

Unifying conservation law for single server queues^a

Urtzi Ayesta

LAAS-CNRS

urtzi@laas.fr

EURANDOM, 20 May 2008

^aPublished in JAP, 44(4), 1078-1087, 2007

Figure 1: Cumulative burden for FCFS

Figure 2: Cumulative burden for LCFS

Outline of the talk

- General Conservation Law
- Conservation laws for:
 - Single-class queue
 - Multi-class queue. Achievable Region approach
- Unifying conservation law
- Mean delay reduction of anticipating disciplines

Classification of Scheduling Disciplines

- Knowledge:
 - Non-anticipating
 - Anticipating

- Preemption:
 - Non-preemptive
 - Preemptive

General Conservation Law

- Consider a single-server queue with M classes.
- Let $U_j^{\pi}(t)$ be the unfinished work at time t of class-j jobs under policy π and let

$$U^{\pi}(t) = \sum_{j=1}^{M} U_j^{\pi}(t)$$

denote the total unfinished work in the system.

U^π(t) has vertical jumps at arrival epochs equal in size to the corresponding service requirements.

Definition: Work-conserving discipline

We say that the scheduling discipline is work-conserving if $\frac{dU^{\pi}(t)}{dt} = -1$ whenever $U^{\pi}(t) > 0$.

General Conservation Law: A sample path argument shows that $\sum_{j=1}^{M} U_j^{\pi}(t) = U^{\pi}(t) = U(t)$ for all work-conserving discipline $\pi \in \Pi$.

- Let \overline{U}_{j}^{π} denote the time average unfinished work of class j, $j = 1, \dots, M$.
- The work-conservation property implies that $\overline{U} = \sum_{j=1}^{M} \overline{U}_{j}^{\pi}$, is a constant that depends only on the inter-arrival and service time distributions.

Review Conservation Laws

The work-conserving property has led to the development of so-called work-conservation laws.

- Single-class: Integral equation for the conditional sojourn time
 - Non-anticipating discipline [Kleinrock76]
 - Anticipating discipline [O'Donovan 74]
- Multi-class: Linear relation that the expected unconditional sojourn times of the various classes must satisfy
 - Non-anticipating disciplines with exponential service time distributions
 [CM80]
 - Non-preemptive non-anticipating disciplines with general service time distributions [Kleinrock76]

Important body of literature *cont*.

- Textbooks: Kleinrock (1976), Gelenbe and Mitrani (1980), Heyman and Sobel (1982), Wolff (1989) and Baccelli and Brémaud (2003)
- Conservation law: Boxma (1989), Sigman (1991), Brémaud (1993), Miyazawa (1994)
- Achievable Region approach: Coffman and Mitrani (1980), Federgruen and Groenevelt (1988), Shantikumar and Yao (1992), Dacre, Glazebrook and Niño-Mora (1999), Green and Stidham (2000)

Example: Conservation law for a multi-class queue, non-anticipating discipline and exponential service time distributions

- Memoryless property: $\overline{U}_{j}^{\pi} = \frac{\overline{N}_{j}^{\pi}}{\mu_{j}}$
- Little's law: $\overline{N}_j^{\pi} = \lambda_j \overline{T}_j^{\pi}$
- $\overline{U}_j^{\pi} = \rho_j \overline{T}_j^{\pi}$
- Summing over all the classes: $\sum_{j=1}^{M} \rho_j \overline{T}_j^{\pi} = \sum_{j=1}^{M} \overline{U}_j^{\pi} = \overline{U}.$
- If Poisson arrivals $\overline{U} = \frac{\sum_{j=1}^{M} \rho_j / \mu_j}{1 \rho}$

Example: Achievable region for a multi-class queue, non-anticipating discipline and exponential service time distributions:

For
$$S \subseteq M$$
, let $f(S) = \frac{\sum_{j \in S} \rho_j / \mu_j}{1 - \sum_{j \in S} \rho_j}$

For any policy π : $\sum_{j \in \mathcal{S}} \rho_j \overline{T}_j^{\pi} \ge f(\mathcal{S})$ and $\sum_{j=1}^M \rho_j \overline{T}_j^{\pi} = f(\mathcal{M})$

Achievable region: Polyhedra of dimension M - 1. M! vertices

Example: 3 classes

Notation and assumptions

- GI/GI/1 queue under work-conserving discipline
- Let λ be the mean arrival rate
 - With probability p_j an arrival is a class-j job
- Let $F_j(\cdot)$ denote the service time distribution of class j and $\overline{F}_j(\cdot) = 1 F_j(\cdot)$ the complementary distribution.
- Stable regime, i.e., $\rho = \lambda \sum_{j=1}^{M} p_j E[X_j] < 1$
- *E*[*X*²_j] < ∞, *j* = 1, ..., *M*. This ensures that the expected unfinished work at arrival epochs, *V*, and random epochs, *U*, is finite.

Notation and assumptions cont.

- \overline{U} is independent of the scheduling discipline, hence $\overline{U} = \overline{U}^{FCFS}$. In the case of Poisson arrivals, by the Pollaczek-Khinchin formula we get $\overline{U} = \overline{U}^{FCFS} = \frac{\sum_{j=1}^{M} \lambda_j E[X_j^2]}{2(1-\rho)}.$
- Let $T_j^{\pi}(x)$ be the expected conditional response time of a class-*j* job with service time *x*.
- Let T^π_j(u; x) denote the expected conditional time that a class-j job with total service time x spends in the system in order to obtain u units of service, u ≤ x.
 - In particular $T_j^{\pi}(x;x) = T_j^{\pi}(x)$
 - For non-anticipating disciplines, $T_j^{\pi}(u; x) = T_j^{\pi}(u)$, for all $u \leq x$.

Unifying Conservation Law

Theorem: Consider a GI/GI/1 multi-class queue under a work-conserving scheduling discipline. The expected conditional response times of the various classes satisfy

$$\sum_{j=1}^{M} \lambda_j \int_{x=0}^{\infty} \overline{F}_j(x) \left(T_j^{\pi}(x) + \int_{u=0}^{x} \frac{\partial T_j^{\pi}(u;x)}{\partial x} \mathrm{d}u \right) \mathrm{d}x = \overline{U}.$$

If in addition we assume that class-j jobs, j = 1, ..., M, arrive according to a Poisson process, then

$$\overline{U} = \frac{\sum_{j=1}^{M} \lambda_j E[X_j^2]}{2(1-\rho)}.$$

Sketh of Proof:

- Since ρ < 1, the busy period has a finite length *with probability* 1.
 Regenerative process and thus stationary and ergodic.
- Let $W_i^{i,\pi}$ denote the cumulative burden of the *i*-th class-*j* job

- Applying the Palm inversion formula to the unfinished work, we obtain $\overline{U}_j^{\pi} = \lambda_j E[W_j^{\pi}]$
- Summing over all classes $\sum_{j=1}^{M} \lambda_j E[W_j^{\pi}] = \sum_{j=1}^{M} \overline{U}_j^{\pi} = \overline{U}$

Explanation for U
_j^π = λ_jE[W_j^π]: Let s be a time epoch such that U_j^π(s) = 0, then ∫₀^s U_j^π(t)dt = Σ_{i=1}^{A_j(s)} W_j^{i,π}. Dividing by s and taking the limit s → ∞:

$$\overline{U}_j^{\pi} = \lim_{s \to \infty} \frac{1}{s} \int_0^s U_j^{\pi}(t) dt = \lim_{s \to \infty} \frac{A_j(s)}{s} \frac{1}{A_j(s)} \sum_{i=1}^{A_j(s)} W_j^{i,\pi} = \lambda E[W_j^{\pi}].$$

Non-anticipating discipline:

- $T_j^{\pi}(u;x) = T_j^{\pi}(u)$ and
- Hence $\frac{\partial T_j^{\pi}(u;x)}{\partial x} = 0$, for all $0 \le u \le x$

Then we need to show that

$$\sum_{j=1}^{M} \lambda_j \int_{x=0}^{\infty} \overline{F}_j(x) T_j^{\pi}(x) \mathrm{d}x = \overline{U}.$$

Figure 3: Cumulative burden for FCFS

Figure 4: Cumulative burden for LCFS

Expression for $E[W_j^{\pi}]$

- Let $\tau_j^{i,\pi}(u;x)$ denote the amount of time that the *i*-th job, which has size x, needs to obtain $u \leq x$ units of service.
- Since the policy is non-anticipating: $\tau_j^{i,\pi}(u) := \tau_j^{i,\pi}(u;x)$.
- $E[\tau_j^{i,\pi}(u)] = T_j^{\pi}(u).$

$$W_{j}^{i,\pi}(x) = \int_{t=0}^{\tau_{j}^{i,\pi}(x)} R_{j}^{i,\pi}(a^{i}+t) dt = \int_{u=0}^{x} \tau_{j}^{i,\pi}(x-u;x) du$$
$$= \int_{u=0}^{x} \tau_{j}^{i,\pi}(u) du = \int_{u=0}^{\infty} \tau_{j}^{i,\pi}(u) \mathbf{1}_{\{u \le x\}} du$$

• Unconditioning on x and taking expectation:

$$E[W_j^{\pi}] = \int_{u=0}^{\infty} T_j^{\pi}(u) \overline{F}_j(u) \mathrm{d}u.$$

Particular cases: Single-class

- Non-anticipating [Kleinrock,1976]: $\overline{U} = \lambda \int_{x=0}^{\infty} \overline{F}(x) T^{\pi}(x) dx$.
- Anticipating [O'Donovan,1974]:

$$\overline{U} = \lambda \int_{r=0}^{\infty} r \int_{x=r}^{\infty} \left(-\partial_r T^{\pi}(x-r;x) \right) \mathrm{d}F(x),$$

• Non-preemptive anticipating [Baccelli Brémaud, 2003]. It holds that $T(u; x) = u + \overline{V}^{\pi}(x), \forall 0 \le u \le x$, where $\overline{V}(x)$ denotes the expected waiting time in the queue. Substituting we get

$$\overline{U} = \frac{1}{2}\lambda E[X^2] + \int_{x=0}^{\infty} x\overline{V}^{\pi}(x)\mathrm{d}F(x)$$

Multi-class

Non-anticipating discipline and exponential service time distributions [Coffman Mitrani, 1980]

- Exponential assumption: $\overline{F}_j(x)dx = E[X_j]dF_j(x)$.
- Plugging into the general equation

$$\overline{U} = \sum_{j=1}^{M} \lambda_j \int_{x=0}^{\infty} T_j^{\pi}(x) \overline{F}_j(x) dx$$
$$= \sum_{j=1}^{M} \lambda_j E[X_j] \int_{x=0}^{\infty} T_j^{\pi}(x) dF_j(x) = \sum_{j=1}^{M} \rho_j \overline{T}_j^{\pi},$$

Multi-class

Non-preemptive non-anticipating discipline and general service time distributions [Schrage,1970]

- $T_j(x) = x + \overline{V}_j^{\pi}, \forall x \ge 0$, where \overline{V}_j^{π} denotes the expected waiting time in the queue for a class-*j* job
- Substituting:

$$\overline{U} = \sum_{j=1}^{M} \lambda_j \int_{x=0}^{\infty} T_j^{\pi}(x) \overline{F}_j(x) dx$$

$$= \frac{1}{2} \sum_{j=1}^{M} \lambda_j E[X_j^2] + \sum_{j=1}^{M} \lambda_j \overline{V}_j^{\pi} \int_{x=0}^{\infty} \overline{F}_j(x) dx$$

$$= \frac{1}{2} \sum_{j=1}^{M} \lambda_j E[X_j^2] + \sum_{j=1}^{M} \rho_j \overline{V}_j^{\pi}.$$

Application to DPS

• If there are $N_k(t)$, k = 1, ..., M, class-k jobs in the queue, a class-k job gets served with rate

$$\frac{g_k}{\sum_{j=1}^M g_j N_j(t)}$$

Using the conservation law $\overline{U} = \sum_{j=1}^{M} \lambda_j \int_{x=0}^{\infty} T_j^{\pi}(x) \overline{F}_j(x) dx$, it can be shown that:

Theorem: In a DPS queue with Poisson arrivals it holds:

$$\lim_{x \to \infty} \left(T_k(x) - \frac{x}{1-\rho} \right) = \frac{\sum_{j=1}^M \lambda_j \left(1 - \frac{g_k}{g_j} \right) E[X_j^2]}{2(1-\rho)^2}$$

Performance of Anticipating Disciplines

Proposition: Assume exponentially distributed service times. Let π_1 be a non-anticipating discipline and let π_2 be an anticipating discipline such that for all $0 \le u \le x$,

$$\frac{\partial T^{\pi_2}(u,x)}{\partial x} \ge 0.$$

Then:

$$\overline{T}^{\pi_1} \ge \overline{T}^{\pi_2}.$$

Sketch of the proof:

• Since π_1 is non-anticipating it follows:

$$\overline{U} = \lambda \int_{x=0}^{\infty} \overline{F}(x) T^{\pi_1}(x) \mathrm{d}x = \lambda E[X] \int_{x=0}^{\infty} T^{\pi_1}(x) \mathrm{d}F(x) = \rho \overline{T}^{\pi_1}.$$

Sketch of the proof (cont.):

• In the case of π_2 , the conservation law can be written as

$$\overline{U} = \rho \overline{T}^{\pi_2} + \lambda \int_{x=0}^{\infty} \overline{F}(x) \int_{u=0}^{x} \frac{\partial T^{\pi_2}(u;x)}{\partial x} \mathrm{d}u \mathrm{d}x.$$

• Taking the difference we obtain

$$\rho\left(\overline{T}^{\pi_1} - \overline{T}^{\pi_2}\right) = \lambda \int_{x=0}^{\infty} \overline{F}(x) \int_{u=0}^{x} \frac{\partial T^{\pi_2}(u;x)}{\partial x} \mathrm{d}u \mathrm{d}x.$$

Condition $\frac{\partial T^{\pi_2}(u,x)}{\partial x} \ge 0$ holds $\pi = \{SRPT, SPT\}$. Plausible to hold for other size-based policies as SMART, FSP etc.

Conclusions

• Multi-class generalization of the Swiss-army formula [Brémaud,93] or $H = \lambda G$ [Brumelle,71]:

$$\sum_{j=1}^{M} H_j = \sum_{j=1}^{M} \lambda_j G_j$$

• Achievable region for anticipating disciplines:

$$\lambda \int_{x=a}^{b} \overline{F}(x) \left(T(x) + \int_{u=0}^{x} \frac{\partial T(u;x)}{\partial x} \mathrm{d}u \right) \mathrm{d}x \ge \overline{U}(a \le X \le b).$$

and

$$\lambda \int_{x=a}^{b} \overline{F}(x) \left(T(x) + \int_{u=0}^{x} \frac{\partial T(u;x)}{\partial x} \mathrm{d}u \right) \mathrm{d}x = \overline{U}(0,\infty).$$