
Load Balancing in Processor Sharing Systems

Eitan Altman (INRIA)

Urtzi Ayesta (LAAS-CNRS)

and Balakrishna Prabhu (LAAS-CNRS)

GameComm, 20 October 2008



Server farms

• Diverse applications : e-service industry, database systems, grid

computing clusters

Servers

Dispatcher

Requests

Design problem: What is the optimal routing policy?

• Centralized setting: dispatcher takes decisions

• Decentralized setting: requests take decisions



Example application
Internet based source code repositories - SourceForge, Google Code:

Source files are hosted on several mirror sites

x x
• Decision is taken either by the central unit or by the downloader

• Downloads progress in parallel ⇒ Processor Sharing (PS) at each

server



Problem Description

• Server farms with K job classes , C servers, PS discipline

Dispatcher

ServersRequests

λ1, σ1

λ2, σ2

λK , σK

r1, c1

r2, c2

rC, cC

• Objective:

– Centralized setting: minimize the weighted mean sojourn time

– Decentralized setting: each user seeks to minimize its own

weighted mean sojourn time

• Decision variable : p = (pij) - probability that class i job is

routed to server j.



Outline

• Centralized setting

• Decentralized setting

• Comparing the Centralized and Decentralized solution

→ Price of Anarchy

• Conclusions and future work



Mean sojourn times in M/G/1/PS queues

• By Little’s law mean the sojourn time is proportional to the

mean number of jobs

• Let ηi = λiσ
−1

i be the traffic offered by class i

• Let η =
∑

i ηi be the total offered traffic

• The load on server j is

ρj =

∑

i ηipij

rj

• The mean number of jobs in server j is

E[Nj ] =
ρj

1 − ρj

⇒ E[Nj ] is insensitive to the second moment of the service time

distribution



Centralized setting : problem formulation

• Solve the following mathematical program :

minimize
∑

j∈S

cj

ρj(p)

1 − ρj(p)

subject to
∑

j∈S

pij = 1, for all i ∈ K;

p � 0;
∑

i∈K

ηipij < rj , for all j ∈ S.

• Solution need not be unique

• If ρj(p
1) = ρj(p

2), ∀j ∈ S, then either both p1 and p2 are

optimal or both are suboptimal



Stability and Size-unaware multi-strategy

Proposition. There exists a stable multi-strategy if and only if
∑

j∈S
rj > η.



Stability and Size-unaware multi-strategy

Proposition. There exists a stable multi-strategy if and only if
∑

j∈S
rj > η.

Proposition: Let p be a feasible multi-strategy. For all i ∈ K and

for all j ∈ S define the multi-strategy p̂ by

p̂ij =
ρj(p)rj

η
.

The multi-strategy p̂ is also feasible and ρj(p̂) = ρj(p) ∀j ∈ S.



Stability and Size-unaware multi-strategy

Proposition. There exists a stable multi-strategy if and only if
∑

j∈S
rj > η.

Proposition: Let p be a feasible multi-strategy. For all i ∈ K and

for all j ∈ S define the multi-strategy p̂ by

p̂ij =
ρj(p)rj

η
.

The multi-strategy p̂ is also feasible and ρj(p̂) = ρj(p) ∀j ∈ S.

Corollary: If p is an optimal multi-strategy then p̂ is a

size-unaware optimal multi-strategy

Implication: Reduces the dimensionality of the program, we can

optimize directly over ρ.



Centralized setting : Reduced Mathematical
Program

• Solve the following convex mathematical program :

minimize
∑

j∈S

cj

ρj

1 − ρj

subject to 0 < ρj < 1, for all j ∈ S;
∑

i∈K

rjρj = η.

• Assume servers are indexed such that c1

r1

≤ c2

r2

≤ ... ≤ cC

rC
.

• c/r is the cost per unit workload



Centralized setting: solution structure

Theorem. The subset of servers that are used in the optimal load

balancing is SG = {1, . . . , j∗}, where

j∗ = sup
{

j ≤ C :
∑j

k=1

√
cjrj >

(

∑j
k=1

rk − η
)
√

cj

rj

}

. Under the

optimal multi-strategy, the load on server j ∈ SG is

ρ∗j = 1 −
√

cj

rj

∑

k∈SG
rk − η

∑

k∈SG

√
ckrk

.



Centralized setting: solution structure

Theorem. The subset of servers that are used in the optimal load

balancing is SG = {1, . . . , j∗}, where

j∗ = sup
{

j ≤ C :
∑j

k=1

√
cjrj >

(

∑j
k=1

rk − η
)
√

cj

rj

}

. Under the

optimal multi-strategy, the load on server j ∈ SG is

ρ∗j = 1 −
√

cj

rj

∑

k∈SG
rk − η

∑

k∈SG

√
ckrk

.

Corollary The size-unaware multi-strategy, p̂∗, is given by

p̂∗ij =
ρ∗

j rj

η
, for all i ∈ K and for all j ∈ S.

Remarks: The solution structure is known as water-filling and server

with a larger c/r ratio receives lesser traffic.



Related results

• FCFS as back-end scheduling [Feng et al., 2005]:

Job size

Server 1 Server 2 Server C

– intuition: reduce the variability of service-time distribution

• For PS [Starobinski and Wu 2005, Haviv and Roughgarden 2007]

– Homogenous cost rates and one type of requests.

• We allow for multi-class requests and heterogenous cost rates



Decentralized setting

Equilibrium: A strategy p is an equilibrium for the individual

selfish setting if for each class i = 1, ..., K, each server j = 1, ..., C

and each queue k used by class i,

E[ckTk(p)|i] = min
j=1,...,K

E[cjTj(p)|i]

Proposition. The distributed non-cooperative game can be

transformed into the standard convex optimization problem

min
p

C
∑

k=1

ck log

(

1

1 − ρk(p)

)

⇒ The game belongs to a particular type of games known as

“Potential Game”.



Characterizing the Individual Optimal Solution

Theorem. The subset of servers that are used in the optimal routing

strategy in the non-cooperative setting is of type SI = {1, . . . , j∗}, where

j∗ = sup

{

j ≤ C :

j
∑

k=1

cj >

(

j
∑

k=1

rk − η

)

cj

rj

}

For every j ∈ SI , the load is

ρj = 1 − cj

rj

∑

k∈SI
rk − η

∑

k∈SI
ck

.



Characterizing the Individual Optimal Solution

Theorem. The subset of servers that are used in the optimal routing

strategy in the non-cooperative setting is of type SI = {1, . . . , j∗}, where

j∗ = sup

{

j ≤ C :

j
∑

k=1

cj >

(

j
∑

k=1

rk − η

)

cj

rj

}

For every j ∈ SI , the load is

ρj = 1 − cj

rj

∑

k∈SI
rk − η

∑

k∈SI
ck

.

Water-filling structure: As the arrival rate λ increases, server 2 will start

being used when:
c1

r1

× 1

1 − ρ1(p)
=

c2

r2

.



Comparing the Global and Individual

Proposition. For any arrival rate and service time distribution it

holds

SI ⊆ SG

Price of Anarchy: is defined as the ratio between the performance

(mean delay) obtained by the Wardrop equilibrium and the global

optimal solution.

Theorem. For every θ, there exist cj and rj , j ∈ S, such that

PoA > θ.

⇒ The PoA is unbounded.

When ck = 1, then PoA ≤ C [Haviv and Roughgarden, 2007].



Sketch of proof: PoA =
∑C

j=1
cjE[N I

j ]

minp

∑C
j=1

cjE[NG
j ]

Assume cj = rj = 1, for j = 2, . . . , C.

We take r1 ↓ η and c1 → 0.



Sketch of proof: PoA =
∑C

j=1
cjE[N I

j ]

minp

∑C
j=1

cjE[NG
j ]

Assume cj = rj = 1, for j = 2, . . . , C.

We take r1 ↓ η and c1 → 0.

Individuals:

• Only one server is used.

• As r1 ↓ η, E[N I
1
] → ∞ , but c1 → 0, and overall c1E[N I

1
] → η/2.



Sketch of proof: PoA =
∑C

j=1
cjE[N I

j ]

minp

∑C
j=1

cjE[NG
j ]

Assume cj = rj = 1, for j = 2, . . . , C.

We take r1 ↓ η and c1 → 0.

Individuals:

• Only one server is used.

• As r1 ↓ η, E[N I
1
] → ∞ , but c1 → 0, and overall c1E[N I

1
] → η/2.

Global optimal:

• All servers are used.

• As r1 ↓ η the global optimal tends to route everything towards server 1,

thus
∑C

j=2
cjE[NG

j ] → 0.

• ρ1 = 1 − o(
√

r1 − η) and it turns out that c1E[NG
1

] → 0.

• Thus for the global optimum, as r1 ↓ η,
∑C

j=1
cjE[NG

j ] → 0.



Conclusions and Future work

• Centralized setting

– Existence of a size-unaware optimal routing policy

– Characterize set of useful servers and the optimal load on each



Conclusions and Future work

• Centralized setting

– Existence of a size-unaware optimal routing policy

– Characterize set of useful servers and the optimal load on each

• Decentralized setting

– Potential game

– Characterize set of useful servers and the optimal load on each



Conclusions and Future work

• Centralized setting

– Existence of a size-unaware optimal routing policy

– Characterize set of useful servers and the optimal load on each

• Decentralized setting

– Potential game

– Characterize set of useful servers and the optimal load on each

• Compare the two settings

– Decentralized solution uses more servers than centralized

solution

– Price of Anarchy is unbounded.



Conclusions and Future work

• Centralized setting

– Existence of a size-unaware optimal routing policy

– Characterize set of useful servers and the optimal load on each

• Decentralized setting

– Potential game

– Characterize set of useful servers and the optimal load on each

• Compare the two settings

– Decentralized solution uses more servers than centralized

solution

– Price of Anarchy is unbounded.

• Future work

– Alternative back-end scheduling disciplines: SRPT, LAS etc.

– Non-atomic selfish setting: Each class chooses a routing

strategy to minimize its own total weighted delay.


