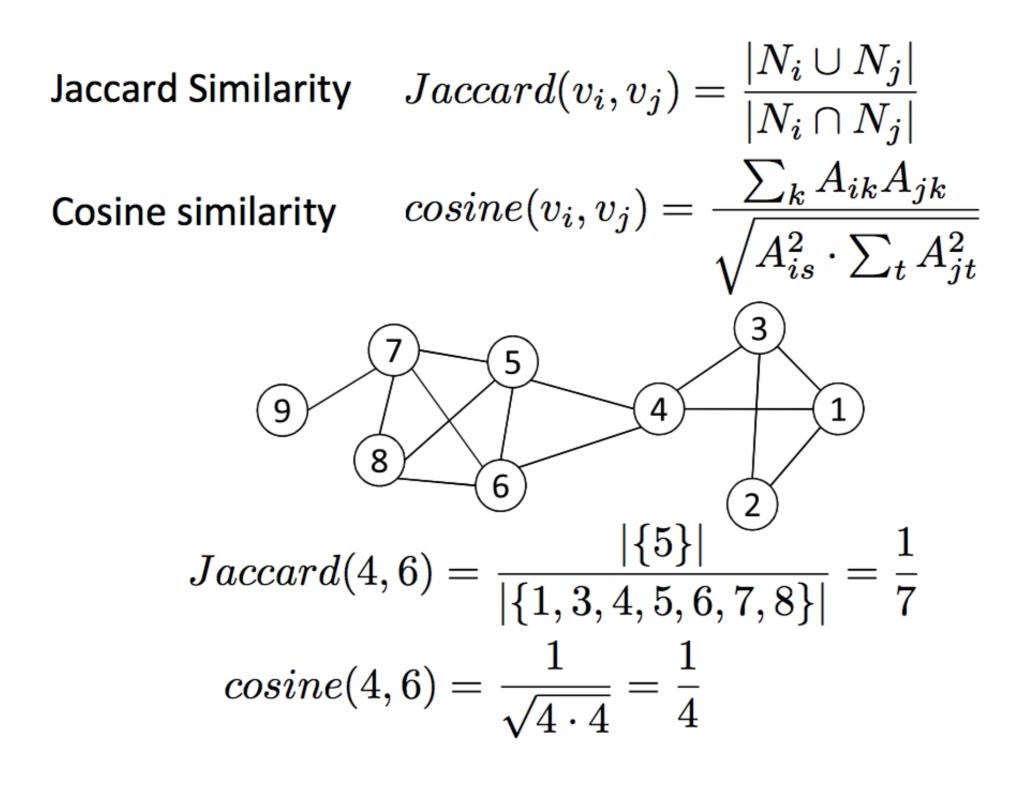
Structural equivalence: two nodes are structurally equivalent iff they are connecting to the same set of actors

Nodes 1 and 3 are structurally equivalent; So are nodes 5 and 7.



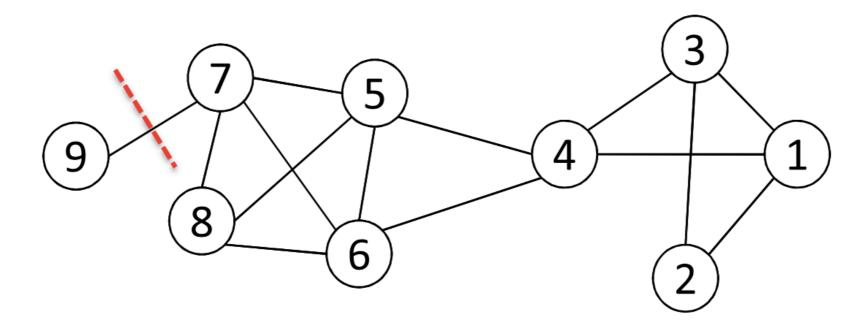
Structural equivalence is too restrict for practical use

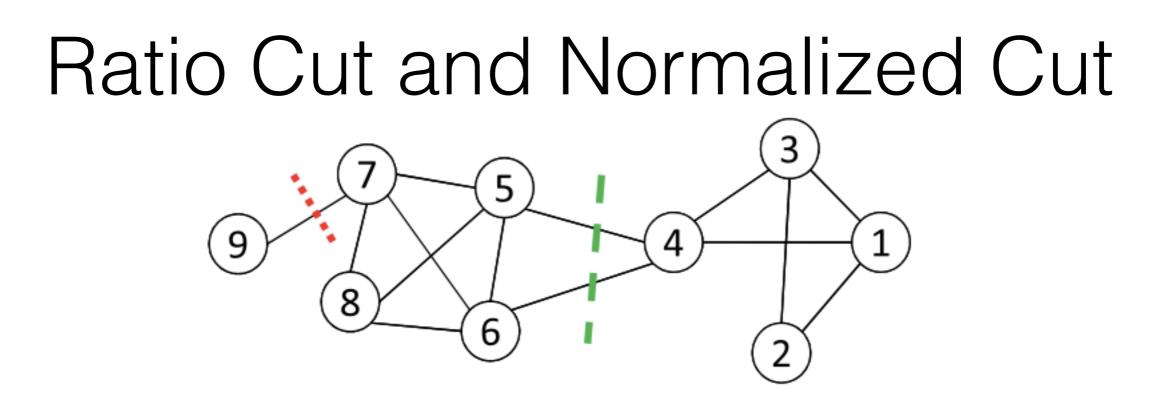
Vertex Similarity



Cut

- Most interactions are within group whereas interactions between groups are few
- Community detection: minimum cut problem
- Cut: A partition of ver-ces of a graph into two disjoint sets
- Minimum cut problem: find a graph partition such that the number of edges between the two sets is minimized





- Minimum cut often returns an unbalanced partition, with one set being a singleton
- Change the objective function to take the size of the communities into account

Ratio
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{|C_i|},$$

Normalized
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{\operatorname{vol}(C_i)}$$

C_i: a community |C_i|: number of nodes in C_i vol(C_i): sum of degrees in C_i

Ratio Cut and Normalized Cut Example

For partition in red: π_1 Ratio Cut $(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{8} \right) = 9/16 = 0.56$ Normalized Cut $(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{27} \right) = 14/27 = 0.52$

For partition in green: π_2

Ratio
$$\operatorname{Cut}(\pi_2) = \frac{1}{2} \left(\frac{2}{4} + \frac{2}{5} \right) = 9/20 = 0.45 < \text{Ratio } \operatorname{Cut}(\pi_1)$$

Normalized $\operatorname{Cut}(\pi_2) = \frac{1}{2} \left(\frac{2}{12} + \frac{2}{16} \right) = 7/48 = 0.15 < \text{Normalized } \operatorname{Cut}(\pi_1)$

Both ratio cut and normalized cut prefer a balanced partition

Hierarchy-Centric Community Detection

Goal: build a hierarchical structure of communities based on network topology

Allow the analysis of a network at different resolutions

Representative approaches:

- Divisive Hierarchical Clustering
- Agglomerative Hierarchical clustering

Divisive Hierarchical Clustering

Divisive clustering

- Partition nodes into several sets
- Each set is further divided into smaller ones
- Network-centric partition can be applied for the partition

One particular example: recursively remove the "weakest" tie

- Find the edge with the least strength
- Remove the edge and update the corresponding strength of each edge

Recursively apply the above two steps until a network is discomposed into desired number of connected components.

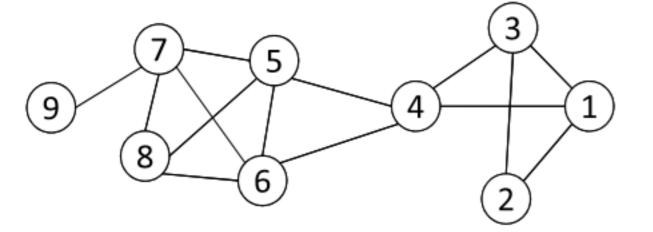
Each component forms a community

Edge Betweenness

The strength of a tie can be measured by **edge betweenness**

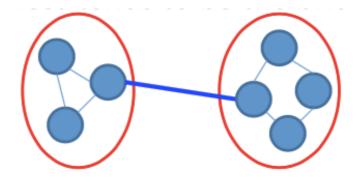
Edge betweenness: the number of shortest paths that pass along with the edge

edge-betweenness(e) =
$$\sum_{s < t} \frac{\sigma_{st}(e)}{\sigma_{s,t}}$$

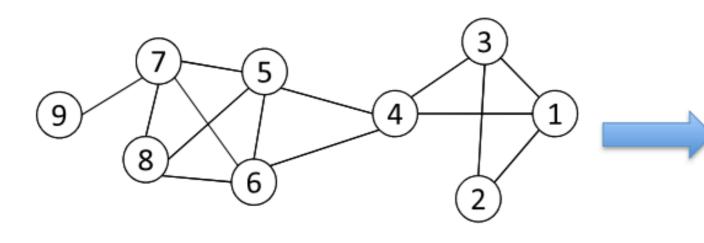


The edge betweenness of e(1, 2) is 4, as all the shortest paths from 2 to {4, 5, 6, 7, 8, 9} have to either pass e(1, 2) or e(2, 3), and e(1,2) is the shortest path between 1 and 2

The edge with the highest betweenness tends to be a bridge between 2 communities



Divisive Clustering based on Edge Betweenness

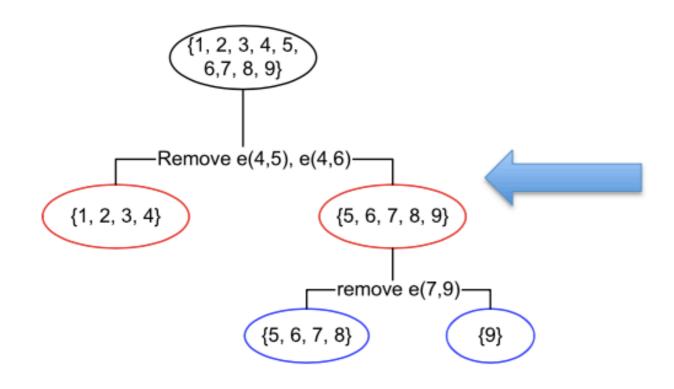


Initial betweenness value

Table 3.3: Edge Betweenness									
	1	2	3	4	5	6	7	8	9
1	0	4	1	9	0	0	0	0	0
2	4	0	4	0	0	0	0	0	0
3	1	4	0	9	0	0	0	0	0
4	9	0	9	0	10	10	0	0	0
5	0	0	0	10	0	1	6	3	0
6	0	0	0	10	1	0	6	3	0
7	0	0	0	0	6	6	0	2	8
8	0	0	0	0	3	3	2	0	0
9	0	0	0	0	0	0	8	0	0

After remove e(4,5), the betweenness of e(4, 6) becomes 20, which is the highest;

After remove e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.



Community Evaluation

Evaluating Community Detection

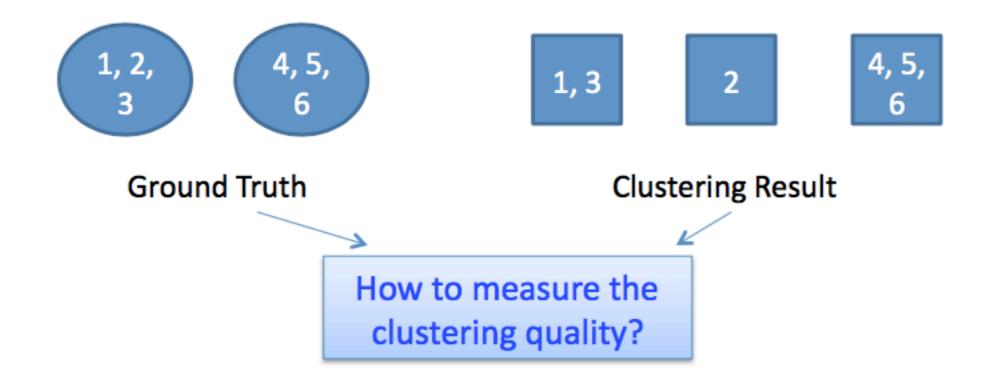
For groups with a clear and formal definition

- E.g., cliques, k-cliques, k-clubs, ...
- Verify if the extracted communities satisfy the definition

For networks with ground truth information

- Normalized Mutual Information
- Accuracy of pairwise community memberships

Measuring a Clustering Result



- The number of communities after grouping can be different from the ground truth
- No clear community correspondance between clustering result and the ground truth
- Normalized Mutual Information can be used

Normalized Mutual Information

Entropy

• The information contained in a distribution

$$H(X) = \sum_{x \in X} p(x) \log p(x)$$

Mutual Information

• The shared information between two distributions

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log\left(\frac{p(x,y)}{p_1(x)p_2(y)}\right)$$

Normalized Mutual Information (between 0 and 1)

$$NMI(X;Y) = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}}$$

Consider a partition as a distribution (probability of one node falling into one community), we can compute the matching between two clusterings

Normalized Mutual Information

$$H(X) = \sum_{x \in X} p(x) \log p(x)$$

$$H(\pi^{a}) = \sum_{h}^{k^{(a)}} \frac{n_{h}^{a}}{n} \log(\frac{n_{h}^{a}}{n})$$

$$H(\pi^{b}) = \sum_{\ell}^{k^{(b)}} \frac{n_{\ell}^{b}}{n} \log(\frac{n_{\ell}^{b}}{n})$$

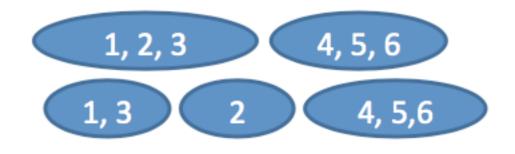
$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log\left(\frac{p(x,y)}{p_{1}(x)p_{2}(y)}\right) \longrightarrow I(\pi^{a},\pi^{b}) = \sum_{h} \sum_{\ell} \frac{n_{h,\ell}}{n} \log\left(\frac{\frac{n_{h,\ell}}{n}}{\frac{n_{h}^{a}}{n}\frac{n_{\ell}^{b}}{n}}\right)$$

$$NMI(X;Y) = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}}$$

$$NMI(\pi^{a},\pi^{b}) = \frac{\sum_{h=1}^{k^{(a)}} \sum_{\ell=1}^{k^{(b)}} n_{h,\ell} \log\left(\frac{n \cdot n_{h,l}}{n_{h}^{b} \cdot n_{\ell}^{b}}\right)}{\sqrt{\left(\sum_{h=1}^{k^{(a)}} n_{h}^{(a)} \log\frac{n_{h}^{a}}{n}\right) \left(\sum_{\ell=1}^{k^{(b)}} n_{\ell}^{(b)} \log\frac{n_{\ell}^{b}}{n}}\right)}$$

Normalized Mutual Information Example

- Partition a: [1, 1, 1, 2, 2, 2]
- Partition b: [1, 2, 1, 3, 3, 3]



$$NMI(\pi^{a}, \pi^{b}) = \frac{\sum_{h=1}^{k^{(a)}} \sum_{\ell=1}^{k^{(b)}} n_{h,\ell} \log\left(\frac{n \cdot n_{h,l}}{n_{h}^{(a)} \cdot n_{\ell}^{(b)}}\right)}{\sqrt{\left(\sum_{h=1}^{k^{(a)}} n_{h}^{(a)} \log\frac{n_{h}^{a}}{n}\right) \left(\sum_{\ell=1}^{k^{(b)}} n_{\ell}^{(b)} \log\frac{n_{\ell}^{b}}{n}\right)}} = 0.8278$$

Evaluation with Semantics

- For networks with semantics
 - Networks come with semantic or attribute information of nodes or connections
 - Human subjects can check whether the extracted communities are coherent and homogeneous
- Evaluation is qualitative
- It is intuitive and helps in understanding a community

Evaluation without Ground Truth

- For networks without ground truth or semantic information
- This is the most common situation
- A option is to resort cross-validation
 - Extract communities from a (training) network
 - Evaluate the quality of the community detection on a network constructed from a different date or based on a related type of interaction
- Quantitative evaluation
 - Modularity
 - Block model approximation error