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eUniversité de Toulouse ; INP, INSA ; IRIT, LAAS ; F-31400 Toulouse, France

We study a multi-class time-sharing discipline with relative priorities known as Discriminatory Processor Sharing (DPS),

which provides a natural framework to model service differentiation in systems. The analysis of DPS is extremely challenging
and analytical results are scarce. We develop closed-form approximations for the mean conditional (on the service requirement)

and unconditional sojourn times. The main benefits of the approximations lie in its simplicity, the fact that it applies for general

service requirements with finite second moments, and that it provides insights into the dependency of the performance on the
system parameters. We show that the approximation for the mean conditional and unconditional sojourn time of a customer

is decreasing as its relative priority increases. We also show that the approximation is exact in various scenarios, and that it is

uniformly bounded in the second moments of the service requirements. Finally we numerically illustrate that the approximation
for exponential, hyperexponential and Pareto service requirements is accurate across a broad range of parameters.

Categories and Subject Descriptors: D.4.8 [Operating systems]: Performance—Queueing theory

General Terms: Performance

Additional Key Words and Phrases: Discriminatory-processor-sharing, sojourn time, light-traffic, heavy-traffic, interpolation

1. INTRODUCTION

The Discriminatory Processor Sharing queue (DPS) is a versatile queueing model providing a natural
framework to model service differentiation in systems. It is a multi-class extension of the well-studied

1A conference version of this paper was published in [Izagirre et al. 2014].
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egalitarian Processor Sharing (PS) policy, where the various classes are assigned positive weight fac-
tors. The service capacity is shared simultaneously among all customers present in proportion to the
respective class-dependent weights. More precisely, given there are K classes of customers, if at time t
there are nk(t) class-k customers present in the system, k = 1, . . . ,K, under DPS each class-k customer
is served at rate gk/

∑K
j=1 gjnj(t), where g1, . . . , gK , are the class-dependent weights. The DPS queue

has received lot of attention due to its application to model the impact of service differentiation in
systems.

When all the weights are equal, the DPS queue is equivalent to the PS queue. The PS queue has
gained a prominent role in evaluating the performance of a variety of resource allocation mechanisms
(see for example [Kleinrock 1976; Kelly 1979; Yashkov 1987]), and in recent years it has received
renewed attention as a convenient abstraction for modeling the flow-level performance of bandwidth-
sharing protocols in packet-switched networks, in particular TCP, see for example [Fredj et al. 2001;
Roberts 2004]. In multiple practical situations, the actual service shares that users obtain may show
substantial variation among users with heterogeneous characteristics. For example, TCP flows that
share a common bottleneck link but traverse distinct routes, may experience diverse packet loss rates
and round-trip delays. Besides TCP-related effects, the heterogeneity in bandwidth shares may also
be due to deliberate service differentiation among competing flows (for example different quality-of-
service in the Internet). For instance packet scheduling algorithms, such as Weighted Fair Queueing
(WFQ) and Weighted Round-Robin (WRR), have been proposed as potential instruments to implement
differentiated bandwidth sharing.

In this context, the Discriminatory Processor-Sharing (DPS) provides a natural approach for mod-
eling the flow-level performance of TCP. The DPS model was introduced in [Kleinrock 1967]. Despite
the simplicity of the model description and the fact that the properties of the egalitarian PS queue are
quite thoroughly understood, the analysis of DPS has proven to be extremely difficult. For example,
results on an important basic metric like the mean sojourn time in the system have only been derived
in a very implicit manner or under certain limiting regimes (time-scale decomposition, heavy-traffic,
overload etc.).

In the seminal paper [Fayolle et al. 1980] the authors studied the mean conditional (on the service
requirement) and unconditional sojourn time. For general service time distributions, the authors ob-
tained the mean conditional sojourn time as the solution of a system of integro-differential equations.
In addition, the authors provided a thorough analysis for the case of exponentially distributed service
requirements. However, except for the case of two classes, no closed-form expression is available and
numerical analysis is needed in order to calculate the mean sojourn times. Since we use the results
of [Fayolle et al. 1980] in order to evaluate the accuracy of our approximation, we will give further
details on them in Section 2. [Avrachenkov et al. 2005] established that the mean queue lengths of
all classes are finite under the usual stability condition, regardless of the higher-order moments of
the service requirements. Asymptotics of the sojourn time have also received considerable attention
for example in [Borst et al. 2005; Borst et al. 2006]. An important result in this area establishes the
asymptotic equivalence between the sojourn time distribution and the service time distribution. Time-
scale separations have been studied in [van Kessel et al. 2005] and [Boxma et al. 2006]. In particular,
the authors of [Boxma et al. 2006] approximate the distribution of the sojourn time for a DPS queue
with admission control. However the expressions derived in [Boxma et al. 2006] need to be solved nu-
merically. The performance of DPS in overload and its application to model TCP flows is considered
in [Altman et al. 2004]. The application of DPS to analyse the performance of TCP is also consid-
ered in [Kherani and Núñez-Queija 2006]. For more applications of DPS in communication networks
see [Bu and Towsley 2001; Cheung et al. 2005; Hayel and Tuffin 2005]. DPS under a heavy-traffic
regime (when the traffic load approaches the available capacity) was analysed in [Grishechkin 1992]
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assuming finite second moments of the service requirement distributions. Subsequently, assuming ex-
ponential service requirement distributions, a direct approach to establish a heavy-traffic limit for the
joint queue length distribution was described in [Rege and Sengupta 1996] and extended to phase-type
distributions in [Verloop et al. 2011]. We refer to Section 2 for more details on heavy-traffic results. In
[Izagirre et al. 2015] an interpolation approximation is derived for the steady-state distribution of the
queue length and waiting time of DPS and a relative priorities system. Game-theoretic aspects of DPS
have been studied in [Wu et al. 2012] and [Hassin and Haviv 2003]. For an extensive overview of the
literature on DPS we refer to the survey [Altman et al. 2006].

Motivated by the difficulty in analyzing the system in exact form, in this paper we derive a closed-
form approximation for the mean conditional and unconditional sojourn time in the system. We first
obtain a light-traffic approximation using the framework obtained in [Reiman and Simon 1989]. To the
best of our knowledge, we are the first to obtain a light-traffic approximation of a time-sharing system,
that is, when all users in the system simultaneously get served. We then use results from the heavy-
traffic literature in order to obtain a polynomial approximation for any value of the load of the mean
conditional sojourn time for service requirements with finite second moments. Unconditioning on the
service time distribution, this allows us to readily obtain an approximation for the mean unconditional
sojourn time. We will show that in some cases our approximation becomes exact, for example when
there is only one class in the system or when all the weights are the same. The approximation provides
insights into the performance of the system. We show that the approximation for the mean conditional
sojourn time of a class-k user is decreasing (resp. increasing) as the weight gk (resp. gj , j 6= k) increases.
Another important observation is that the approximation is uniformly bounded in the second moments
of the service requirements. This was a major property of PS, which is in sheer contrast with FCFS
queues, where the mean waiting time explodes as the second moment grows. In the particular case
of exponential service time distributions we see that the expression greatly simplifies and that the
approximation for the mean unconditional sojourn time is exact when the mean service times for
all classes are the same. Finally, we numerically investigate the accuracy of the approximation by
comparing it with the exact results obtained in [Fayolle et al. 1980]. We consider exponential, hyper-
exponential and Pareto service time distributions, and our results show that our approximation works
extremely well across various parameter values. An important benefit of the approximation is that it
provides insights into the dependency of the performance on the system parameters (weights, service
time distributions, etc), and we thus believe it will provide an interesting tool in order to implement
service-differentiation in real systems.

The remainder of the paper is organized as follows. In Section 2 we provide a detailed model descrip-
tion and gather results from [Fayolle et al. 1980] and [Grishechkin 1992] that will be used in the paper.
In Section 3 we develop a light-traffic analysis. The light and heavy-traffic interpolation approxima-
tion for the conditional and unconditional sojourn time is presented in Section 4. Section 5 presents
the results for the particular case of exponentially distributed service requirements. In Section 6 we
numerically test the accuracy of the obtained approximations.

2. MODEL DESCRIPTION AND PRELIMINARIES

We consider a multi-class single-server queue withK classes of customers. Class-k customers, k = 1, . . . ,K,
arrive according to independent Poisson processes with rate λk ≥ 0. We denote the overall arrival rate
by λ =

∑K
k=1 λk. A class-k customer has i.i.d generally distributed service requirements Bk and we

assume E[B2
k] <∞, k = 1, . . . ,K. The traffic intensity for class-k customers is denoted by ρk := λkE[Bk]

and the total traffic intensity is denoted by ρ :=
∑K
k=1 ρk =

∑K
k=1 λkE[Bk] = λ

∑K
k=1 αkE[Bk] = λE[B],

where αk = λk/λ denotes the probability that an arrival is of class k and the random variable B is the
service requirement of an arbitrary arriving customer.
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The K customer classes share a common resource of capacity one. There are strictly positive weights
g1, . . . , gK associated with each of the classes. Whenever there are nk class-k customers, k = 1, . . . ,K,
in the system, each class-k customer is served at rate

gk∑K
j=1 njgj

.

We denote by Sk(λ, b) the conditional sojourn time of a tagged class-k customer with a given service
requirement b, when the arrival rate is λ. We are interested in approximating Sk(λ, b) := E[Sk(λ, b)],
the mean conditional sojourn time of the tagged class-k customer. We further denote by Sk(λ) :=∫∞
0
Sk(λ, b)dFk(b) the mean unconditional sojourn time of the tagged class-k customer, where P(Bk ≤

b) = Fk(b) is the distribution function of Bk, and S(λ) :=
∑K
k=1 αkSk(λ) is the mean unconditional

sojourn time of an arbitrary customer.
The analysis of DPS is extremely difficult compared to that of egalitarian PS, which arises as a

special case when all gk are equal. In [Fayolle et al. 1980] the authors obtained that the derivatives
of the mean conditional sojourn times of the various classes satisfy the following system of integro-
differential equations:

∂Sk(λ, b)

∂b

= 1 + λ

K∑
j=1

∫ ∞
0

αj
gj
gk

∂Sj(λ, y)

∂y
[1− Fj(y +

gj
gk
b)]dy + λ

∫ b

0

∂Sk(λ, y)

∂y

K∑
j=1

αj
gj
gk

[1− Fj(
gj
gk

(b− y))]dy, (1)

for k = 1, . . . ,K. The natural boundary conditions are Sk(λ, 0) = 0, k = 1, . . . ,K.
The only known analytical solution for this system of equations has been obtained under the as-

sumption of exponentially distributed service requirements. In this case we denote by µj := 1/E[Bj ],
∀j. In [Fayolle et al. 1980] it is proved that

Sk(λ, b) =
b

1− ρ
+

m∑
j=1

gkcjβj + dj
β2
j

(
1− e−βjb/gk

)
, (2)

where −βj , j = 1, 2, . . . ,m, are the m distinct negative roots of

K∑
j=1

λjgj
µjgj + s

= 1, (3)

and where cj and dj , j = 1, . . . ,m, are a function of the input parameters and βj , j = 1, . . . ,m.
Furthermore, for the mean unconditional sojourn time with exponentially distributed service re-

quirements, it is shown in [Fayolle et al. 1980] that Sk(λ), k = 1, . . . ,K, is the unique solution of the
following system of equations:

Sk(λ)

1−
K∑
j=1

λjgj
µjgj + µkgk

− K∑
j=1

λjgjSj(λ)

µjgj + µkgk
=

1

µk
. (4)

A closed-form solution for this system of equations (4) is available only for the case of K = 2, and is
given by

S1(λ) =
1

µ1(1− ρ)

(
1 +

µ1ρ2(g2 − g1)
D

)
(5)

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2015.
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and

S2(λ) =
1

µ2(1− ρ)

(
1 +

µ2ρ1(g1 − g2)
D

)
, (6)

where D = µ1g1(1− ρ1) + µ2g2(1− ρ2).
The above shows how hard and challenging it is to study analytically the DPS model. For this rea-

son, as mentioned in the introduction, research has focused on analysing the DPS queue in limiting
regimes, like tail asymptotics, heavy-traffic limits, fluid limits etc. In this paper, we take a different
approach, and we develop a light and heavy-traffic interpolation based approximation for Sk(λ, b) and
Sk(λ). In the numerical section we will use Equations (2), (4)-(6) in order to numerically verify the
accuracy of our interpolation approximations.

The approximation is obtained by interpolating the mean sojourn times obtained under the light-
traffic regime and the heavy-traffic regime.

The light-traffic regime consists in letting ρ ↓ 0, or equivalently λ ↓ 0. Hence, it concerns the per-
formance when the system is almost empty. Therefore, in Section 3 we analyze the mean conditional
sojourn time in the light-traffic regime.

The heavy-traffic regime consists in letting ρ ↑ 1, or equivalently λ ↑ 1/E[B]. Hence, it concerns the
performance when the system is close to congestion. Heavy-traffic results have been obtained in [Gr-
ishechkin 1992; Rege and Sengupta 1996; Verloop et al. 2011]. For our analysis, we use the results
by Grishechkin [Grishechkin 1992, Theorem 4.1] who studied a general processor-sharing system of
which our model is a particular case. In particular, for the DPS queue Grishechkin derives the distri-
bution of the conditional sojourn times, scaled by 1− λE[B] = 1− ρ, as λ ↑ 1/E[B]. In particular, the
mean of this distribution is given by

E[ lim
λ↑1/E[B]

(1− λE[B])Sk(λ, b)] =
b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (7)

For our interpolation result, we are interested in limλ↑1/E[B](1 − λE[B])Sk(λ, b) = limλ↑1/E[B](1 −
λE[B])E[Sk(λ, b)]. Although we cannot verify that the limit and expectation can be interchanged, we
use the expression in (7) as an approximation for limλ↑1/E[B](1−λE[B])Sk(λ, b). Numerical experiments
as performed in [Verloop et al. 2011] indicate that indeed the limits can be interchanged.

3. LIGHT-TRAFFIC ANALYSIS

In this section we analyse the mean conditional sojourn time of the tagged class-k customer under the
light-traffic regime. The light-traffic regime concerns the performance of the system for small values
of the arrival rate λ, i.e., when the system is almost empty. We will approximate Sk(λ, b) by a Taylor
series expansion of Sk(λ, b) at λ = 0. Assuming that the first n derivatives of Sk(λ, b) with respect to λ
at λ = 0 exist we have the following approximation for the mean conditional sojourn time of a class-k
customer when λ is close to zero:

S
LT

k (λ, b) := S
(0)

k (0, b) + λS
(1)

k (0, b) + · · ·+ λn

n!
S
(n)

k (0, b). (8)

We will refer to this as the light-traffic approximation of order n. Here S(0)

k (0, b) = Sk(0, b) and we refer
to it as the zeroth light-traffic derivative. Moreover, S(m)

k (0, b),m = 1, 2, . . . , denotes the m-th derivative
of Sk(λ, b) with respect to λ at λ = 0, i.e., ∂mSk(λ,b)

∂λm

∣∣∣
λ=0

. We have based our analysis on Reiman and
Simon [Reiman and Simon 1989] where it is shown how to obtain the derivatives of arbitrary order
m ≥ 0 at λ = 0 under a general admissibility condition. Following the discussion in [Reiman and Simon
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1989, Appendix A] we make the next assumption on the service requirements Bk

E[eηBk ] =

∞∑
n=0

ηn

n!
E[Bnk ] <∞ (9)

for some η > 0,∀k. This finite exponential moment condition requires that all moments of the service
requirement Bk to be finite. Equation (9) entails admissibility; it is likely stronger than needed but its
purpose here is to provide a convenient framework where calculations can be justified.

In this paper we set n = 1 in (8) as this will already provide us with an accurate approximation of
the performance. Let A(s, t) denote the number of arrivals in the interval [s, t) in addition to the tagged
customer who is assumed to arrive at time 0. Then, the zeroth and first light-traffic derivatives satisfy

Sk(0, b) := E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
]

(10)

and

S
(1)

k (0, b) :=

∫ ∞
−∞

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
])

dt, (11)

where τ is the arrival time of the first customer, see [Reiman and Simon 1989]. In Appendix A we
provide a brief intuitive approach of how to obtain the light-traffic derivatives (10) and (11).

3.1 Light-traffic approximation

In this section we derive the first-order light-traffic approximation.
Equation (10) represents the situation where nobody enters the system except the tagged customer.

Therefore, Sk(0, b) is equal to the service requirement of the tagged customer, which we denote by b.
Hence,

Sk(0, b) = b. (12)

Let us denote by Sk,t,ut,but
the sojourn time of the tagged class-k customer when there is exactly one

arrival at time t on R, ut describing the class of the customer arriving at time t and but denoting the
service requirement of the customer arriving at time t. Hence, E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]

and
E[Sk,t,Ut,BUt

] are equivalent, where Ut and BUt
are dependent random variables and are distributed as

follows: with probability αi we have Ut = i and BUt
is distributed as Bi, i = 1, . . . ,K. We can write

Sk,t,ut,but
as follows:

Sk,t,ut,but
=



t+ but + b if t ≤ 0 ≤ t+ but and b
gk
>

t+but

gut
gk+gut

gk
b if t ≤ 0 ≤ t+ but

and b
gk
≤ t+but

gut

b if t+ but < 0

b+ but
if 0 < t < b and b−t

gk
>

but

gut

t+ (b− t) gk+gut

gk
if 0 < t < b and b−t

gk
≤ but

gut

b if 0 < b < t.

(13)

The first expression describes the case where the customer arrives before the tagged customer and
leaves after the tagged customer arrives, but before the tagged customer leaves. Hence, by the work
conserving property, the tagged customer stays in the system until all the work present at time 0 is
done, that is, but − (−t) + b. We recall that the work-conserving property states that as long as the
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2015.
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system is non-empty, the server does not idle. The second term describes the case where the other
customer is in the system at time 0 and is still present as the tagged customer departs. Hence, the

tagged class-k customer is served at rate gk
gk+gut

, so that its sojourn time is b
(

gk
gk+gut

)−1
. The fourth

expression describes the case where the customer arrives after the tagged customer and leaves before
the tagged customer. Hence, by the work-conserving property of the system, the sojourn time of the
tagged class-k customer is given by the total amount of work that needs to be done, that is, b + but

.
The fifth term describes the case where the customer arrives after the tagged customer, and departs
after the tagged customer departs. Then, the sojourn time of the tagged customer is composed of t, the

time it was in the system until the customer arrived, plus (b − t)
(

gk
gk+gut

)−1
, the remaining service

requirement multiplied by the inverse of the rate at which the the tagged class-k customer is served.
The third and sixth case is when the tagged customer does not coincide with the other customer. Hence,
the sojourn time is given by its service requirement, b.

From Equations (11), (12) and (13) we then obtain the following expression for the first derivative.

LEMMA 3.1. We have

S
(1)

k (0, b) =

∫
R

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− b
)
dt =

∫
R
(E[Sk,t,Ut,BUt

]− b)dt

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+ gk + gUt

gk
bBUt

]
. (14)

See Appendix B for the proof.

From (8), (12) and (14) we now derive the following approximation for the mean conditional sojourn
time when λ is small.

COROLLARY 3.2. The light-traffic approximation (of order 1) of the mean conditional sojourn time
for a tagged class-k customer with service requirement b is given by

S
LT

k (λ, b) = Sk(0, b) + λS
(1)

k (0, b)

= b(1 + ρ) + λE

[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+ gUt

gk
bBUt

]
. (15)

REMARK 1. We consider in the paper the light-traffic approximation of order 1. Calculating the
second light-traffic derivative would imply having to consider events that either 0, 1, or 2 customers
arrive in the system (besides the tagged customer). The latter would result in going through 22 different
cases, while for the first derivate we only needed to go through 6 cases, see Equation (13).

We will see in Sections 4, 5 and 6 that already the first order light-traffic approximation provides an
insightful and accurate approximation of the performance. We further refer to Appendix C where the
light-traffic approximation of order 1 and of order 2 are numerically compared.

We can infer several nice properties from (15). For instance, we will show in Section 4 that (15) is
decreasing in gk and increasing in gj , j 6= k. In other words, the approximation for the mean sojourn
time reduces as its own weight increases, and it increases as the weight of any other class increases.
Another interesting observation is that the light-traffic approximation of the mean conditional sojourn
time can be uniformly bounded in the second moment. This important feature helps obtaining a good
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performance in the presence of highly variable service distributions (like the ones observed in nowa-
days communication systems). See Section 4.4 for details.

4. LIGHT AND HEAVY-TRAFFIC INTERPOLATION

In this section we present the light and heavy-traffic interpolation result. This technique was popular-
ized by Reiman and Simon [Reiman and Simon 1988a; 1988b; 1989] and consists in interpolating

tk(λ) := (1− ρ)Sk(λ, b) = (1− λE[B])Sk(λ, b),

by a polynomial t̂k(λ) of order n+ 1:

t̂k(λ) = h0 + h1λ+ . . .+ hn+1λ
n+1. (16)

To determine the coefficients h0, . . . , hn we use the so-called light-traffic conditions

t̂k(0) = tk(0) and t̂
(m)
k (0) = t

(m)
k (0), for m = 1, . . . , n, (17)

and the heavy-traffic condition

t̂k
(
(1/E[B])−

)
= tk

(
(1/E[B])−

)
, (18)

where tk
(
(1/E[B])−

)
is given by

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
, see (7).

Once we have obtained the coefficients we undo the normalisation so that

S
INT

k (λ, b) :=
t̂k(λ)

1− λE[B]
, 0 ≤ λ < 1/E[B], (19)

provides an approximation for the mean conditional sojourn time Sk(λ, b). We refer to this approxima-
tion as the light and heavy-traffic interpolation of order n+ 1.

In the following proposition we characterise (19) in terms of the light-traffic derivatives and the
heavy-traffic equation. To the best of our knowledge, this is a new result and it applies to any model,
i.e., it is not restricted to the DPS model.

PROPOSITION 4.1. The light and heavy-traffic interpolation of order n+ 1 can be written as

S
INT

k (λ, b) =

n∑
i=0

λi

i!
S
(i)

k (0, b) + tk
(
(1/E[B])−

) (λE[B])n+1

1− λE[B]
. (20)

PROOF. From the light-traffic condition (17) we obtain

h0 = S
(0)

k (0, b) and hi =
S
(i)

k (0, b)

i!
− E[B]

S
(i−1)
k (0, b)

(i− 1)!
, i = 1, 2, ..., n,

and from the heavy-traffic condition (18) we obtain

hn+1 = E[B]n+1

(
tk
(
(1/E[B])−

)
−

n∑
i=0

hi
E[B]i

)

= E[B]n+1

(
tk
(
(1/E[B])−

)
− S(0)

k (0, b)−
n∑
i=1

1

E[B]i

(
S
(i)

k (0, b)

i!
− E[B]

S
(i−1)
k (0, b)

(i− 1)!

))

= E[B]n+1

(
tk
(
(1/E[B])−

)
− 1

E[B]n
S
(n)

k (0, b)

n!

)
.
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Equation (20) follows after substituting these expressions in (19).

REMARK 2. In [Izagirre 2015, Chapter 2], Proposition 4.1 is generalized to the case in which the
heavy-traffic scaling is different than 1− λE[B].

Notice that in the previous section we derived the light-traffic derivatives up to order 1. Hence,
this allows us to obtain the light and heavy-traffic interpolation of order 2 as stated in the following
proposition.

PROPOSITION 4.2. The light and heavy-traffic interpolation (of order 2) of the mean conditional
sojourn time for a tagged class-k customer with service requirement b is given by

S
INT

k (λ, b)

= b+ λbE[B] + λE
[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+ b

gUt

gk
BUt

]
+

(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (21)

PROOF. This follows from Equation (20) together with (12), (14) and (7).

In [Izagirre et al. 2014] Proposition 4.2 was proved by calculating the coefficients h0, h1, h2 using
Equations (17) and (18). Thanks to Proposition 4.1, the proof of Proposition 4.2 is now immediate.

In Section 6 we will numerically evaluate the accuracy of the approximation formulas derived in
Proposition 4.2. In the subsections below, we first make several interesting observations.

REMARK 3. In Appendix C we describe an alternative way to obtain the light-traffic derivatives.
This method makes use of Equation (1), and hence it applies only to the DPS model. It allows us easily
to derive higher order light-traffic approximations. We observe numerically, see Figures 14-17, that the
light-traffic approximation (of order 2) gets more accurate, whereas the accuracy of the interpolation (of
order 3) for intermediate loads does not necessarily get better.

4.1 Processor Sharing

For the standard Processor Sharing queue the mean conditional sojourn time is known and is given by
b/(1− ρ), [Kelly 1997]. If either (i) there is only one class or (ii) all weights are the same, our model is
equivalent to a processor-sharing queue. Below we will verify that our approximation as stated in (21)
indeed coincides with b/(1− ρ).

We first consider the case of one class, that is, αi = 0, ∀i 6= k and αk = 1. Then Equation (21) is equal
to

b(1 + ρ) + λkE

[
min{BUt

, b}2 −
(
b+BUt

)
min{BUt

, b}+ bBUt

]
+ b

ρ2

(1− ρ)
= b(1 + ρ+

ρ2

(1− ρ)
) =

b

1− ρ
,

where we used that min{BUt
, b}2 −

(
b+BUt

)
min{BUt

, b}+ bBUt
= 0.

We now assume all weights are the same, i.e., gi = gk, ∀i, k = 1, . . . ,K. Equation (21) is then equal to

b(1 + ρ) + λE

[
min{BUt

, b}2 −
(
b+BUt

)
min{BUt

, b}+ bBUt

]
+

bρ2

(1− ρ)
E[B2]∑K

j=1 αjE[B2
j ]

= b(1 + ρ+
ρ2

(1− ρ)
) =

b

1− ρ
.

Hence, both cases coincide with the PS queue.
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2015.
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4.2 Priority queue

We now consider the case when the weight of the tagged customer grows large, i.e., gk → ∞. Hence,
class k is prioritized in the limit. Then, the approximation simplifies to

lim
gk→∞

(
b(1 + ρ)

+

K∑
ut=1

λutE

[
1

2

(
min{But , b

gut

gk
}2 + gk

gut

min{But , b
gut

gk
}2
)
−
(
b
gut

gk
min{But , b

gut

gk
}+But min{But

gk
gut

, b}
)

+
gut

gk
bBut

]
+

b(λE[B])2

(1− λE[B])

E[B2]

gk
∑K
j=1
j 6=k

αjE[B2
j ]/gj + αkE[B2

k]

)

= b(1 + ρ) + E

[
K∑

ut=1
ut 6=k

λut

(
1

2

(
0 + 0

)
−
(
0 + bBut

)
+ 0

)]
= b(1 + ρk).

Note that the conditional sojourn time as gk →∞ is known and its given by b/(1−ρk). Since 1/(1−ρk) =∑∞
i=0 ρ

i
k, we directly see that the approximation is the first order approximation of the exact expression.

The relative error is equal to 100% (b/(1− ρk)− b(1 + ρk)) /b/(1 − ρk) = ρ2k100%, and we thus see that
the relative error increases as the load of class k increases.

4.3 Monotonicity in the weights

It can be checked that the approximation for the mean conditional sojourn time of a tagged class-k
customer, SINTk (λ, b), is decreasing in gk and increasing in gi, i 6= k.

This can be seen as follows. Conditioning on Ut we can write

S
INT

k (λ, b) = b(1 + ρ) +

K∑
i=1,i6=k

λiE
[
1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2 −

(
b
gi
gk

+
gk
gi
Bi
)
min{Bi, b

gi
gk
}+ b

gi
gk
Bi

]

+
(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
,

where for Ut = k we used that min{Bk, b}2 −
(
b+Bk

)
min{Bk, b}+ bBk = 0.

Now, if Bi ≤ gi
gk
b, then

1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2 −

(
b
gi
gk

+
gk
gi
Bi
)
min{Bi, b

gi
gk
}+ b

gi
gk
Bi =

1

2
B2
i (1−

gk
gi

),

which is decreasing in gk and increasing in gi. If Bi > gi
gk
b, then

1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2 −

(
b
gi
gk

+
gk
gi
Bi
)
min{Bi, b

gi
gk
}+ b

gi
gk
Bi =

1

2
b2
gi
gk

(1− gi
gk

) + bBi(
gi
gk
− 1),

which is decreasing in gk and increasing in gi (can be derived by taking the derivative and the fact that
Bi >

gi
gk
b). The monotonicity of SINTk (λ, b) in gk and gi now follows immediately.
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4.4 Uniformly bounded in the second moment

A very relevant property of processor sharing is that the mean sojourn time depends on the service
time distribution only through its mean [Kelly 1979]. This has been an important argument to claim
the interest of time-sharing disciplines with respect to more classical scheduling policies like FCFS.
Indeed, the classical Pollaczek-Khinchine formula for the mean waiting time in a FCFS queue shows
that it explodes as the second moment of the service time distribution grows large. For a DPS queue,
Equation (1) does not allow to reach any conclusion regarding the dependence of the mean conditional
sojourn time on the moments of the service time distribution.

It then becomes interesting to observe that the approximation (21) is uniformly bounded in the
second moments of the service time distribution. To see this, we first note that min{BUt

, b
gUt

gk
}2 ≤

BUt
b
gUt

gk
, which directly implies that the first three terms in (21) are uniformly bounded by a function

that depends on the service requirements only through its first moment. We are now left with the

heavy-traffic term
E[B2]∑K

j=1 αjE[B2
j ]/gj

. Let j∗ be such that E[B2
j∗ ] ≥ E[B2

j ], ∀j. We then have

E[B2]∑K
j=1 αjE[B2

j ]/gj
=

∑
j αjE[B2

j ]∑K
j=1 αjE[B2

j ]/gj
≤

E[B2
j∗ ]

αj∗E[B2
j∗ ]/gj∗

=
gj∗

αj∗
.

We thus finally conclude that (21) can be upper bounded by an expression that depends only on the
first moment of the service time distributions. This indicates that the DPS queue provides a satisfac-
tory performance even in the presence of service time distributions with a high variability.

4.5 Mean unconditional sojourn time

As a corollary of Proposition 4.2, we obtain the mean unconditional sojourn time of the tagged class-k
customer.

COROLLARY 4.3. The light and heavy-traffic interpolation (of order 2) of the mean unconditional
sojourn time for a tagged class-k customer is given by

S
INT

k (λ) :=

∫ ∞
0

S
INT

k (λ, b)dFk(b)

= E[Bk](1 + ρ) + λE
[
1

2

(
1 +

gk
gUt

)
min{BUt

, Bk
gUt

gk
}2 −

(
Bk

gUt

gk
+

gk
gUt

BUt

)
min{BUt

, Bk
gUt

gk
}+Bk

gUt

gk
BUt

]
+

(λE[B])2

(1− λE[B])

E[Bk]
gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (22)

5. EXPONENTIAL SERVICE REQUIREMENTS

In this section we focus on the case in which the service requirements of the customers are exponen-
tially distributed. We recall that a random variable Bi is exponentially distributed if P(Bi ≤ bi) =
1− e−bi/E[Bi]. In Section 5.1, we further simplify the expression for the light and heavy-traffic interpo-
lation of the mean conditional and unconditional sojourn time and compare the latter for two classes
of customers with the exact formulas as stated in Equations (5) and (6). In Section 5.2, we calculate
the relative error (for different service requirements) and we verify that our approximation for the
mean unconditional sojourn time for an arbitrary customer is exact when the service requirements of
all customers are the same.
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5.1 Mean conditional and unconditional sojourn time

In the case of exponentially distributed service requirements, our approximations for the mean condi-
tional and unconditional sojourn time can be significantly simplified. This is a direct consequence of
Proposition 4.2 and Corollary 4.3, respectively.

COROLLARY 5.1. Assume class-k customers have an exponentially distributed service requirement
with mean 1/µk, k = 1, . . . ,K. The light and heavy-traffic interpolation (of order 2) of the mean condi-
tional sojourn time for a tagged class-k customer with service requirement b is given by

S
INT

k (λ, b) = b+ λE[B]b+ λ

K∑
j=1

αj
µ2
j

(
1− gk

gj

) (
1− e

−b
gj
gk
µj

)
+

(λE[B])2

(1− λE[B])

b

gk

∑K
j=1 αj/µ

2
j∑K

j=1 αj/(µ
2
jgj)

, (23)

and the mean unconditional sojourn time is given by

S
INT

k (λ) :=

∫ ∞
0

S
INT

k (λ, b)dFk(b)

=
1

µk
+

1

µk
λE[B] + λ

K∑
j=1

αj
µj

(gj − gk)
gjµj + gkµk

+
(λE[B])2

(1− λE[B])

1

gkµk

∑K
j=1 αj/µ

2
j∑K

j=1 αj/(µ
2
jgj)

, (24)

where E[B] =
∑K
j=1 αj/µj .

See Appendix D for the proof.

In the case of two classes of customers, Fayolle et al [Fayolle et al. 1980] have closed-form expressions
for the mean unconditional sojourn time, see Equation (5) and (6). Rewriting (24) for K = 2 in such a
way so that the similarity with Equations (5) and (6) is clear, we obtain

S
INT

k (λ) =
1

µk(1− ρ)

(
1 + ρ2

(
−1 +

∑K
j=1 αj/µ

2
j

gk
∑K
j=1 αj/(µ

2
jgj)

)
+
µkρ−k(g−k − gk)

D

(1− ρ)D
µ1g1 + µ2g2

)
, (25)

with k = 1, 2, −k = mod(k, 2) + 1 and where D = µ1g1(1− ρ1) + µ2g2(1− ρ2).

We directly observe that the difference with respect to the exact expression for the mean uncondi-
tional sojourn time ((5) and (6)) is in the terms

ρ2

(
−1 +

∑K
j=1 αj/µ

2
j

gk
∑K
j=1 αj/(µ

2
jgj)

)
and

(1− ρ)D
µ1g1 + µ2g2

.

It can easily be seen that our approximation is exact for the two extreme values of the traffic inten-
sity, ρ = 0 and ρ = 1. That is, the expressions

S
INT

k (0) = 1/µk and lim
λ→1/E[B]

(1− ρ)SINTk (λ) =
1

µk

(
1 +

µkρ−k(g−k − gk)
D

)
are satisfied.

Let us denote by Rel.Errork the relative error of a class-k customer, that is,

Rel.Errork =
Sk(λ)− S

INT

k (λ)

Sk(λ)
, k = 1, 2.
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Now, let us consider g1 + g2 = 1. We then obtain limg1↑1 Rel.Error1 = ρ21 · 100% and

lim
g1↑1

Rel.Error2 =

µ2ρ1 − (1− ρ1)
(
ρ2
ρ1µ2

ρ2
+ µ2ρ1(1− ρ)

)
µ1(1− ρ1) + µ2ρ1

· 100%.

Hence, the relative error of class-1 customers (when g1 ↑ 1) increases as the load of class 1 increases
but does not depend on the parameter of class 2. The same result was obtained in Section 4.2 for the
mean conditional sojourn time for an arbitrary number of classes and general service requirements.
Moreover, the absolute relative error of class-2 customers (when g1 ↑ 1) increases as the load of class 2
decreases.

In Figure 1 we plot the relative error of the mean unconditional sojourn time for K = 2 with respect
to g1. The parameters considered are ρ1 = 0.2, ρ2 = 0.4, µ1 = 1, µ2 = 1, g2 = 1−g1 and from the formulas
presented above we obtain limg1↑1 Rel. Error1 = 4%, limg1↑1 Rel. Error2 = −0.8%, limg1↓0 Rel. Error1 =
−12.8%, limg1↓0 Rel. Error2 = 16%, which coincide with the extreme points in the figure.

5.2 Mean unconditional sojourn time for an arbitrary customer

In this section we discuss the relative error of the mean unconditional sojourn time for an arbitrary
customer. We first calculate the error in case K = 2 and when µ1 or µ2 take extreme values. We then
show that an approximation for the mean unconditional sojourn time of an arbitrary customer is exact
when the service requirements of all customers are the same.

We denote by Rel.Error the relative error of an arbitrary customer, that is,

Rel.Error =

(
1−

∑2
k=1 αkS

INT

k (λ)∑2
k=1 αkSk(λ)

)
· 100%,

where S1(λ) and S2(λ) are given in Equations (5) and (6), respectively. Then, if we keep constant ρ1
and ρ2 we obtain

lim
µ2↓0

Rel.Error =

ρ1

(
ρ2(g2 − g1)

g1

(
1

1− ρ1
− 1 + ρ

)
− ρ2

(
−1 + g2

g1

))
ρ1

(
1 + ρ2(g2−g1)

g1(1−ρ1)

)
+ ρ2

· 100% (26)

and limµ1↑∞ Rel.Error = limµ2↓0 Rel.Error. The intuition behind the latter equation can be seen as fol-
lows: having µ1 →∞ (and hence λ1 →∞), i.e., having many class-1 arrivals of small size, is equivalent
to having µ2 → 0 (and hence λ2 → 0), i.e., having very few class-2 arrivals of large size.

In Figure 2 we plot the relative error of the mean unconditional sojourn time for an arbitrary
customer. We fix ρ1, ρ2 and µ1 and we let µ2 and λ2 = ρ2µ2 change. The chosen parameters are
ρ1 = 0.2, ρ2 = 0.4, µ1 = 1, g1 = 0.2, g2 = 1 − g1. We observe that the results obtained from Equa-
tion (26), limµ2↓0 Rel.Error = −1.3% and limµ2↑∞ Rel.Error = 6.4%, coincide with the extreme points in
the figures.

We now show that our light-traffic approximation for the mean unconditional sojourn time of an
arbitrary customer is exact under the assumption that the mean service requirements of all customers
are the same, i.e., E[Bj ] = 1/µ,∀j = 1, . . . ,K. This result holds for an arbitrary number of classes.

As stated earlier, the mean unconditional sojourn time of an arbitrary customer is defined as S(λ) :=∑K
k=1 αkSk(λ). Since we assume exponentially distributed service requirements and E[Bk] = 1/µ,∀k =

1, . . . ,K, the total number of customers in the system is distributed as that in a processor sharing
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2015.
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Fig. 1. Relative error for the mean un-
conditional sojourn time for K = 2 with
respect to g1.
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Fig. 2. Mean unconditional sojourn time for an arbitrary customer.

queue with arrival rate λ =
∑K
k=1 λk and service rate µ. By Little’s law, we therefore have that the

total mean unconditional sojourn time is given by that of an M/M/1 queue, i.e,
1/µ

1− ρ
.

For our light and heavy-traffic interpolation we have

S
INT

(λ) =

K∑
k=1

αkS
INT

k (λ) =
1 + ρ

µ
+ λ

K∑
k=1

αk

K∑
j=1

αj
µ

(gj − gk)
gjµ+ gkµ

+
(λ/µ)2

(1− λ/µ)

K∑
k=1

αk
1

µgk

∑K
j=1 αj/µ

2∑K
j=1 αj/(µ

2gj)

=
1 + ρ

µ
+

1

µ

ρ2

1− ρ

K∑
k=1

αk
gk

1∑K
j=1 αj/gj

=
1/µ

1− ρ
, (27)

where we used that
K∑
k=1

αk

K∑
j=1

αj
(gj − gk)
gjµ+ gkµ

=
1

µ

K∑
k=1

K∑
j=1

αkαj
gj − gk
gj + gk

=
1

µ

K∑
k=1

K−1∑
j=1

αkαj

(
gj − gk
gj + gk

+
gk − gj
gj + gk

)
= 0.

Hence, the obtained light and heavy-traffic interpolation is exact when E[Bk] = 1/µ,∀k = 1, . . . ,K.
In Figure 2 (left) we indeed observe that when µ2 = 1, so when the service requirements of both

classes coincide, the relative error is 0, as proven in Equation (27).

6. NUMERICAL RESULTS

In this section we numerically investigate the accuracy of the approximations obtained in this paper. In
Section 6.1 we consider the mean conditional sojourn time and in Section 6.2 the mean unconditional
sojourn time, whose approximations are stated in Proposition 4.2 and Corollary 4.3, respectively.

As stated in Section 2, in [Fayolle et al. 1980] the authors obtain analytical expressions of the mean
conditional and unconditional sojourn time under the assumption of exponentially distributed service
requirements. For exponentially distributed service requirements, we will evaluate the accuracy of
the approximations by comparing the exact formulas as obtained in [Fayolle et al. 1980], see Equa-
tions (2) and (4), with the approximations as given in (21) and (22). The expectations in (21) and (22)
are calculated numerically using MATLAB’s integral2 command, which transforms the region of in-
tegration to a rectangular shape and subdivides it into smaller rectangular regions as needed.
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In order to obtain a more complete understanding on the accuracy of the approximation, we will also
consider hyperexponential and Pareto distributions. Hyperexponential and Pareto distributions have
a decreasing hazard-rate, and their second moment can be made arbitrarily large. Because of these
features they have been proposed as appropriate distributions to model service time distributions in
the Internet.

We say that Bi has a hyperexponential distribution with mi phases if

P(Bi ≤ bi) = 1−
mi∑
k=1

pike
(−bi/E[Bik]), (28)

where pik is the probability that a class-i customer is exponentially distributed with mean E[Bik].
In particular, in Scenario 5 we consider a degenerate hyper-exponential distribution, for which we
can easily obtain any value for the coefficient of variation without modifying the mean service time.
In order to derive exact expressions for the mean sojourn time when the service requirements are
hyperexponentially distributed, we make the observation that if classes k = 1, . . . ,mi are exponentially
distributed (where class k has arrival rate λk and mean service requirement E[Bk]) and have the same
DPS weight, g1 = . . . = gmi

, then they can be seen as a single (merged) class i with a hyperexponential
distribution with parameters pik = λk/

∑mi

l=1 λl and E[Bik] = E[Bk], for each phase k = 1, . . . ,mi. This
allows us to calculate the performance with hyperexponential distribution using Equations (2) and (4)
which are derived for exponential distributions.

We say that Bi has Pareto distribution with scale parameter ci and shape parameter γi if

P(Bi ≤ bi) = 1−
(

1

(1 + cibi)

)γi
.

In order to derive exact expressions for the mean unconditional sojourn time we solved numerically
Equation (1). However, the output was not stable enough and therefore we opted to simulate the DPS
queue instead (using MATLAB). The simulation results are based on averaging 10 runs with each run
comprising 5 ·105 busy periods. A busy period is defined as the interval of time between two consecutive
time epochs when the system becomes empty, such points being regenerative points for the stochastic
process of interest.

Note that the hyperexponential distribution satisfies the sufficient condition to hold admissibility
(Equation (9)), whereas Pareto does not satisfy it; moments of an order higher than γi are unbounded.
In the numerics we observe that even though condition (9) is not satisfied, the light-traffic interpolation
approximation remains accurate.

Throughout this section the performance criteria will be the relative error. For instance, for the mean
conditional sojourn time, we will calculate 100% × Sk(λ,b)−S

INT
k (λ,b)

Sk(λ,b)
, and for the mean unconditional

sojourn time 100%× Sk(λ)−S
INT
k (λ)

Sk(λ)
.

Before explaining in detail the numerical results we have obtained, we summarize our main conclu-
sions:

—The approximation is accurate over a broad range of parameter values.

—For a given set of parameters, the relative error for the mean conditional sojourn time increases as
the service requirement of the tagged customer increases.

—The error increases as the disparity among the weights increases.

—For any given scenario, the largest relative error occurs in an intermediate load between 0 and 1.
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Fig. 3. Scenario 1: Relative error for the mean conditional sojourn time for a tagged class-i customer with service requirement
bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).

—The largest relative errors for the mean conditional sojourn time occur for service requirements b
that are very unlikely to occur. This also explains the high accuracy of our approximation for the
mean unconditional sojourn time.

—Although the Pareto distribution does not satisfy the admissibility condition (Equation (9)), the light-
traffic interpolation approximation remains accurate.

—We compare our approximation to that obtained in [van Kessel et al. 2005] and conclude that our
approximation outperforms that of [van Kessel et al. 2005].

—We observe that our approximation works well across different values of the coefficient of variation.

6.1 Conditional sojourn time

In this section we measure the accuracy of the mean conditional sojourn time given in Proposition 4.2.

Scenario 1. In Figure 3 we consider four classes K = 4 with exponentially distributed service re-
quirements. The parameters of the classes are fixed, and we vary the total arrival rate in order for
the load to cover the range of stable values. We consider E[B1] = 2, E[B2] = 5, E[B3] = 7, E[B4] = 10,
g1 = 30, g2 = 25, g3 = 20, g4 = 10, and α1 = 10/36, α2 = 5/36, α3 = 8/36, α4 = 13/36 such that λi = αi ∗λ,
i = 1, . . . , 4, where λ is the total arrival rate. In Figure 3 we plot the relative error of our approximation
for the mean conditional sojourn time of a tagged class-i customer, for i = 1, . . . , 4, where the size of
the tagged class-i customer, bi, is selected such that the probability of the event is P(Bi ≤ bi) = 0.01,
P(Bi ≤ bi) = 0.50 and P(Bi ≤ bi) = 0.99, respectively. As can be seen, the relative error for the mean
conditional sojourn time remains small and always below 6%.

Scenario 2. In Figure 4 we consider two classes K = 2 with exponentially distributed service re-
quirements. We fixed the parameters E[B1] = 2, E[B2] = 1, g1 = 1, g2 = 3, α1 = 0.415, α2 = 0.585 and
λi = αi ∗ λ. We let the service requirement of the class-i tagged customer span between 0 and bi,max
where P(Bi ≤ bi,max) = 0.99 and for each b we plot the largest absolute relative error that can be found
for a ρ ∈ [0, 1). We observe a largest error of at most 6%.

Scenario 3. In Figure 5 we consider again two classes with exponentially distributed service require-
ments. As parameters we fix: E[B1] = 2, E[B2] = 1, λ1 = 0.2, λ2 = 1.5λ1 and b = 1. We chose g2 = 1− g1
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Fig. 4. Scenario 2: Largest absolute
relative error for the mean conditional
sojourn time as a function of P(Bi ≤ bi),
i = 1, 2.
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Fig. 5. Scenario 3: Mean conditional
sojourn time as a function of g1.

and let g1 vary on the horizontal axis. In the figure we plot the mean conditional sojourn time and
our approximation. We see that the property stated in Section 4.3 is satisfied, namely as g1 increases
S
INT

1 (λ, b) decreases and SINT2 (λ, b) increases. Besides, it can be observed from the figure that the ap-
proximation looses accuracy as one class is given more priority, i.e., g1 → 0 or g1 → 1.

Scenario 4. In Figure 6 we consider two classes with hyperexponential distributed service require-
ments with E[B1] = 11/3, E[B2] = 44/3. Each of the hyperexponential distributions has 3 phases.
The parameters are as follows: for class 1 we take E[B11] = 3.5, E[B12] = 2, E[B13] = 5, p11 = 10/21,
p12 = 5/21, p13 = 6/21, and for class 2 we take E[B21] = 10, E[B22] = 15, E[B23] = 20, p21 = 4/15,
p22 = 8/15, p23 = 3/15. The weights are set to g1 = 2 and g2 = 5. We assume that an arriving customer
is of class 1 (class 2) with probability α1 = 7/12 (α2 = 5/12). As in Scenario 1, we select the service
requirement of the tagged customer such that P(Bi ≤ bi) = 0.01, 0.5 and 0.99. We see that the error
increases as the size of the tagged customer increases. However it is remarkable how accurate the
approximation is.

In Figure 7 we consider Scenario 4 with weights g1 = 2, g2 = 5 (left) and g1 = 5, g2 = 2 (right),
respectively. We vary the service requirement of the class-i tagged customer between 0 and bi,max
where P(Bi ≤ bi,max) = 0.99 and for each b we plot the largest absolute relative error that can be found
for a ρ ∈ [0, 1). It can be observed that the largest absolute relative error is smaller as more priority is
given to the class with small mean service requirements. In Figure 7 (left) the largest absolute relative
error is of the order of 9% for the class with the smallest weight and of the order of 2% for the class
with the highest weight. While in Figure 7 (right) the largest absolute relative error is of the order
of 1.7% for the class with the smallest weight and of the order of 2.5% for the class with the highest
weight.

6.2 Unconditional sojourn time

In this section we evaluate the accuracy of the mean unconditional sojourn time given in Corollary 4.3.
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Fig. 6. Scenario 4: Relative error for the mean conditional sojourn time for a tagged class-i customer with service requirement
bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).
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Fig. 7. Scenario 4: Largest absolute relative error for the mean conditional sojourn time as a function of P(Bi ≤ bi), i = 1, 2
with weights g1 = 2, g2 = 5 (left) and g1 = 5, g2 = 2 (right).

In Figure 8 we consider the same parameter setting as in Scenario 1, and we observe that the largest
relative error for the mean unconditional sojourn time is less than 3.5%.

In Figure 9 we consider two classes with hyper-exponentially distributed service requirements. The
parameters are the ones considered in Scenario 4. We plot the relative error of the mean uncon-
ditional sojourn time for our approximation. We conclude that our approximation works very well.
The largest relative error for the mean unconditional sojourn time is around 3%. We compare our
approximation to that obtained in [van Kessel et al. 2005]. In the latter, the unconditional sojourn
time was approximated by expressions obtained when one of the classes lives on a relatively faster
time scale than the other class. Under this scenario, class 1 represents the class of a vast majority
of customers with small service requirements while class 2 represents the tiny fraction of customers
with huge service requirements. Therefore, the approximation as given in [van Kessel et al. 2005] is

E[S1(λ)] ≈
(
g2
g1

ρ2
1− ρ

+ 1

)
E[B1]

1− ρ1
and E[S2(λ)] ≈

ρ2
1− ρ

. In Figure 9 we plot the mean unconditional

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2015.



• 1:19

sojourn time of [van Kessel et al. 2005]. We observe that the largest relative error is 17%. We conclude
that our approximation outperforms that of [van Kessel et al. 2005].

As pointed out in the beginning of the section, we observe that the relative error for the mean un-
conditional sojourn time tends to be smaller than the ones observed for the mean conditional sojourn
time. This can be explained by noting that the largest errors in the mean conditional sojourn time tend
to occur for service requirements that happen with a very low probability.

In Figure 10 we consider two classes with hyper-exponentially distributed service requirements. The
parameters are the same as in Scenario 4. We chose g2 = 1− g1 and let g1 vary on the horizontal axis.
For each given g1 we calculate the largest absolute relative error for the mean unconditional sojourn
time as we let ρ range from 0 to 1. We observe that the relative error for the unconditional sojourn time
is at most of 30%, and that this happens when class 2 receives full priority.

Scenario 5. In Figure 11 we consider 2 classes of customers. Class-1 customers’ service requirements
follow an exponential distribution of rate µ1, while class-2 customers’ service requirements follow a
hyper-exponential distribution as defined in Equation (28) with parameters m2 = 2, p21 = p, p22 =
1 − p,E[B21] = 1/(µ2p) and E[B22] = 0. The latter distribution is referred to as a degenerate hyper-
exponential distribution with E[B2] = 1/µ2 and E[B2

2 ] =
2p

(pµ2)2
= 2

pµ2
2
. We then easily obtain that the

coefficient of variation satisfies C2
B2

=
2

p
− 1, and conclude that CB2 ∈ [1,∞) as p ∈ [0, 1].

We consider ρ = 0.7, g1 = 1, g2 = 5, α1 = 1/4, α2 = 3/4, µ1 = 1 and µ2 = 1.
In Figure 11 we plot the relative error of the mean unconditional sojourn time for an arbitrary

customer with respect to p for our approximation. We observe that our approximation works well
across all values of p. In the limit p ↓ 0 we obtain the following analytical expression for the relative
error

lim
p↓0

Rel.Error =

1−
1 + α1

(
g2
g1
− 1

)(
ρ2 + ρ2(1− ρ)

)
1 + α1

(
g2
g1
− 1

)
ρ2

1− ρ1

 · 100%. (29)

For the parameters of Figure 11, the latter is equal to −0.6806% (see also the curve in Figure 11). This
implies that for very high coefficient of variation (p ↓ 0) the performance of our approximation is very
good. From Equation (29) we note that even though the coefficient of variation explodes as p ↓ 0, the
relative error of our approximations remains bounded. In the limit p ↑ 1, our approximation is exact
since in this particular case class-2 customers follow an exponential distribution of rate µ2 and under
the assumption µ1 = µ2 we proved in Equation (27) that our approximation becomes exact. In Fig-
ure 11 we also plot the approximation as obtained in [van Kessel et al. 2005]. We note that as p ↓ 0,
class-2 customers arrive very rarely and are huge. Hence, the approximation of [van Kessel et al. 2005]
becomes exact as p ↓ 0. For p > 0 the absolute relative error is monotone increasing taking the value
60% at p ↑ 1.

In the following two scenarios we consider Pareto distributed serve requirements. As mentioned in
the beginning of the section Pareto does not satisfy the admissibility condition (Equation (9)). However,
we will observe that the light-traffic interpolation remains accurate.

Scenario 6. In Figure 12 we consider Pareto distributed service requirements. We consider four
classes with c1 = 1/4, c2 = 1/10, c3 = 1/14, c4 = 1/20 and γ1 = 3, γ2 = 3, γ3 = 3, γ4 = 3, such that,
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Fig. 8. Scenario 1: Relative error for
the mean unconditional sojourn time.
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Fig. 9. Scenario 4: Relative error for
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Fig. 10. Scenario 4: Largest absolute
relative error for the mean uncondi-
tional sojourn time with respect to the
weight g1.

E[B1] = 2, E[B2] = 5, E[B3] = 7, E[B4] = 10. The weights are set to g1 = 30, g2 = 25, g3 = 20, g4 = 10
and α1 = 10/36, α2 = 5/36, α3 = 8/36, α4 = 13/36 such that λi = αi ∗ λ, i = 1, . . . , 4, where λ is the total
arrival rate. Notice that E[Bi], gi, αi, i = 1, . . . , 4 are as in Scenario 1. We note that the point ρ = 1 is
obtained from the heavy-traffic condition and is therefore exact. For ρ 6= 1, we simulated the system in
order to compare our approximation. We conclude that the largest relative error for the mean uncon-
ditional sojourn time is around 5%.

Scenario 7. In Figure 13 we consider Pareto distributed service requirements. We consider two
classes with c1 = 3/22, c2 = 3/88 and γ1 = 3, γ2 = 3, such that, E[B1] = 11/3, E[B2] = 44/3 and the
weights are set to g1 = 2 and g2 = 5. We assume that an arriving customer is of class 1 (class 2) with
probability α1 = 7/12 (α2 = 5/12). Notice that E[Bi], gi, αi, i = 1, 2 are as in Scenario 4. We note that the
point ρ = 1 is obtained from the heavy-traffic condition and is therefore exact. For ρ 6= 1, we simulated
the system in order to compare our approximation. We conclude that the largest relative error for the
mean unconditional sojourn time is less than 5%.
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Appendix A: Light-traffic approach

We provide an intuitive approach of how to obtain the zeroth and first light-traffic derivatives. This
approach is based on the analysis of J. Walrand in [Walrand 1988, Chapter 6.3.]. Higher order light-
traffic derivatives can be obtained in a similar way.

Consider a system that starts at time −Z and that keeps going until time T , being Z, T > 0 given.
Let Sk(λ, b,−Z) denote in this case the sojourn time of the tagged class-k customer who arrives in the
system at time t = 0 and note that limZ→∞ Sk(λ, b,−Z) = Sk(λ, b). Let A(s, t) denote the number of
arrivals in the interval [s, t) in addition to the tagged customer who is assumed to arrive at time 0.
Throughout this section we assume that the limits (with respect to Z and T ) and expectations can be
interchanged. We then have

E [min{Sk(λ, b,−Z), T}] =
∞∑
a=0

E
[
min{Sk(λ, b,−Z), T}

∣∣∣A(−Z, T ) = a
]
· (λ(T + Z))a

a!
e−λ(T+Z), (30)

where E
[
min{Sk(λ, b,−Z), T}

∣∣∣A(−Z, T ) = a
]

is the expected minimum between the sojourn time and
T , conditioned that there are exactly a arrivals. Evaluating it at λ = 0 gives

E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

= E
[
min{Sk(0, b,−Z}, T}

∣∣∣A(−Z, T ) = 0
]
, (31)

and now taking the limit Z, T →∞ we obtain the zeroth light-traffic derivative

Sk(0, b) := lim
Z,T→∞

E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

= E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
]
,

where the second equality follows from (31).
Next, consider the derivative with respect to λ in Equation (30) and evaluate it at λ = 0. This gives
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∂

∂λ
E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

= −E
[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 0
]
· (T + Z) + E

[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 1
]
· (T + Z)

=

∫ T

−Z

(
E
[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 1, τ = t
]
− E

[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 0
])

dt,(32)

where τ is the arrival time of the first customer. The second equality holds because the arrivals follow
a Poisson process. Hence given that the number of arrivals in [−Z, T ) is one (A(−Z, T ) = 1), we have
that τ is uniformly distributed on [−Z, T ).

Now taking Z, T →∞ we obtain the first light-traffic derivative

S
(1)

k (0, b) := lim
Z,T→∞

∂

∂λ
E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

=

∫ ∞
−∞

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
])

dt,

where the second equality follows from (32).

Appendix B: Proof of Lemma 3.1

To calculate S
(1)

k (0, b) we need to calculate
∫∞
−∞ E[Sk,t,Ut,BUt

]dt, where Sk,t,ut,but
is as given in Equa-

tion (13). We first focus on the calculation corresponding to the first term of (13), that is, the case when
t ≤ 0 ≤ t + BUt

and t < gUt

gk
b − BUt

, (where the inequalities of the random variables hold sample-path
wise). We have

∫ 0

−∞
E

[
1

[
−BUt

≤ t < gUt

gk
b−BUt

]
(t+BUt

+ b)

]
dt =

∫ ∞
0

E

[
1

[
BUt
≥ t > BUt

− gUt

gk
b

]
(−t+BUt

+ b)

]
dt

= E

[∫ ∞
0

1

[
BUt ≥ t > BUt −

gUt

gk
b

]
(−t+BUt + b) dt

]
,

as we make use of Tonelli’s Theorem. It follows that∫ ∞
0

1

[
BUt ≥ t > BUt −

gUt

gk
b

]
(−t+BUt + b) dt

=

∫ BUt(
BUt−

gUt
gk

b
)+

(−t+BUt
+ b) dt =

[
− t2

2
+BUt

t+ bt

]BUt(
BUt−

gUt
gk

b
)+
. (33)
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We can now consider two cases. If BUt
− gUt

gk
b > 0, then Equation (33) is equal to[

− t2

2
+BUt

t+ bt

]BUt

BUt−
gUt
gk

b

= −
B2
Ut

2
+BUt

BUt
+ bBUt

−

−
(
BUt
− gUt

gk
b
)2

2
+BUt

(
BUt
− gUt

gk
b

)
+ b

(
BUt
− gUt

gk
b

)
=

1

2

(
gUt

b

gk

)2

+
gUt

b2

gk
.

If BUt
− gUt

gk
b < 0, then Equation (33) is equal to[

− t2

2
+BUt

t+ bt

]BUt

0

= −
B2
Ut

2
+BUt

BUt
+ bBUt

=
B2
Ut

2
+ bBUt

.

We thus obtain

E
[∫ ∞

0

1

[
BUt
≥ t > BUt

− gUt

gk
b

]
(−t+BUt

+ b) dt

]
= E

[
1

2
min{BUt

, b
gUt

gk
}2 + bmin{BUt

, b
gUt

gk
}
]
. (34)

Second, we focus on the calculation corresponding to the second term of (13), that is, the case when
t ≤ 0 ≤ t+BUt

and gUt

gk
b− t ≤ BUt

. We have

∫ 0

−∞
E

[
1

[
gUt

gk
b−BUt

≤ t
]
gk + gUt

gk
b

]
dt =

∫ ∞
0

E

[
1

[
gUt

gk
b−BUt

≤ −t
]
gk + gUt

gk
b

]
dt

= E

[∫ ∞
0

1

[
gUt

gk
b−BUt

≤ −t
]
gk + gUt

gk
bdt

]
,

as we make use of Tonelli’s Theorem. It follows that

∫ ∞
0

1

[
t ≤ BUt −

gUt

gk
b

]
gk + gUt

gk
bdt =

gk + gUt

gk

∫ (
BUt−

gUt
gk

b
)+

0

bdt = b
gk + gUt

gk

(
BUt −

gUt

gk
b

)+

. (35)

We can now consider two cases. If BUt
− gUt

gk
b > 0, then Equation (35) is equal to b gk+gUt

gk

(
BUt
− gUt

gk
b
)

.
If BUt

− gUt

gk
b ≤ 0, then Equation (35) is equal to 0. We thus obtain

E
[∫ ∞

0

1

[
gUt

gk
b−BUt

≤ −t
]
gk + gUt

gk
bdt

]
= E

[
gk + gUt

gk
b

(
BUt
−min{BUt

,
gUt

gk
b}
)]

. (36)

Third, we focus on the subtraction between the third term of (13), that is, the case when t+BUt
< 0,

and E
[
Sk(0, b)

∣∣∣A = 0
]
= b. We then have∫ 0

−∞
E[1 [t < −BUt

] b− b]dt =
∫ ∞
0

E[1 [−t < −BUt
] b− b]dt = E

[
b

∫ ∞
0

(1 [BUt
< t]− 1)dt

]
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as we make use of Tonelli’s Theorem. It follows that

b

∫ ∞
0

(1 [BUt
< t]− 1)dt = b

∫ ∞
0

−1 [BUt
> t] dt = −b

∫ BUt

0

dt = −bBUt
.

We thus obtain

E
[∫ ∞

0

(1 [BUt < t] b− b)dt
]
= −bE[BUt ]. (37)

Fourth, we focus on the calculation corresponding to the fourth term of (13), that is, the case when
0 < t < b and b−t

gk
>

BUt

gUt
. We have

∫ ∞
0

E
[
1

[
t < b− gkBUt

gut

]
(b+BUt)

]
dt = E

[∫ ∞
0

1

[
t < b− gkBUt

gUt

]
(b+BUt) dt

]
,

as we make use of Tonelli’s Theorem. It follows that∫ ∞
0

1

[
t < b− gkBUt

gUt

]
(b+BUt

) dt =

∫ (
b−

gkBUt
gUt

)+

0

(b+BUt
) dt. (38)

If b− gkBUt

gUt
> 0 then Equation (38) is equal to

∫ (
b−

gkBUt
gUt

)
0

(b+BUt
) dt = (b+BUt

)

(
b− gkBUt

gUt

)
= b2 +

(
1− gk

gUt

)
bBUt

− gk
gUt

B2
Ut
.

If b− gkBUt

gUt
≤ 0 then Equation (38) is equal to 0. We thus obtain∫ ∞

0

E
[
1

[
t < b− gkBUt

gUt

]
(b+BUt)

]
dt = E

[
b2 + (BUt −min{b, gk

gUt

BUt})b−min{b, gk
gUt

BUt}BUt

]
. (39)

Fifth, we focus on the calculation corresponding to the fifth term of (13), that is, the case when
0 < t < b and b−t

gk
≤ BUt

gUt
. We have∫ ∞

0

E
[
1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)]
dt

= E
[∫ ∞

0

1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)
dt

]

as we make use of Tonelli’s Theorem. It follows that

∫ ∞
0

1

[
b− gkBUt

gut

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)
dt =

∫ b(
b−

gkBUt
gUt

)+

(
−tgUt

gk
+ b

gk + gUt

gk

)
dt

=

[
− t2

2

gUt

gk
+ tb

gk + gUt

gk

]b(
b−

gkBUt
gUt

)+ . (40)
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If b− gkBUt

gUt
> 0 then Equation (40) is equal to∫ ∞

0

1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)
dt =

[
− t2

2

gUt

gk
+ tb

gk + gUt

gk

]b
b−

gkBUt
gUt

=
gk
gUt

BUt
(b+

BUt

2
).

If b− gkBUt

gUt
≤ 0 then Equation (40) is equal to∫ ∞

0

1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)
dt =

[
− t2

2

gUt

gk
+ tb

gk + gUt

gk

]b
0

= b2
(
gUt

2gk
+ 1

)
.

We thus obtain∫ ∞
0

E
[
1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)]
dt = E

[
gk
gUt

min{gUt

gk
b, BUt

}
(
1

2
min{gUt

gk
b, BUt

}+ b

)]
.

(41)

Sixth, we focus on the subtraction between the sixth term of (13), that is, the case when 0 < b < t,
and E

[
Sk(0, b)

∣∣∣A = 0
]
= b. We then have

∫ ∞
0

E [1 [b < t] b− b] dt = −E
[∫ ∞

0

1 [0 < t < b] bdt

]
as we make use of Tonelli’s Theorem. It follows that −

∫∞
0

1 [0 < t < b] bdt = −
∫ b
0
bdt = −b2.

We thus have ∫ ∞
0

E [1 [b < t] b− b] dt = −b2. (42)

In conclusion, summing Equations (34), (36), (37), (39), (41) and (42) we obtain

S
(1)

k (0, b) =

∫
R

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
])

dt

= E

[
1

2
min{BUt , b

gUt

gk
}2 + bmin{BUt , b

gUt

gk
}+ gk + gUt

gk
b

(
BUt −min{BUt ,

gUt

gk
b}
)
− bBUt

+b2 +

(
BUt
− gk
gUt

min{gUt

gk
b, BUt

}
)
b− gk

gUt

min{gUt

gk
b, BUt

}BUt

+
gk
gUt

min{gUt

gk
b, BUt}

(
1

2
min{gUt

gk
b, BUt}+ b

)
− b2

]

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt , b

gUt

gk
}2 +

(
b− gk + gUt

gk
b− gk

gUt

b− gk
gUt

BUt +
gk
gUt

b

)
min{BUt , b

gUt

gk
}

+
gk + gUt

gk
bBUt

− bBUt
+ b2 + bBUt

− b2
]

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+ gk + gUt

gk
bBUt

]
.
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Appendix C: Alternative way to derive light-traffic derivatives

As explained at the beginning of Section 3, for λ small enough, Sk(λ, b) can be approximated by a
polynomial

∞∑
m=0

λmrm(b), (43)

where rm(b) =
S
(m)

k (0, b)

m!
,m = 0, 1, 2, ....

In this paper we used the approach initiated by Reiman and Simon [Reiman and Simon 1989] in
order to derive expressions for the coefficients rm(b), see Appendix A. In this section we show how the
coefficients rm(b) could alternatively have been obtained for the DPS model. We do this by using the
integro-differential equation for the mean conditional sojourn time as obtained by Fayolle et al., see
Equation (1). Before continuing, we like to emphasise that the calculations below are only valid for
the DPS model, while the approach as taken in the paper is constructive and can easily be adapted to
other models.

For the zeroth coefficient we have from Equation (43)
dSk(0, b)

db
=

dr0(b)

db
and from Equation (1)

dSk(0, b)

db
= 1. This immediately gives us

r0(b) = b. (44)

Since we assumed that for λ close to zero the function Sk(λ, b) can be approximated by
∑∞
m=0 λ

mrm(b),
we have for m = 1, 2, . . .

rm(b) = lim
λ→0

1

λm

(
Sk(λ, b)−

m−1∑
i=0

λiri(b)−
∞∑

i=m+1

λiri(b)

)
= lim

λ→0

1

λm

(
Sk(λ, b)−

m−1∑
i=0

λiri(b)

)

= lim
λ→0

1

λm

∫ b

0

(
∂Sk(λ, b̃)

∂b̃
−
m−1∑
i=0

λi
dri(b̃)

db̃

)
db̃.

Now, substituting Equation (1) in the above formula, one can easily derive the terms rm(b),m = 1, . . . ,
recursively. For the first and second order derivatives we obtain in this way

r1(b) =

K∑
j=1

αj
gj
gk

∫ b

0

(
E[Bj ] +

(
gk
gj
− 1

)
E[min{Bj ,

gj
gk
b̃}]
)
db̃ (45)

and

r2(b) =

K∑
j=1

αj
gj
gk

K∑
i=1

αi
gi
gk

∫ b

0

db̃

(
E[Bi]

(
E[Bj ] +

(
gk
gj
− 1

)
E[min{Bj ,

gj
gk
b̃}]
)

+

(
gk
gi
− 1

)∫ ∞
gj
gk
b̃

E[min{Bi,
gi
gk

(x− gj
gk
b̃)}] · [1− Fj(x)]dx

+
gk
gj

(
gk
gi
− 1

)∫ gj
gk
b̃

gj
gk

(b̃−b)
E[min{Bi,

gi
gk

(b̃− gk
gj
z)}] · [1− Fj(z)]dz

)
. (46)
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Fig. 14. Scenario 1: Difference of the relative errors of Equations (15) and (47) for a tagged class-i customer with service
requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).

We observe that r0(b) coincides with the zeroth light-traffic derivative obtained in Equation (12) and
we verified that r1(b), obtained in Equation (45), coincides with the first light-traffic derivative shown
in Equation (14).

We can now derive the following light-traffic approximation (of order 2) of the mean conditional
sojourn time for a tagged class-k customer with service requirement b when λ is small

S
LT

k (λ, b) =

2∑
m=0

λmrm(b) = r0(b) + r1(b)λ+ r2(b)λ
2, (47)

where r0(b), r1(b) and r2(b) are given in Equations (44), (45) and (46), respectively. Using this result
together with Proposition 4.1 and the heavy-traffic result (7) we obtain the third order light and heavy-
traffic interpolation immediately

S
INT

k (λ, b) = r0(b) + r1(b)λ+ r2(b)λ
2 +

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj

(λE[B])3

1− λE[B]
. (48)

We next assess the impact of having the second light-traffic derivative, thus obtaining a second order
light-traffic approximation and a third order light and heavy-traffic interpolation. Then, we numeri-
cally compare the accuracy of Equations (15) and (47), and Equations (21) and (48).

In Figures 14 and 15 we plot the difference of the relative errors of Equations (15) and (47) for
Scenario 1 and Scenario 4, respectively. Since we know that all relative errors are positive and since
the resulting functions are also positive, this implies that the higher order light-traffic approxima-
tion is always more accurate. In Figures 16 and 17 we plot the relative error of the mean conditional
sojourn time for Scenario 1 and Scenario 4, respectively. If we compare Figures 16 and 17 with Fig-
ures 3 and 6, we conclude that the accuracy of the interpolation for intermediate loads does not nec-
essarily improve as the degree of the interpolation increases. In both cases, having a third order light
and heavy-traffic interpolation reduces the largest relative error only for the case P(Bi ≤ bi) = 0.99,
while for P(Bi ≤ bi) = 0.01 and P(Bi ≤ bi) = 0.5 the third order approximation is worse than the second
order approximation.
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Fig. 15. Scenario 4: Difference of the relative errors of Equations (15) and (47) for a tagged class-i customer with service
requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).
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Fig. 16. Scenario 1: Relative error for the 3rd order mean conditional sojourn time for a tagged class-i customer with service
requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).

Appendix D: Proof of Corollary 5.1

For exponential service requirements we have the following equalities:

E
[
min{Bj , b

gj
gk
}
]
=

∫ ∞
0

min{bj , b
gj
gk
}dFj(bj) =

∫ b
gj
gk

0

bjdFj(bj) +

∫ ∞
b

gj
gk

(
b
gj
gk

)
dFj(bj) =

1

µj
· Fj

(
b
gj
gk

)
,

E
[
min{Bj , b

gj
gk
}2
]
=

∫ ∞
0

min{bj , b
gj
gk
}2dFj(bj) =

∫ b
gj
gk

0

b2jdFj(bj) +

∫ ∞
b

gj
gk

(
b
gj
gk

)2

dFj(bj)

=
2

µj

(
−b gj

gk
+

(
b
gj
gk

+
1

µj

)
Fj

(
b
gj
gk

))
,

E
[
Bj min{Bj , b

gj
gk
}
]
=

∫ ∞
0

bj min{bj , b
gj
gk
}dFj(bj) =

∫ b
gj
gk

0

b2jdFj(bj) + b
gj
gk

∫ ∞
b

gj
gk

bjdFj(bj)

= −
(
b
gj
gk

)2(
1− Fj

(
b
gj
gk

))
+ b

gj
gk

1

µj
+

(
1− b gj

gk

µj
2

)
E
[
min{Bj , b

gj
gk
}2
]
.
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Fig. 17. Scenario 4: Relative error for the 3rd order mean conditional sojourn time for a tagged class-i customer with service
requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).

Then, considering Equation (21) and unconditioning on Ut we obtain

S
INT

k (λ, b)

= b+ λbE[B] + λ

K∑
j=1

αjE
[
1

2

(
1 +

gk
gj

)
min{Bj , b

gj
gk
}2 −

(
b
gj
gk

+
gk
gj
Bj
)
min{Bj , b

gj
gk
}+ b

gj
gk
Bj

]

+
(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
.

Together with the equalities given above, we then obtain (23).

The mean unconditional sojourn time, Equation (24), follows from Equation (23) together with
K∑
j=1

αj
µ2
j

(
1− gk

gj

) ∫ ∞
0

(
1− e

−µjb
gj
gk

)
µke
−µkbdb =

K∑
j=1

αj
µj

(gj − gk)
gjµj + gkµk

.
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