
Processor Sharing Models for Bluetooth–Based File Sharing
Systems

Urtzi Ayesta ∗† and Daniele Miorandi †‡

∗ France Telecom R&D, email: {urtzi.ayesta@francetelecom.com }
† INRIA Sophia Antipolis, email: {urtzi.ayesta,daniele.miorandi}@sophia.inria.fr

‡ Dep. of Information Engineering, Univ. of Padova (Italy), email: daniele.miorandi@dei.unipd.it

Abstract— In this paper we analyze the performance of a file
sharing system based on the Bluetooth technology. Files are stored
in a server to which clients may connect by setting up a Bluetooth
connection. Files are transmitted over the TCP/IP protocol suite, and
users alternate between activity and idle periods. In the first part of
the paper we concentrate on the simplest configuration, an isolated
piconet, and propose a processor sharing model for the computation
of the mean session delay for interactive users. Then, we focus on the
more complex scatternet configuration, and propose a discriminatory
processor sharing model which provides insight into the network
performance. Based on the latter, we draw a connection to some
classical results in the field of scheduling theory, which can provide
useful guidelines for the design of effective scatternet management
schemes.

Keywords— Bluetooth, Processor Sharing, Discriminatory Processor
Sharing, TCP, Scatternet Management

I. INTRODUCTION

The Bluetooth technology, promoted by the Bluetooth Special
Interest Group [1], aims at providing wireless connectivity to low–
power low–cost devices.
In this paper we present a performance study of a file sharing
system based on the Bluetooth radio interface. Various devices,
such as PDAs or laptops, exploit wireless connections (provided
by means of Bluetooth transceivers) in order to download files
from a central server. Nodes alternate between activity periods,
correspondent to the download of a file from the central server, and
idle periods (referred to as thinking times), during which they keep
silent. Files are transmitted using the standard TCP/IP protocol
suite; a TCP session is open for each file transfer.
The first part of the paper focuses on the basic piconet configura-
tion. We start by computing, in presence of k active connections
and n slaves, the throughput experienced by any of the TCP con-
nections under some typical segmentation–and–reassembly (SAR)
policies [2]. The TCP thorughput analysis is then extended to an
optimal SAR policy and to an optimal polling schemes, which
upperbounds the performance of any polling algorithm. Then, such
results are used to build a closed single–server processor sharing
queue with state–dependent arrival and service rates, which is used
to evaluate the network performance in terms of the mean session
delay. Insensitivity properties of the model are discussed.
The analysis is then extended to multihop Bluetooth networks,
commonly referred to as scatternets. In this case, we analysed
the system performance by means of an equivalent single–server
discriminatory processor sharing queue. On the basis of such
equivalent model, we discuss how efficient algorithms for dynamic
scatternet management can be designed. In particular, we show
how some classical results in the field of scheduling theory could
be used to design what we refer to as topology–based scatternet
management schemes, a family of algorithms which dynamically
modify the scatternet structure in order to enhance network perfor-
mance.
The paper is organized as follows: in Sec. II some background on
the Bluetooth technology and the processor sharing (and its dis-
criminatory variant) scheduling techniques are presented. Sec. III

presents the analysis of the network performance for the piconet
case. In Sec. IV the use of a discriminatory processor sharing model
of the scatternet is discussed. Sec. V concludes the paper pointing
out some issues and directions for future research.

II. BACKGROUND

A. The Bluetooth Technology

The basic Bluetooth network configuration is the so–called
piconet, a group of no more than eight devices organised according
to a master–slave architecture. In particular, the master controls the
access to the channel in a centralized way, by polling the slaves
and asking for data transmission. In such a way, a master–driven
time division duplexing (TDD) mechanism for medium access
control is provided. The standard does not specify the polling
strategy to be employed, whose choice is left to the manufacturer.
Although offering poor performance, limited–1 pure round robin
is the current choice, due to its ease of implementation, low cost
and low power consumption.
At the physical layer, a frequency–hopping spread spectrum
scheme is employed, in order to obey the strict requirements, in
terms of power spectrum, necessary for operations in the unlicensed
2.4 GHz–centered ISM band. Different piconets use different
frequency hopping (FH) sequences, so that they can overlap in
time and space without causing excessive interference, at least for
a limited number of piconets [3]. Two or more piconets may be
interconnected by sharing, on a time basis, a common device,
forming what is commonly referred to as a scatternet. As an
example, a piconet with 3 slaves and a simple two–level scatternet
with a master/slave bridge are depicted in Fig. 1.
The baseband layer protocol encompasses two types of links. One,

(a) A single pi-
conet.

�����
�����
�����
�����

(b) A scatternet with a M/S bridge.

Fig. 1. Bluetooth network virtual topologies: two simple cases.

sycnhronous connection oriented (SCO), is aimed at the transport
of real–time services (mainly voice), and is based upon a period-
ical reservation scheme. The other, asynchronous connectionless
(ACL), is designed for the transport of elastic data traffic. Since in
this paper we deal with data traffic only, we restrict our analysis
to ACL links. The standard offers, for ACL links, six different
packet formats, which differ in length (1, 3 of 5 time slots, where
a slot duration is T = 0.625 ms) and in the presence/absence

Type Slot occupancy Max.payload length (bytes) FEC rate
DM1 1 17 2/3
DM3 3 121 2/3
DM5 5 224 2/3
DH1 1 27 –
DH3 3 183 –
DH5 5 339 –

Tab. 1. Packet characteristics for ACL links

of forward error correction (a shortened (15, 10) Hamming code).
Packet formats are denoted as Dξx, where ξ = M for protected
packets and ξ = H otherwise, and x = 1, 3, 5 denotes the packet
length (expressed in slots). A resume of the packet characteristics
is reported in Tab. 1.
In this paper we will limit our analysis to the case of error-
free channels, so that we will deal only with unprotected packets.
Extensions of the results to lossy links will be discussed later.
Higher layer protocol multiplexing is provided by the logical
link control and adaptation protocol (L2CAP), which acts on top
of the baseband layer. L2CAP provides also segmentation–and–
reassembly (SAR) capabilities; the SAR policy to be used is not
defined in the standard and is left to the manufacturers choice.
Tipically, TCP–conveyed traffic is transported over PPP over
RFCOMM, which provides serial cable emulation. However, the
specification is open, and it is possible to implement IP directly
over L2CAP. While such implementation choice may pose internet-
working problems, it is able to achieve higher performance levels,
due to the considerable overhead savings. Further, it represents a
reasonable choice in a scenario as the one we are considering,
where Bluetooth is used to implement a local area network. For
such reasons, we assume that TCP/IP is layered directly over
L2CAP.

B. Network scenario

The analysis will focus on a file–sharing systems, where
Bluetooth–enabled devices are used to access and browse files
which are hosted on a central server. Users are interactive, i.e. they
alternate between activity periods (correspondent to the download
of a file from the central unit) and thinking times (which correspond
to the time to read a web page in the case of HTTP transfers or
to listen to an MP3 file just downloaded).
Two configurations will be considered, a piconet and a two–level
scatternet with master/slave bridges. In the first case, in order to
optimize network performance, the server is chosen to act as master
device [4]. In the scatternet case, many choices are possible in
terms of network configuration. We opted for working with a tree
structure, where the server act as root of the tree configuration.
The devices used to interconnect the different piconets are passive
devices (i.e. they do not generate any download request) and
act as master/slave bridges. While such configuration choice is
clearly simplistic, the analysis can nonetheless be extended to more
complex configurations. The two–level tree structure lends itself to
a simple analysis, enabling us to illustrate our model in details,
and showing how a nice connection to scheduling theory can be
drawn.

C. Processor Sharing and Discriminatory Processor Sharing

The Processor Sharing (PS) model was formally introduced and
analyzed by Kleinrock [5] as the limiting discipline obtained by
letting the quota go to zero in the a Round-Robin policy. In the
PS model, all jobs present in the system obtain a fair share of the
capacity, i.e., assuming a server with unit capacity, if at arbitrary
time t > 0 there are N jobs in the system each job will be served
at rate 1/N .

Since the pioneering work by Heyman et al. [6], Processor
Sharing based models have been proposed and studied in order to

characterize the bandwidth sharing performed by the TCP protocol.
In [6], the authors consider a bottleneck link shared by a fix number
of sources. The state of the sources alternates between activity
and thinking periods. Notably, they showed that mean expected
performance (after unconditioning on the file size) shows the so-
called insensitivity property, that is, depends on the distribution
of the activity and think periods only through their mean values.
Similar models assuming a Poisson arrival process have been
studied in [7] and [8]. The model we develop in this paper for
the single piconet topology (see Section III for more details) is
largely based on the model presented in [6].

However, sometimes the assumption of fair bandwidth sharing
is too unrealistic. For example, it is known that the bandwidth
sharing performed by TCP is biased against long round-trip-times
(RTT). In order to handle such asymmetric bandwidth-sharing, a
Discriminatory Processor Sharing (DPS) model may be used. The
DPS model was introduced by Kleinrock [9] as a generalization of
the egalitarian Processor-Sharing scheduling discipline. In the DPS
model, a single server is shared by M job classes. All jobs present
in the system are served in parallel with a rate that is controlled by
a vector of weights {gk > 0; k = 1, . . . , M}. More precisely, if at
an arbitrary time there are Nj jobs of class j present in the system,
j = 1, . . . , M , each class k job gets served at rate gk/

∑M

j=1 gjNj

times the server rate. When all the weights are equal, the DPS
discipline is equivalent to Processor Sharing system. The interest
of DPS lies on the flexibility provided by the vector of weights that
controls the service rate of each class. We refer the reader to [10]
for a comprehensive mathematical analysis of an open-loop DPS
queue with Poisson arrivals. A closed-loop DPS queue is analyzed
by Mitra and Weiss in [11]. The applicability of DPS based models
for the modeling of session performance in the Internet has been
discussed in [12], [13], [14].

In this paper, we apply the results obtained in [11] to model the
mean transfer time experienced by Bluetooth users in a scatternet
(see Section IV for more details)

III. PERFORMANCE ANALYSIS: A PROCESSOR SHARING

MODEL FOR THE PICONETS

We start by analysing a single piconet, consisting of a master
and n slaves, among which k ≤ n are downloading files from
the server. The time it takes to transfer a TCP packet of length
LTCP depends on the SAR policy employed1. Let us assume
that each TCP packet generates, under policy x, m(x) baseband
packets of length l1, . . . , lm (taking also into account the L2CAP
header). Conversely, a TCP ACK is fragmented into p(x) packets
of length j1, . . . , jp. We assume that all the nodes involved in the
TCP connections have always a packet to send (this corresponds
to neglecting the possibility of packet drops and TCP timeout
expirations). The number of polling cycles needed to transmit a
TCP packet is given by max

{

m(x), p(x)
}

= m(x) 2. The average

length of a typical cycle is T
[

kΨ(x) + 2(n − k)
]

, where:

Ψ(x) =

m(x)
∑

i=1

li +
p(x)
∑

i=1

ji +
[

m(x) − p(x)
]

m(x)
, (1)

where the last term in the numerator accounts for the number of
dummy NULL packets sent by the TCP receiver in order to answer
to the master’s polls.

1Note that in the following we limit ourselves to deterministic SAR
mechanisms only.

2Since the SAR policy does not depend on the packet type, and since
TCP data packets are longer than TCP ACKs, we clearly have m(x) ≥ p(x)

∀x.

1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Number of active connections

T
hr

ou
gh

pu
t (

b/
s)

OSU
BF
OSAR

Fig. 2. Average TCP throughput vs. number of active connections for
OSU, BF and OSAR SAR policies, n = 7.

Hence, the average throguhput experienced by any of the k TCP
connections is given by:

S(k, n)(x) =
LTCP

m(x)T [kΨ(x) + 2(n − k)]
. (2)

We assume TCP data packets to be of fixed lenght equal to 1
Kbyte, and analyse two efficient SAR policies, Best Fit (BF) and
Optimum Slot Utilization (OSU). BF tends to reduce the wasted
bandwidth, by minimizing the unused packet payload. On the other
hand, OSU aims at minimizing the transmission delay of higher
layer packets by limiting the number of packets sent. In such a
way, some bandwidth is wasted, but the overall number of packets
generated is smaller than BF. The reader is referred to [2] for more
details.
For the two policies considered, a simple analysis leads to:

m(BF) = 5 m(OSU) = 4 (3)

l1 = l2 = l3 = 5 l1 = l2 = l3 = 5 (4)

l4 = l5 = 1 l4 = 3 (5)

p(BF) = 2 p(OSU) = 1 (6)

j1 = j2 = 1 j1 = 3 (7)

Ψ(BF) = 6 Ψ(OSU) = 4.4 (8)

We also considered what we referred to as Optimum SAR (OSAR)
policy. OSAR tends to maximize the throughput experienced by
any TCP connections. Thus, from (1) and (2) we see that OSAR
is the policy which minimizes

Ω = k

m(x)
∑

i=1

li +

p(x)
∑

i=1

ji −
[

m(x) + p(x)
]

+2m(x)n ∀n, k ≤ n.

For a static policy (i.e. one which does not depend on n or k),
and for a packet of length 1 Kbyte, the following values may be
found: m(OSAR) = 4, l1 = l2 = l3 = 5, l4 = 3, p(OSAR) = 2,
j1 = j2 = 1, Ψ(OSAR) = 5.5.
In Fig. 2 we plotted the TCP throughput, for n = 7, as a function of
k for all the three SAR policies considered. As it may be seen, if the
number of active connections is small (k ≤ 3), OSU outperforms
BF, while the roles swap for a number of active connections k ≥ 4.
This simple model may be readily enlarged to obtain a bound on

the performance of any polling policy. The optimal polling policy,
in terms of throughput, is the one which avoids the transmissions of
dummy POLL packets to slaves which are not downloading from
the web server. For this Optimal MAC policy (OMAC), under SAR
(x), we have:

S(k, n)x
OMAC = S(k, k)(x) ∀k ≤ n. (9)

0 1 2 n

PSfrag replacements

λn λ(n − 1) λ(n − 2) λ

µ1 µ2 µ3
µn

Fig. 3. Transition probability diagram of the Markov chain Y (t).

It is worth noting, however, that such performance cannot be
achieved by a real polling scheme, since OMAC inhibits slaves
from requiring the download of a file from the central server, thus
causing a deadlock situation.
The obtained results, in terms of throughput, can then be used to
get an estimate of the mean session delay. Due to the round robin
polling scheme, we can readily construct a processor sharing model
of the piconet.
For the moment, let us assume that both the file size (in bits)
and the thinking time are exponentially distributed, with respective
intensities ν = 1

E[F]
and λ, wher E[F] is the mean file size.

Then, the dynamic of the system may be represented by a simple
birth–death process Y (t), representing the number of active TCP
connections at time t. It can be easily seen that Y is a Markov
process over the state space S = {0, 1, . . . , n}, as represented in
Fig. 3. Given k active connections, new connections are generated
at rate (n − k)λ. In presence of k active customers, the service
completion rate (i.e. the rate at which the transfers of files are
completed) is given by µk = νS(k, n).
We can easily get the limiting distribution for the process Y ,
obtaining:

πk =

λk·n(n−1)...(n−k)
µ1...µk

(

1 +
n
∑

i=1

λin(n−1)...(n−i)
µ1...µi

) , k = 0, 1, 2, . . . , n. (10)

The mean session delay can be computed applying Little’s formula:

E[Ts] =
E[Y]

λ
, (11)

where the mean number of active session is E[Y] =
n
∑

k=0

kπk and

the (mean) arrival intensity is λ = λ
n−1
∑

k=0

(k + 1)πk.

At this stage, we can apply insensitivity results for the GI|GI|1
PS queue with state–dependent arrival and service rates [6], [15].
The limiting distribution πk depends on the file size and thinking
time distributions only through their mean values. As a byproduct,
we have also insensitivity of the mean session delay.
In Fig. 4 we reported the mean session delay, as a function of the

number of slaves, for the three SAR policies considered; the mean
file size has been taken equal to 30 Kbyte and the TCP packet size
is 1 Kbyte; the mean thinking time is 1

λ
= 100 s. The performances

obtained with the same parameters, but with an average thinking
time equal to 1

λ
= 10 s are reported in Fig. 5, where we also plotted

the results achievable with a joint use of OSAR and OMAC. As
it may be seen, the difference in performance among the different
SAR policies is hardly perceived by the final user. On the other
hand, it turns out that the choice of an efficient polling algorithm
may have a notable influence on the network performance.
Our model can be easily extended to account for the impact of
fading channels. Indeed, by assuming that all master–slave links
experience the same SNR statistics (which usually holds in such
networks with very short range communications), we can easily
apply the results of [16] in order to compute the throughput in
presence of different fading statistics (Rayleigh, Rice and m–
Nakagami), and then plug such results into our queueing model

in order to obtain the mean session delay.

1 2 3 4 5 6 7
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of slaves

M
ea

n
se

ss
io

n
de

la
y

(s
)

OSU
BF
OSAR

Fig. 4. Mean session delay as a function of the number of slaves, mean
file size 30 Kbyte, λ = 0.01 s−1.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

Number of slaves

M
ea

n
se

ss
io

n
de

la
y

(s
)

OSU
BF
OSAR
OSAR+OMAC

Fig. 5. Mean session delay as a function of the number of slaves, mean
file size 30 Kbyte, λ = 0.1 s−1.

IV. PERFORMANCE ANALYSIS: A DISCRIMINATORY

PROCESSOR SHARING MODEL FOR THE SCATTERNET

While the processor sharing model presented in the previous
section lends itself to a nice and easy analysis, showing an interest-
ing insensitivity property, things become much more complicated
when dealing with more complex network configurations. In this
section, we aim at showing how, for a simple scatternet structure,
a DPS model may be constructed in order to get estimates of
the system performance. For the sake of simplicity, let us focus
on the simple two–level scatternet structure depicted in Fig. 1. In
such case, upon the assumption that the unit which acts as bridge
is just a passive device, which stores and forward in– and out–
going traffic, it is easy to see that the slaves can be classified into
two different classes depending on the piconet they belong to. The
ones closer to the server experience a higher throughput (i.e. they
have a higher priority) with respect to the ones in the second–level
piconet, which have to pass through the bottleneck represented by
the shared device. Now, the mean performance of such scatternet
can be modeled applying the results of [11] to the case of a 2–
classes closed DPS queue.

For completeness we recall some results of [11]. We introduce
first some notation. Let nj be the total number of class j devices,
j = 1, 2. It is assumed that both the mean active (ON) and think
(OFF) periods are exponentially distributed with mean 1/γj and
1/λj respectively j = 1, 2. Further, for each class we define

bj =
nj

n1 + n2
, wj =

γj

(n1 + n2)λj

.

Let {gj > 0}j=1,2 be the vector of DPS weights. Let Yj(t) denote
the number of class j sessions active at time t > 0. It was proven
in [11] that under the ”heavy-usage condition” n1λ1

γ1
+ n2λ2

γ2
> 1,

the mean number of class j active sessions E[Yj] was given by

E[Yj] =
bj

1 +
wjgj

L

, j = 1, 2, (12)

where L is the unique positive solution of

1 =
2

∑

j=1

gjbj

L + gjwj

. (13)

Upon a saturation assumptions, the weights may be computed
as g1 = 2n1+1

2n1(n1+1)
and g2 = 1

2n2(n1+1)
. Note that, in this case,

the weights g1 and g2 represent the fraction of time the channel is
dedicated to a single node. Further, let the file size be exponentially
distributed, with cdf Fj(·), j = 1, 2, and let 1/νj denote the mean
file size.
Then, the mean active time can be computed as

1/γj = gj/(νjre), j=1,2,

where 1/νj is equal to the mean file size and re is the effective
service rate (b/s) of the Bluetooth channel. Considering that DH5
packets are used for the TCP segments and DH1 for the ACKs,
a straightforward calculation gives re = 339∗8

(5+1)T
= 723200 b/s,

where T is the slot duration.
We will fix the total number of slaves, n1+n2, and consider two

possible situations. In the first one, n1 = n2, the mean file size is
40 kbyte for both classes and the mean think times are 1/λ1 =
1/λ2 = 0.08s. In the second case, which mimes a dynamic
scatternet management scheme, jobs transfer data in the high or
low priority piconet depending on the size of the requested file. In
particular, we consider a threshold of th = 30kB and we assume
that sessions smaller than th will be transferred in the high-priority
piconet, whereas those larger than th sessions will be connected
through the low priority one. As a consequence 1/λ1 = 0.08F (th)
and 1/λ1 = 0.08(1 − F (th)). The mean file sizes in the new
scheme are given by 1/ν1 = 1/F (th)

∫ th

0
xdF (x) = 13kByte

and 1/ν2 = 1/(1−F (th))
∫ ∞

th
xdF (x) = 70kByte. The resulting

performances are depicted in Fig. 6. As it may be seen, the second
scheme is able to enhance the system performance, by considerably
reducing the total mean number of active sessions is reduced even
though the combined statistical properties of the requested file sizes
remain the same. This means that also the average session delay
is reduced.
This fact leads us to propose a novel scatternet management
scheme, in which short sessions will get preferential treatment.

6 7 8 9 10 11 12
2

2.5

3

3.5

4

4.5

Total number of slaves

M
ea

n
nu

m
be

r
of

 a
ct

iv
e

se
ss

io
ns

 in
 th

e
sc

at
te

rn
et

n
1
=n

2
=n/2

n
1
=nF(th);n

2
=n−n

1

Fig. 6. Mean number of active sessions as a function of the total number
of nodes for the two schemes considered.

Topology–based scheduling

The difference in the performance observed in Fig. 6 is not
surprising. It suffices to recall that, in single–server queues,
giving priority to shorter flows leads to an overall performance
enhancement and to note that assigning the high-priority piconet to
shorter jobs implicitly we are providing shorter jobs a preferential
treatment. This fact lead us to draw a nice link between scatternet
management schemes and scheduling policies.

One of the classical results says that the Shortest Remaining
Processing Time disciplines minimizes the mean unconditional
sojourn time in the system, and as consequence the average number
of jobs present in the system [17]. The SRPT discipline, however,
requires the knowledge of the remaining service times of all
jobs. In practice, these remaining service times are not always
known. However, even when the total lenght is not known, the
attained service may usually be computed (for example using
the TCP sequence numbers [18]). Kleinrock [5] gives a thorough
overview of scheduling in such systems where only the attained
service times are known together with the service time distribution.
Righter and Shantikumar [19] showed the so called Foreground-
Background FB scheduling discipline is optimal among this set
of scheduling disciplines if the hazard rate of the required service
time distribution is decreasing (DHR)3. The FB discipline gives
priority to the job(s) that have least attained service.

These theoretical results provide us the motivation to consider
Bluetooth scatternets in which nodes will be arranged based on
the remaining/attained length of the TCP sessions. Indeed, by
dinamically adapting the scatternet configuration, we may provide
higher priority levels to jobs with the least attained service, by
“moving” them closer to the central unit. In such a way, we
provide a scheduling mechanism which works not in the classical
time domain, but rather in the “virtual space” domain generated
by scatternet configurations [20]. We coin this mechanism as
topology–based scatternet management scheme.

From the theoretical point of view, it has been shown recently
that even a simple two level time-sharing queue as the one con-
sidered here can reduce significantly the mean number of sessions
[18].

V. CONCLUSION

In this paper we have presented a queueing model for assessing
the performance of a Bluetooth–based file sharing system. For
the case of an isolated piconet, we have showed how a processor
sharing model with state dependente arrival and service rates may
be used in order to derive the mean session delay for short–lived
TCP flows. Insensitivity of the mean session delay to the think
time and file size distribution has been discussed.
The flexibility of the proposed framework allows to consider
different SAR policies, the impact of fading channels and also
to obtain un upper bound on the performance of any polling
algorithm.
In the case of a Bluetooth scatternet, we have showed how,
similarly, a discriminatory processor sharing model may be used
in order to get qualitatitve insight into the network behavior. In
particular, closed form results have been derived under the heavy–
usage condition of [11].
The scatternet analysis has been used to draw a link between scat-
ternet management schemes and scheduling theory; in particular,
it turns out that efficient scatternet management schemes may be
designed on the basis of some classical results on jobs scheduling

3The hazard rate of a distribution function is given by µ(x) =
f(x)

F (x)
,

where f(x) is the density function and F (x) is the complementary
distribution function. Widely used distributions that have decreasing hazard
rate are Pareto, Weibull and Hyperexponential

in a single–server queue.
Among the possible directions for future work, the most promising
one seems the design and implementation of these topology–based
scatternet management schemes; of particular interest appear the
class of multi–level processor sharing schemes [18], due to their
ease of implementation by means of a tree configuration.

VI. ACKNOWLEDGMENTS

The work of D. Miorandi was partially supported by MIUR
within the framework of the PRIMO project FIRB RBNE018RFY,
by Fond. A. Gini and CRBV.

REFERENCES

[1] Bluetooth special interest group. [Online]. Available:
http://www.bluetooth.com

[2] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey, “Enhancing
performance of asynchronous data traffic over the Bluetooth wireless
ad hoc network,” in Proc. of Infocom, Anchorage, Alaska, 2001.

[3] A. El-Hoiydi, “Interference between Bluetooth networks—upper
bound on the packet error rate,” IEEE Comm. Lett., vol. 5, no. 6,
pp. 245–247, Jun 2001.

[4] D. Miorandi and A. Zanella, “On the optimal topologies of Bluetooth
piconets: roles swapping algorithms,” in Proc. of Med-Hoc-Net, Chia
(Italy), 2002.

[5] L. Kleinrock, Queueing Systems, vol. 2. John Wiley and Sons, 1976.
[6] D. P. Heyman, T. V. Lakhsman, and A. L. Neidhardt, “A new

method for analysing feedback–based protocols with applications to
engineering web traffic over the Internet,” in Proc. of Sigmetrics,
Seattle, 1997.

[7] G. D. Veciana, T.-J. Lee, and T. Konstantopoulos, “Stability and
performance analysis of networks supporting services with rate control
– could the Internet be unstable ?” in Proc. of Infocom, New York,
1999.

[8] L. Massoulié and J. Roberts, “Bandwidth sharing and admission
control for elastic traffic,” Telecommunication Systems, vol. 15, pp.
185–201, 2000.

[9] L. Kleinrock, “Time-shared systems: A theoretical treatment,” Journal
of the Association for Computing Machinery, vol. 14, no. 2, pp. 242–
261, 1967.

[10] G. Fayolle, I. Mitrani, and R. Iasnongorodski, “Sharing a processor
among many job classes,” J. ACM, vol. 27, no. 3, pp. 519–532, 1980.

[11] D. Mitra and A. Weiss, “A closed network with a Discriminatory
Processor-Sharing server,” Performance Evaluation Review, vol. 17,
pp. 200–209, 1989.

[12] T. Bu and D. Towsley, “Fixed point approximations for tcp behavior
in an AQM network,” in SIGMETRICS, San Diego, 2001.

[13] T. Bonald and L. Massoulié, “Impact of fairness on internet perfor-
mance,” in SIGMETRICS, San Diego, 2001.

[14] L. Guo and I. Matta, “Scheduling flows with unknown sizes: Approx-
imate analysis,” in ACM Sigmetrics’02 (Extended Abstract), Marina
del Rey, CA, June, 2002, extended version available as a Boston
University Technical Report BU-CS-2002-009.

[15] T. Bonald and A. Proutière, “Insensitivity in processor–sharing net-
works,” Performance Evaluation, vol. 49, pp. 193–209, 2002.

[16] D. Miorandi and A. Zanella, “Achievable rate regions for Bluetooth
piconets in fading channels,” in Proc. IEEE VTC, Milano, Italy, 2004
Spring.

[17] L. Schrage, “The queue M/G/1 with feedback to lower priority
queues,” Management Science, no. 13, pp. 466–471, 1967.

[18] K. Avrachenkov, U.Ayesta, P.Brown, and E.Nyberg, “Differentiation
between short and long TCP flows: Predictability of the response
time,” in Proceedings of INFOCOM, Hong Kong, 2004.

[19] R. Righter and G. Shanthikumar, “Scheduling multiclass single server
queueing systems to stochastically maximize the number of successful
departures,” Prob. Eng. Inf Sciences, vol. 3, pp. 323–334, 1989.

[20] D. Miorandi, A. Trainito, and A. Zanella, “On efficient topologies for
Bluetooth scatternets,” in Proc. of PWC2003, Venezia (Italy), 2003.

