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Introduction

• Previous models, infinite access-rates: 
DPS,PS, α-fair allocation

• Single bottleneck and Linear network

• Fluid and Diffusion scaling. Diffusion 
scaling allows to explicitly compute the 
covariance matrix of the steady-state 
number of flows



Single bottleneck

• DPS model. M classes. Poisson arrivals with 
rate λi and job sizes exponentially distributed 
with mean 1/μi

• Each class-i user is access-link limited at ri.
• Total capacity allocated to class-i user:
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Single bottleneck (cont.)

• The process

Is Markovian with transition rates
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Fluid limit

• Let                   denote the process where 
arrival rates are replaced by Lλi, and 
service rate by L. 

• Normalized process                    
converges to a deterministic limit

where
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Equilibrium point

• Let γi= gi/ri. Relabel the classes such that 
γ1≥γ2≥…≥γM.

• Proposition: There exists a unique 
s={1,…,M} such that S={1,…,s}. The 
classes belonging to S are access-rate 
limited. For i∈S

and for i∈SC
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Numerical example: r1=0.1,r2=0.8



Linearized system

• Consider the M-dimensional vector

• We determine a matrix such
that

• Proposition: All eigenvalues of P are 
positive
– Stability of linearized system 

( ) ( ) *ntntm −=

( )M
jiijpP

1, =
≡

( ) ( )tmPtm −='



Diffusion scaling

• Let us introduce the perturbation process

• It satisfies the stochastic differential equation

where with an M-dimensional
vector of independent Brownian motions, and A a 
diagonal matrix with
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Covariance matrix

• For M>2 cumbersome. For M=2

• As expected positive correlation
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Covariance: C=1,r2=0.8



Linear network
• M nodes of capacity C and M+1 classes
• Poisson arrival processes with rates λi
• Exponentially distributed job sizes with mean 1/μi

• Assume stability condition ρi+ρ0<1, ∀i, with 
ρi=λi/(μiC)

class 0

class 2 class 3class 1 class M



Linear network with access-rate 
limitation

• α-fair allocation

subject to  
• Approximately the allocations are

• Give rise to an ergodic continuous time 
Markov chain
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Fluid limit
• Equilibrium point is the solution of

• Assume ρi≠ρj, for all i,j. Either a crossing class 
(SC ={i*}) or the common class (SC ={0}) is
binding.
– If SC ={i*}, then i*=argmax{ρi} 
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Equilibrium point

• Proposition: Assume ρi≠ρj, for all i,j. 
– Crossing class is binding: SC ={i*}. For all i∈S

and

– Common class is binding: SC ={0}. Then for all 
i=1,…,M
and
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Diffusion scaling

• Construct Linearized system (matrix P)
– P positive eigenvalues

• Diffusion scaling

• Steady state covariance matrix
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Steady-state covariance

• Proposition:
– Crossing class is binding: SC ={i*}. 

For i≠0, i*:

and

– Common class is binding
• All covariances are positive
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Common class binding:r0=1,r2=0.05



NS simulations: cross class binding 
(only class 1 access rate limited)



Conclusions and future work

• Impact of access link: Analytical 
expressions for the steady-state 
covariance

• Other networks: Trees, star topology

• Load sharing in order to reduce the 
steady-state covariance
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