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Scheduling in an M/G/1 Queue

– Poisson arrivals with rate λ. 
Service requirements are i.i.d. with distribution F(x)=P[X ≤ x]. 
Complementary cumulative distribution denoted by 

– Attained service is known (total service requirement unknown)

– Optimality criterion: Mean number of jobs in the system
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Scheduling disciplines

Two important set of disciplines depending on whether the
size of jobs is known.

– The size is known: Shortest-Remaining-Processing-Time 
(SRPT) is optimal with respect to the average response 
time of the system.

– The size is not known, but we know the attained service
of jobs. The most appropriate scheduling discipline 
depends on the service time distribution characteristics



Monotone Hazard Rate
Hazard rate of a distribution function: h(x)dx=P[x< X ≤ x+dx | X > x]

– Increasing Hazard Rate (IHR): 
Non-preemptive discipline (FCFS etc.) is optimal

– Constant hazard rate, i.e. exponential distribution: 
Mean number of jobs is policy independent

– Decreasing Hazard Rate (DHR): 
Least Attained Service (LAS) is optimal. Job(s) with the least attained 
service is served.
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– What if the distribution is defined on a interval [k,∞).
For example a Pareto-type distribution

– What if the support is bounded, that is, if                 for all p>x ? 

Scheduling for non-monotone hazard rate?
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Optimality of Gittins policy

Theorem [Gittins89]:
Gittins index policy minimizes the mean number of 
jobs in the system among all non-anticipating 
scheduling policies

Introduced by Sevcik [1974] for static scheduling (Smallest-Rank policy)
Optimality in an M/G/1 queue by Gittins [1989].



Job with attained service a has the Gittins index

with

• reward: P[a ≤ X ≤ a+Δ |X>a]
• investment: E[min(X-a, Δ) |X>a]

– In particular: J(a,0)=h(a) and J(a,∞)=1/E[X-a|X>a]

Gittins index policy
Serve at every instant of time the job with highest value G(a).
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Relation between Gittins and SR

Gittins index policy
Serve at every instant of time the job with highest value G(a).

Sevcik’s Smallest-Rank policy index policy:
Pick the job with highest index value G(a)  and assign him a 

service quota

This job will be served until:
• It receives Δ*(a) units of service
• It departs from the system
• A new job with higher Gittins index arrives to the queue
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Gittins and SR (cont.)

Lemma: For all a ≤ x ≤ a+Δ*(a),
– G(x) ≥ G(a)
– x+Δ*(x) ≤ a+Δ*(a) 

Proposition: The Gittins discipline and SR are equivalent 
sample-path wise.

– Not surprising result:
• Optimality of cμ-rule (without arrivals Smith’56, with arrivals Fife’65)
• Multi-class single server queue with feedback and non-preemptive policy: The 

optimal policy without arrivals is also optimal with Poisson arrivals [MW76]

a a+Δ*(a)x x+Δ*(x)



Gittins index policy

Theorem: For any attained service a≥0, 

Sketch of the proof:
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Proposition: G(a) is decreasing for all a if and only if the 
service time distribution is DHR

Sketch of the proof:
For any fixed a, J(a,Δ) is decreasing with respect to Δ.
• Then for all a, G(a)=J(a,0)=h(a), and note that h(a) is decreasing

It can be shown that G(a)=h(a)

Theorem: LAS minimizes stochastically the number of jobs if 
and only if the service time distribution is DHR

Sketch of the proof:
By [RS,1989]
in particular LAS minimizes the mean, thus G(a) is 

decreasing, and hence distribution must be DHR.

Equivalent result for FCFS and NBUE distributions.



CDHR(k) or Pareto-type distributions

Definition of CDHR(k) distribution:
• A1: h(x) is constant for all x < k,
• A2: h(x) is decreasing for all x ≥ k.
• A3: h(0) < h(k).
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Proposition: Assume the service time distribution 
belongs to the class CDHR(k). Then there exists a θ >k s.t,

G(x) ≥G(0) for all x < θ,
G(θ) ≤ G(0), and
G(x) is decreasing for all x ≥ θ.
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Theorem: Assume a CDHR(k) service time distribution:
(i) If A3 is not satisfied, then G(x) is decreasing for all x, hence LAS is 

optimal.
(ii) If A3 is satisfied, then there is θ > k such that FCFS+ LAS(θ) is 

optimal. 
The precise value of θ depends only on the parameters of the 
service time distribution.

FCFS+LAS(θ):  
Classify jobs into two classes:
High Priority:

Jobs with attained service less than θ
Serve within this class according to FCFS

Low Priority:
Jobs with attained service more than θ
Serve within this class according to LAS x
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Numerical example: Pareto 
distribution with k=1 and α =2
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Impact of an upper bound bounded 
distribution: Bounded Pareto
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Conclusion and future research
– Application of index policy for non work-conserving systems:

• Multi-server systems
• Time-varying capacity like in wireless systems

– Scheduling in a G/G/1 queue. LAS and FCFS are optimal with DHR 
and IHR respectively. 

• What if hazard-rate is not monotone?

– Calculate performance metrics for a given function G(a)?

– Relation between optimal scheduling in static and stochastic 
scenarios.

– Application of Gittins for multi-class queues
• Optimal policy for cases that cμ-rule does not cover



Sketch of the proof: For all a ≤ x ≤ a+Δ*(a), there exists a function p(x) ≤1 
such that

J(a,Δ*(a))=p(x) J(a,x-a) + (1-p(x)) J(x,Δ*(a)+a-x).

But J(a,Δ*(a))≥J(a,x-a), thus J(x,Δ*(a)+a-x) ≥ J(a,Δ*(a)). 

Now it follows that

G(x) ≥ J(x,Δ*(a)+a-x) ≥ J(a,Δ*(a)) = G(a).

a a+Δ*(a)x

J(a,Δ*(a))

J(a,x-a) J(x,Δ*(a)+a-x)



Theorem: If the distribution is of type DHR, LAS (Least-
Attained Service) minimizes the mean number of 
jobs in the system

Sketch of the proof: 
• For any fixed a, J(a,Δ) is decreasing with respect to Δ.
• Then for all a, G(a)=J(a,0)=h(a), and note that h(a) is decreasing

Similar result for IHR, then G(a) ≥G(0), for all a
Hence any non-preemptive policy is optimal

G(x)=h(x)
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