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Figure 1: Cumulative burden for FCFS

Figure 2: Cumulative burden for LCFS



Outline of the talk

• General Conservation Law

• Conservation laws for:

– Single-class queue

– Multi-class queue. Achievable Region approach

• Unifying conservation law

• Mean delay reduction of anticipating disciplines



Classification of Scheduling Disciplines

• Knowledge:

– Non-anticipating

– Anticipating

• Preemption:

– Non-preemptive

– Preemptive



General Conservation Law

• Consider a single-server queue with M classes.

• Let Uπ
j (t) be the unfinished work at time t of class-j jobs under

policy π and let

Uπ(t) =
M∑

j=1

Uπ
j (t)

denote the total unfinished work in the system.

• Uπ(t) has vertical jumps at arrival epochs equal in size to the
corresponding service requirements.



Definition: Work-conserving discipline
We say that the scheduling discipline is work-conserving if
dUπ(t)

dt = −1 whenever Uπ(t) > 0.

General Conservation Law: A sample path argument shows that∑M
j=1 Uπ

j (t) = Uπ(t) = U(t) for all work-conserving discipline
π ∈ Π.

• Let U
π
j denote the time average unfinished work of class j,

j = 1, . . . , M .

• The work-conservation property implies that U =
∑M

j=1 U
π
j , is a

constant that depends only on the inter-arrival and service time
distributions.



Review Conservation Laws

The work-conserving property has led to the development of so-called
work-conservation laws.

• Single-class: Integral equation for the conditional sojourn time

– Non-anticipating discipline [Kleinrock76]

– Anticipating discipline [O’Donovan 74]

• Multi-class: Linear relation that the expected unconditional sojourn times
of the various classes must satisfy

– Non-anticipating disciplines with exponential service time distributions
[CM80]

– Non-preemptive non-anticipating disciplines with general service time
distributions [Kleinrock76]



Important body of literature cont.

• Textbooks: Kleinrock (1976), Gelenbe and Mitrani (1980),
Heyman and Sobel (1982), Wolff (1989) and Baccelli and
Brémaud (2003)

• Conservation law: Boxma (1989), Sigman (1991),
Brémaud (1993), Miyazawa (1994)

• Achievable Region approach: Coffman and Mitrani (1980),
Federgruen and Groenevelt (1988), Shantikumar and
Yao (1992), Dacre, Glazebrook and Niño-Mora (1999),
Green and Stidham (2000)



Example: Conservation law for a multi-class queue,
non-anticipating discipline and exponential service
time distributions

• Memoryless property: U
π
j = N

π
j

µj

• Little’s law: N
π
j = λjT

π
j

• U
π
j = ρjT

π
j

• Summing over all the classes:
∑M

j=1 ρjT
π
j =

∑M
j=1 U

π
j = U .

• If Poisson arrivals U =
∑M

j=1 ρj/µj

1−ρ



Example: Achievable region for a multi-class queue,
non-anticipating discipline and exponential service
time distributions:
For S ⊆M, let f(S) =

∑
j∈S ρj/µj

1−∑
j∈S ρj

.

For any policy π:
∑

j∈S ρjT
π
j ≥ f(S) and

∑M
j=1 ρjT

π
j = f(M)

Achievable region: Polyhedra of dimension M − 1. M ! vertices



Example: 3 classes



Notation and assumptions

• GI/GI/1 queue under work-conserving discipline

• Let λ be the mean arrival rate

– With probability pj an arrival is a class-j job

• Let Fj(·) denote the service time distribution of class j and
F j(·) = 1− Fj(·) the complementary distribution.

• Stable regime, i.e., ρ = λ
∑M

j=1 pjE[Xj ] < 1

• E[X2
j ] < ∞, j = 1, . . . ,M . This ensures that the expected

unfinished work at arrival epochs, V , and random epochs, U , is
finite.



Notation and assumptions cont.

• U is independent of the scheduling discipline, hence U = U
FCFS . In the

case of Poisson arrivals, by the Pollaczek-Khinchin formula we get

U = U
FCFS =

∑M
j=1 λjE[X2

j ]

2(1−ρ) .

• Let T π
j (x) be the expected conditional response time of a class-j job with

service time x.

• Let T π
j (u; x) denote the expected conditional time that a class-j job with

total service time x spends in the system in order to obtain u units of
service, u ≤ x.

– In particular T π
j (x;x) = T π

j (x)

– For non-anticipating disciplines, T π
j (u; x) = T π

j (u), for all u ≤ x.



Unifying Conservation Law

Theorem: Consider a GI/GI/1 multi-class queue under a
work-conserving scheduling discipline. The expected conditional
response times of the various classes satisfy

M∑

j=1

λj

∫ ∞

x=0
F j(x)

(
T π

j (x) +
∫ x

u=0

∂T π
j (u;x)
∂x

du

)
dx = U.

If in addition we assume that class-j jobs, j = 1, . . . , M , arrive
according to a Poisson process, then

U =

∑M
j=1 λjE[X2

j ]
2(1− ρ)

.



Sketh of Proof:

• Since ρ < 1, the busy period has a finite length with probability 1.
Regenerative process and thus stationary and ergodic.

• Let W i,π
j denote the cumulative burden of the i-th class-j job

Cumulative burden of the i-th class-j 
job to the unfinished work,     .

i
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• Applying the Palm inversion formula to the unfinished work, we obtain
U

π
j = λjE[W π

j ]

• Summing over all classes
∑M

j=1 λjE[W π
j ] =

∑M
j=1 U

π
j = U



• Explanation for U
π
j = λjE[W π

j ]: Let s be a time epoch such

that Uπ
j (s) = 0, then

∫ s
0 Uπ

j (t)dt =
∑Aj(s)

i=1 W i,π
j . Dividing by

s and taking the limit s →∞:

U
π
j = lim

s→∞
1
s

∫ s

0
Uπ

j (t)dt = lim
s→∞

Aj(s)
s

1
Aj(s)

Aj(s)∑

i=1

W i,π
j = λE[W π

j ].

Non-anticipating discipline:

• T π
j (u; x) = T π

j (u) and

• Hence
∂T π

j (u;x)

∂x = 0, for all 0 ≤ u ≤ x

Then we need to show that
M∑

j=1

λj

∫ ∞

x=0
F j(x)T π

j (x)dx = U.



Figure 3: Cumulative burden for FCFS

Figure 4: Cumulative burden for LCFS



Expression for E[W π
j ]

• Let τ i,π
j (u; x) denote the amount of time that the i-th job, which

has size x, needs to obtain u ≤ x units of service.

• Since the policy is non-anticipating: τ i,π
j (u) := τ i,π

j (u; x).

• E[τ i,π
j (u)] = T π

j (u).

W i,π
j (x) =

∫ τ i,π
j (x)

t=0
Ri,π

j (ai + t)dt =
∫ x

u=0
τ i,π
j (x− u; x)du

=
∫ x

u=0
τ i,π
j (u)du =

∫ ∞

u=0
τ i,π
j (u)1{u≤x}du

• Unconditioning on x and taking expectation:

E[W π
j ] =

∫ ∞

u=0
T π

j (u)F j(u)du.



Particular cases: Single-class

• Non-anticipating [Kleinrock,1976]: U = λ
∫∞
x=0 F (x)T π(x)dx.

• Anticipating [O’Donovan,1974]:

U = λ

∫ ∞

r=0
r

∫ ∞

x=r
(−∂rT

π(x− r; x)) dF (x),

• Non-preemptive anticipating [Baccelli Brémaud, 2003]. It holds
that T (u; x) = u + V

π(x), ∀0 ≤ u ≤ x, where V (x) denotes the
expected waiting time in the queue. Substituting we get

U =
1
2
λE[X2] +

∫ ∞

x=0
xV

π(x)dF (x)



Multi-class
Non-anticipating discipline and exponential service time distributions
[Coffman Mitrani, 1980]

• Exponential assumption: F j(x)dx = E[Xj ]dFj(x).

• Plugging into the general equation

U =
M∑

j=1

λj

∫ ∞

x=0
T π

j (x)F j(x)dx

=
M∑

j=1

λjE[Xj ]
∫ ∞

x=0
T π

j (x)dFj(x) =
M∑

j=1

ρjT
π
j ,



Multi-class
Non-preemptive non-anticipating discipline and general service time
distributions [Schrage,1970]

• Tj(x) = x + V
π
j , ∀x ≥ 0, where V

π
j denotes the expected

waiting time in the queue for a class-j job

• Substituting:

U =
M∑

j=1

λj

∫ ∞

x=0

Tπ
j (x)F j(x)dx

=
1
2

M∑

j=1

λjE[X2
j ] +

M∑

j=1

λjV
π

j

∫ ∞

x=0

F j(x)dx

=
1
2

M∑

j=1

λjE[X2
j ] +

M∑

j=1

ρjV
π

j .



Application to DPS

• If there are Nk(t), k = 1, . . . , M , class-k jobs in the queue, a
class-k job gets served with rate

gk∑M
j=1 gjNj(t)

Using the conservation law U =
∑M

j=1 λj

∫∞
x=0 T π

j (x)F j(x)dx, it
can be shown that:

Theorem: In a DPS queue with Poisson arrivals it holds:

lim
x→∞

(
Tk(x)− x

1− ρ

)
=

∑M
j=1 λj

(
1− gk

gj

)
E[X2

j ]

2(1− ρ)2



Performance of Anticipating Disciplines
Proposition: Assume exponentially distributed service times. Let π1

be a non-anticipating discipline and let π2 be an anticipating
discipline such that for all 0 ≤ u ≤ x,

∂T π2(u, x)
∂x

≥ 0.

Then:

T
π1 ≥ T

π2 .

Sketch of the proof:

• Since π1 is non-anticipating it follows:

U = λ

∫ ∞

x=0
F (x)T π1(x)dx = λE[X]

∫ ∞

x=0
T π1(x)dF (x) = ρT

π1 .



Sketch of the proof (cont.):

• In the case of π2, the conservation law can be written as

U = ρT
π2 + λ

∫ ∞

x=0
F (x)

∫ x

u=0

∂T π2(u;x)
∂x

dudx.

• Taking the difference we obtain

ρ
(
T

π1 − T
π2

)
= λ

∫ ∞

x=0
F (x)

∫ x

u=0

∂T π2(u; x)
∂x

dudx.

Condition ∂T π2(u,x)
∂x ≥ 0 holds π = {SRPT, SPT}.

Plausible to hold for other size-based policies as SMART, FSP etc.



Conclusions
• Multi-class generalization of the Swiss-army formula

[Brémaud,93] or H = λG [Brumelle,71]:

M∑

j=1

Hj =
M∑

j=1

λjGj

• Achievable region for anticipating disciplines:

λ

∫ b

x=a
F (x)

(
T (x) +

∫ x

u=0

∂T (u; x)
∂x

du

)
dx ≥ U(a ≤ X ≤ b).

and

λ

∫ b

x=a
F (x)

(
T (x) +

∫ x

u=0

∂T (u;x)
∂x

du

)
dx = U(0,∞).


