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Scheduling in a M/G/1 Queue

– Poisson arrivals with rate λ. Service requirements are i.i.d. with 
distribution F(x)=P[X ≤ x].

– Attained service is known (total service requirement unknown)

– Optimality criterion: Mean number of jobs in the system

service requirement

server



Monotonous Hazard Rate

– Hazard rate of a distribution function: h(x)dx=P[x< X ≤ x+dx | X > x]

– IHR: Non-preemptive discipline (FCFS etc.)
– Exponential: M/M/1 Mean number of jobs is policy independent
– DHR: Least Attained Service (LAS) is optimal. The job(s) who has 

attained the least amount of service is served.
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Which scheduling when HR not 
monotonous?

– Mean Residual Life

– Distribution is IMRL if and only if H(x) is non-decreasing for all x≥0

– Larger class of distributions: DFR ⊂ IMRL

– Claim: LAS is optimal within the class IMRL
• Known flaw on the proof
• Does the result hold?
• What is the optimal policy?
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FCFS+LAS(c)

– Classify jobs into two classes depending on the amount of attained
service

• High Priority: Jobs that have obtained less service than c
• Low Priority: Jobs that have obtained more service than c  

– High Priority jobs served according to FCFS and Low Priority with LAS

Low Priority

High PriorityNew arrivals



LAS is not Optimal within IMRL

– Theorem: There exists a service requirement distribution belonging to 
IMRL and discipline π such that

Sketch of the proof: Consider the distribution (CHR+DHR)

Belongs to IMRL but not to DHR if 1<c<e

LASNN <π
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Hazard Rate and Mean Residual Life



⇒There exists δ>0 such that, for any 0<ε< δ
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Optimal discipline for general service 
requirements

– Gittins’ index policy. 
• To each job present in the system, assign an index equal to     

where

– Pick the job with highest index value, and assign him a service quota 
Δ*(a)

– Introduced by Sevcik [1974] for static scheduling. Optimality in 
Stochastic setting by Gittins [1989].
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Gittins index policy

– For non-anticipative disciplines, the hazard rate suffices to 
characterize the optimal scheduling discipline.

– Theorem: For any attained service a≥0, 

Sketch of the proof:
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Gittins index policy

– For a distribution CHR+DHR(k)

– Optimal policy is FCFS+LAS(ε*)
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Optimal policy for CHR+DHR distribution

– Theorem: For a CHR+DHR(k) type of distribution, 
there exists a ε* <k, such that
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Conclusion and future research

– In the set of non-anticipative disciplines, the hazard rate 
characterizes completely the optimal policy.

– Application of index policy for scheduling with multiple nodes?
• How to cope with non work conserving property of networks?

– Influence of maximum size. Assume that F(x)=1 for all x≥k

h(x)
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