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Bandwidth-sharing networks

• Flow-level modeling of elastic data transfers over the Internet

• Data flows traverse several links on the path from their source to

destination

• Link is represented by a node

View network at flow level

• A flow getssimultaneouslythe same bandwidth in all links along

its path

.
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Model description: linear network

node 1 node 2 node 3 nodeL

class 0

class 1 class 2 class 3 classL

• Class-i users arrive according to a renewal process with mean

inter-arrival time 1
λi

, i = 0, . . . , L

• Generally distributed service requirementswith mean 1
µi

• Load of classi: ρi = λi/µi

• Nπ
i (t): number of class-i users at timet under policyπ and

W π
i (t): amount of work in classi at timet under policyπ

• sπ
i (t, ~N) ∈ R(t) capacity given to classi at timet

R(t) = {~s : s0 + si ≤ Ci(t), i = 1, . . . , L}



Bandwidth-sharing mechanisms
A policy π determines how to allocate the capacity of the links to all

flows present in the network

Internet:TCP determines implicit rate allocation through congestion

control

Some allocations:Weighted α-fair policies, max-min, proportional

fair, maximum throughput etc.

• Stability is ensured whenever possible (forα > 0, exponentially

distributed service requirements and fixed capacities)

• Metrics likedelay, throughput, number of users in the system

difficult to determine in general

Objective of the talk:Compare the performance under various

bandwidth-sharing policies in the linear network



Outline of the talk
• Linear network

– sample-path comparison result of policies

– performance: stability and mean number of users

• Special case: single node with two classes

– monotonicity with respect to the weights forDPSandGPS

• Weightedα-fair policies

– monotonicity results w.r.t. fairness parameterα and the weights:

stability and mean number of users

– heavy-traffic regime

– numerical results

• Conclusion and future work



Sample-path comparison result

Property:Let π and π̃ be two policies such that

sπ
0 ( ~N) ≤ sπ̃

0 ( ~N),

and eithersπ
0 ( ~N) or sπ̃

0 ( ~N) is non-increasing w.r.t.Ni, i 6= 0.

The property states thathigher priorityis given toclass 0under policyπ̃

compared toπ.

node 1 node 2 node 3 nodeL

class 0

class 1 class 2 class 3 classL
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Sample-path comparison result

Property:Let π and π̃ be two policies such that

sπ
0 ( ~N) ≤ sπ̃

0 ( ~N),

and eithersπ
0 ( ~N) or sπ̃

0 ( ~N) is non-increasing w.r.t.Ni, i 6= 0.

Proposition:

• Consider the same realizations of the arrival processes andservice

requirements.

• Intra-class policy isFCFS.

If ~W π(0) = ~W π̃(0), then

i) Nπ
0 (t) ≥ N π̃

0 (t) and W π
0 (t) ≥ W π̃

0 (t),

ii) W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t)



Relation with stochastic comparison results in
[Massey87]

The necessary and sufficient conditions on the policiesπ and π̃ to

obtain

{Nπ
0 (t)}t≥0 ≥st {N π̃

0 (t)}t≥0,

for any two ordered initial statesNπ
0 (0) ≥ N π̃

0 (0), are

sπ
0 ( ~Nπ) ≤ sπ̃

0 ( ~N π̃) when Nπ
0 = N π̃

0 .

For bandwidth-sharing policies in the linear network this often does

not hold. Since ifN π̃
i → ∞, i 6= 0, then sπ̃

0 ( ~N π̃) → 0.



Performance

From the sample-path comparison result, we obtain the following

Proposition:

1. Stability: If policy π is stable, then policỹπ is stable

2. Exponentiallydistributed service requirements:

If
L

∑

i=1

ciµi ≤ c0µ0,

then
L

∑

i=0

ciE(Nπ
i (t)) ≥

L
∑

i=0

ciE(N π̃
i (t)), ∀ t ≥ 0.



Application: Single node with time-varying capacity
and two classes

• GPS allocation

s
GPS(φ)
i ( ~N) = C(t) · φi

φ11(N1>0) + φ21(N2>0)
, i = 1, 2

Intra-class policy isFCFS

• DPS allocation

s
DPS(φ)
i ( ~N) = C(t) · φiNi

φ1N1 + φ2N2
, i = 1, 2

Intra-class policy isPS

Remark:For exponentially distributed service requirements the

stochastic behavior of the system does not depend on the

non-anticipating policy (like PS, FCFS,. . .) chosen.



Application: DPS and GPS

Proposition:Let φ1 < φ̃1. Consider the same realizations of the

arrival processes and service requirements for both processes.

• GPS: for generally distributed service requirements:

W
GPS(φ)
1 (t) ≥ W

GPS(φ̃)
1 (t) and N

GPS(φ)
1 (t) ≥ N

GPS(φ̃)
1 (t).

The opposite inequalities hold for class 2.



Application: DPS and GPS

Proposition:Let φ1 < φ̃1. Consider the same realizations of the

arrival processes and service requirements for both processes.

• GPS: for generally distributed service requirements:

W
GPS(φ)
1 (t) ≥ W

GPS(φ̃)
1 (t) and N

GPS(φ)
1 (t) ≥ N

GPS(φ̃)
1 (t).

• DPS: for exponentially distributed service requirements:

{WDPS(φ)
1 (t)}t ≥st {WDPS(φ̃)

1 (t)}t, and

{NDPS(φ)
1 (t)}t ≥st {NDPS(φ̃)

1 (t)}t.

The opposite inequalities hold for class 2.



Application: DPS and GPS (cont)

Proposition:Let φ1 < φ̃1.

Assume exponentially distributed service requirements with

c1µ1 ≥ c2µ2.

Then for allt ≥ 0

2
∑

i=1

ciE(N
GPS(φ)
i (t)) ≥

2
∑

i=1

ciE(N
GPS(φ̃)
i (t))

and
2

∑

i=1

ciE(N
DPS(φ)
i (t)) ≥

2
∑

i=1

ciE(N
DPS(φ̃)
i (t))



Application to linear network: Weightedα-fair
policies

node 1 node 2 node 3 nodeL

class 0

class 1 class 2 class 3 classL

• Theweighted-α fair allocationis the solution to the following

optimization problem:

max~s∈R(t)

∑L
i=0 wiNi

(

si

Ni

)1−α

/(1 − α) if α 6= 1

max~s∈R(t)

∑L
i=0 wiNi log si if α = 1.

• Intra-class policy isProcessor Sharing.

Assumeexponentially distributed service requirements.

→ results for general setting with FCFS can be used



Weightedα-fair policies (cont.)

Varying α we obtain: α → 0 maximum throughput,α = 1

Proportional Fairness,α → ∞ max-min fairness,α = 2

approximates TCP.

• There exist congestion control algorithms that realizeα-fair

policies in a decentralized way

• For fixed capacities andα > 0, stability is ensured whenever

possible[BM01]



Application: Weightedα-fair policies (cont)

For a givenα and weightsw = (w0, w1, . . . , wL) denote the policy

by πα,w and the allocation vector by~s(α,w)( ~N).

We have

(i) s
(α,w)
0 ( ~N) is non-increasing inNi, i = 1, ..., L

(ii) s
(β,w)
0 ( ~N) ≤ s

(γ,w)
0 ( ~N), if β ≤ γ

(iii) s
(α,w)
0 ( ~N) ≤ s

(α,w̃)
0 ( ~N), if w0

wi
≤ w̃0

w̃i

Hence, the property holds forπβ,w and πγ,w̃, with β≤γ and
w0

wi
≤ w̃0

w̃i

We obtain insights into the performance of these policies inlinear

networks



Stability results for the linear network

Exponentially distributed service requirements

Corollary: Let β ≤ γ and w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L.

If policy πβ,w is stable, then policyπγ,w̃ is stable.
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Stability results for the linear network

Exponentially distributed service requirements

Corollary: Let β ≤ γ and w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L.

If policy πβ,w is stable, then policyπγ,w̃ is stable.

In [Liu et al., 2007]it is shown that the stability region is decreasing

in α (wi = 1).

Corollary: Assume Poisson arrivals and that(C1(t), . . . , CL(t)) can

be in a finite number of states and evolves as a stationary and ergodic

process, withCi the average ofCi(t).

Policyπα,w with wi ≤ w0, i = 1, . . . , L is stable if ρ0 + ρi < Ci,∀i



Mean number of users: linear network

Proposition:Assume exponentially distributed service requirements

with
∑L

i=1 ciµi ≤ c0µ0. If β≤γ and w0

wi
≤ w̃0

w̃i
, then

L
∑

i=0

ciE(Nπβ,w

i (t)) ≥
L

∑

i=0

ciE(Nπγ,w̃

i (t)), ∀ t ≥ 0.



Mean number of users: linear network

Proposition:Assume exponentially distributed service requirements

with
∑L

i=1 ciµi ≤ c0µ0. If β≤γ and w0

wi
≤ w̃0

w̃i
, then

L
∑

i=0

ciE(Nπβ,w

i (t)) ≥
L

∑

i=0

ciE(Nπγ,w̃

i (t)), ∀ t ≥ 0.

Natural choice for weights:c0 = L, ci = 1, i = 1, . . . , L.

• The condition
∑L

i=1 ciµi ≤ c0µ0 becomes

1

L

L
∑

i=1

µi ≤ µ0,

i.e. departure rate of class 0 is larger than or equal to the average

departure rate of classes1, . . . , L



Uncovered case

If
∑L

i=1 ciµi > c0µ0, then no such result holds.

Trade-off:

• More preference toclasses1, . . . , L

→ increases the instantaneous departure rate

→ uses the capacity of the network less efficiently



Heavy-traffic regime

Consider the diffusion scaled processes

n̂
k,(α)
i (t) :=

Nπα,~1

i (kt)√
k

, i = 0, 1, 2

v̂
k,(α)
i (t) = n̂

k,(α)
0 (t)/µ0 + n̂

k,(α)
i (t)/µi, i = 1, 2.

v̂
k,(α)
i (t) ≈ total workload in nodei
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Heavy-traffic regime

Consider the diffusion scaled processes

n̂
k,(α)
i (t) :=

Nπα,~1

i (kt)√
k

, i = 0, 1, 2

v̂
k,(α)
i (t) = n̂

k,(α)
0 (t)/µ0 + n̂

k,(α)
i (t)/µi, i = 1, 2.

v̂
k,(α)
i (t) ≈ total workload in nodei

In [Kang et al, 2007]it is conjectured that̂~vk,(α)(t)
d→ ~̂v(α)(t),

k → ∞, with ~̂v(α)(t) a semimartingale reflecting Brownian motion

living in a workload cone.

Two-node linear network:workload cone is independent ofα



Heavy-traffic regime (cont)

Proposition:Assumeρi + ρ0 = Ci, i = 1, 2.

• If c1µ1 + c2µ2 < c0µ0, then E(
∑2

i=0 cin̂
(α)
i (t)) is strictly

decreasing inα.

• If c1µ1 + c2µ2 = c0µ0, then E(
∑2

i=0 cin̂
(α)
i (t)) is constant in

α.

• If c1µ1 + c2µ2 > c0µ0, then E(
∑2

i=0 cin̂
(α)
i (t)) is strictly

increasing inα.

L
∑

i=0

cin̂
(α)
i (t)

d
=

c0µ0 −
∑2

i=1 ciµi

µ0
n̂

(α)
0 (t) +

2
∑

i=1

ciµiv̂
(α)
i (t).



Numerical results I
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Numerical results II

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

1.61

1.62

1.63

µ
0

E
(N

α )
ρ

0
=0.3, ρ

1
=0.2, ρ

2
=0.2 and µ

1
=1, µ

2
=0.5

 

 

α=0

α=0.2

α=0.5

α=0.7

α=1

α=1.5

α=2

α=10

α=∞



Conclusion and future work

• Single server with more than 2 classes

• Extend to different topologies like star or grid

network

• Monotonicity in µ0.



Comparison of bandwidth-sharing policies in a
linear network

Maaike Verloop (CWI)

Urtzi Ayesta (LAAS-CNRS)

and Sem Borst (TU/e, Bell Labs)

ValueTools, 21 October 2008



Intuition
Let Sπ

i (t) :=
∫ t

u=0 sπ
i ( ~Nπ(u))du, be the cumulative amount of

service received by classi during [0, t).

Property: Class 0 is given more priority under policyπ than underπ̃

(i’) Sπ
0 (t) ≤ Sπ̃

0 (t)

(ii’) Sπ
0 (t) + Sπ

i (t) ≤ Sπ̃
0 (t) + Sπ̃

i (t), since π gives more priority to

class 0 and hence makes better use of the available capacity of

the network.

Not trivial:

Giving higher priority to class 0 implies that classes 1 and 2will

contain more users. Hence, class 0 receives less service later on.
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Intuition

Let Sπ
i (t) :=

∫ t

u=0 sπ
i ( ~Nπ(u))du, be the cumulative amount of

service received by classi during [0, t).

Property: Class 0 is given more priority under policyπ than underπ̃

(i’) Sπ
0 (t) ≤ Sπ̃

0 (t)

(ii’) Sπ
0 (t) + Sπ

i (t) ≤ Sπ̃
0 (t) + Sπ̃

i (t)

Hence,

(i) Nπ
0 (t) ≥ N π̃

0 (t), andW π
0 (t) ≥ W π̃

0 (t),

(ii) W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t).



Proof:

• Nπ
0 (t) ≥ N π̃

0 (t) → E(Nπ
0 (t)) ≥ E(N π̃

0 (t))



Proof:

• Nπ
0 (t) ≥ N π̃

0 (t) → E(Nπ
0 (t)) ≥ E(N π̃

0 (t))

• W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t)

→ E(W π
0 (t)) + E(W π

i (t)) ≥ E(W π̃
0 (t)) + E(W π̃
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Proof:

• Nπ
0 (t) ≥ N π̃

0 (t) → E(Nπ
0 (t)) ≥ E(N π̃

0 (t))

• W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t)

→ E(W π
0 (t)) + E(W π

i (t)) ≥ E(W π̃
0 (t)) + E(W π̃

i (t))

• Intra-class policy is FCFS and exponentially service req.

→ E(Wi(t)) = 1
µi

E(Ni(t)), and hence

1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t)) ≥ 1

µ0
E(N π̃

0 (t)) +
1

µi
E(N π̃

i (t)).



We haveE(Nπ
0 (t)) ≥ E(N π̃

0 (t)) and

1
µ0

E(Nπ
0 (t)) + 1

µi
E(Nπ

i (t)) ≥ 1
µ0

E(N π̃
0 (t)) + 1

µi
E(N π̃

i (t)).



We haveE(Nπ
0 (t)) ≥ E(N π̃

0 (t)) and

1
µ0

E(Nπ
0 (t)) + 1

µi
E(Nπ

i (t)) ≥ 1
µ0

E(N π̃
0 (t)) + 1

µi
E(N π̃

i (t)).

Since
∑L

i=1 ciµi ≤ c0µ0, we obtain

L
∑

i=0

ciE(Nπ
i (t))

=
c0µ0 −

∑L
i=1 ciµi

µ0
E(Nπ

0 (t)) +
L

∑

i=1

ciµi

(

1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t))

)

≥c0µ0 −
∑L

i=1 ciµi

µ0
E(N π̃

0 (t)) +
L

∑

i=1

ciµi

(

1

µ0
E(N π̃

0 (t)) +
1

µi
E(N π̃

i (t))

)

=
L

∑

i=0

ciE(N π̃
i (t)).


