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Abstract

Multilevel Processor-Sharing (MLPS) disciplines refer to a family of age-based schedul-
ing disciplines introduced already decades ago. A time-discretized version of an MLPS
discipline is applied in the scheduler of the traditional UNIX operating system. In recent
years, MLPS disciplines have been used to study the way that packet level scheduling mech-
anisms impact the performance perceived at the flow level in the Internet. Inspired by this
latter application, many new sojourn time results have been discovered for these disciplines
in the context of the M/G/1 queue. This paper aims to give a consistent overview of these
new results. In addition, it points out some intriguing open problems for further research.
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1 Introduction

Scheduling refers to the allocation of available resources among competing demands. First ap-
plications of scheduling came from the industrial manufacturing systems. Later on, various com-
puter and communications systems have played a significant role. Scheduling theory concerns
various optimal scheduling problems, see e.g. CONWAY et al. (1967); PINEDO (1995). In the be-
ginning, the focus was on the mathematical formulations of static and deterministic scheduling
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problems with a given set ofn jobs andm machines. Since the 1970’s, a school of computer sci-
entists have considered the computational complexity of these problems. Static problems (with
the number of jobs and machines fixed) have also been formulated in a stochastic setting with
random release and service times. This setting has been attacked by another school of computer
scientists that have grasped the worst-case behaviour of various on-line scheduling algorithms via
so called competitive analysis. Queueing theorists have concerned the stochastic and dynamic
setting, where new customers with random service times enter the system according to some
random arrival process, see e.g. KLEINROCK (1976). Their work includes both the performance
analysis of various scheduling disciplines and the solution of optimal scheduling problems. Re-
cent years have witnessed a resurgence of this field, see e.g. HARCHOL-BALTER (2007). In
particular for modern communications systems, the extremely high variability of the workload
underlines the importance of age-based scheduling when optimizing the system performance.

Multilevel Processor-Sharing (MLPS) disciplines refer to a family of age-based scheduling
disciplines introduced in KLEINROCK (1976). A time-discretized version of an MLPS discipline,
called Multilevel Feedback (MLF) is applied in the scheduler of the traditional UNIX operating
system, see e.g. STALLINGS (2005). In recent years, MLPS disciplines have been used to study
the way that packet level scheduling mechanisms impact the performance perceived at the flow
level in the Internet, see GUO and MATTA (2002); FENG and MISRA (2003); AVRACHENKOV

et al. (2004); RAI et al. (2004). Inspired by this latter application, many new sojourn time results
have been discovered for these disciplines in the context of the M/G/1 queue, see FENG and
MISRA (2003); AVRACHENKOV et al. (2004, 2005, 2007); AALTO et al. (2004, 2005, 2007);
AALTO (2006); AALTO and AYESTA (2006a,b, 2007a,b).

This paper aims to give a consistent overview of these new sojourn time results. It consists
of the following parts. We start by introducing the MLPS disciplines in Section 2. The classical
sojourn time results are presented in Section 3, which is followed by an asymptotic analysis
in Section 4. Section 5 consists of optimality results revealing conditions under which some
MLPS discipline minimizes the mean sojourn time or the mean slowdown ratio. In Section 6, we
compare the performance of different MLPS disciplines. Finally, Section 7 not only summarizes
the paper but also picks up some intriguing open problems for further research.

2 Multilevel Processor-Sharing disciplines

Consider a single server queueing system. Schedulingdiscipline (a.k.a. queueing or service
discipline) refers to the decision rule that defines how the service capacity is shared among the
customers in the system at any timet. Thus, for each customeri, the discipline, denoted byπ,
specifies the proportionσπ

i (t) of the service capacity that the customer is allocated at timet. The
attained service time(or, briefly,age) of customeri is defined as

Xπ
i (t) =

∫ t

0

σπ
i (u) du,

while theremaining service timeis given by

Y π
i (t) = Si − Xπ

i (t),
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whereSi refers to the (total)service timeof customeri. Thesojourn timeT π
i of customeri is

clearly affected both by its service timeSi and the disciplineπ in use,

T π
i = inf{t ≥ 0 | Xπ

i (t) = Si} − Ai,

whereAi refers to the arrival time of customeri. Well-known disciplines are, among others,

• First-Come-First-Served (FCFS), which assigns the whole service capacity to the customer
i ∈ N π(t) with the smallest arrival timeAi,

• Processor-Sharing (PS), which shares the service capacity evenly among all the customers
i ∈ N π(t),

• Foreground-Background (FB1), which shares the service capacity evenly among those cus-
tomersi ∈ N π(t) with the smallest attained service timeXπ

i (t), and

• Shortest-Remaining-Processing-Time (SRPT), which assigns the whole service capacity
to the customeri ∈ N π(t) with the smallest remaining service timeY π

i (t).

HereN π(t) refers to the set of all customers in the system at timet,

N π(t) = {i | Ai ≤ t andXπ
i (t) < Si}.

A disciplineπ is work-conservingif it does not idle when there are customers waiting, and
non-anticipating2 if the decision rule is independent of the remaining service times. Note that
a non-anticipating decision rule may beage-basedso that the decisions depend on the attained
service times. LetΠ denote the family of work-conserving and non-anticipating disciplines.
FCFS, PS, and FB clearly belong toΠ, whereas SRPT does not. In addition, FB is purely age-
based.

Multilevel Processor-Sharing(MLPS) disciplines constitute a subfamily ofΠ, see KLEIN-
ROCK (1976). An MLPS disciplineπ is age-based, and it is characterized by a finite set of level
thresholdsa1 < · · · < aN that defineN + 1 different priority levels,N ≥ 0. A customer be-
longs to leveln if its attained service time is at leastan−1 but less thanan, wherea0 = 0 and
aN+1 = ∞. Between these levels, a strict priority discipline is applied with the lowest level
having the highest priority. Thus, those customers are served first whose attained service time
is less thana1. Within each priority leveln, an internal disciplineDn is applied. According to
Kleinrock’s definition, there are three possible internal disciplines, namely FCFS, PS, and FB.
The internal discipline may be different at various levels. Note that an MLPS discipline that
applies FB at all levels is, in fact, the same as the ordinary FB discipline.

1FB has many aliases like Foreground-Background Processor-Sharing (FBPS), Least-Attained-Service (LAS),
Least-Attained-Service-Time (LAST), Shortest Elapsed Time (SET), or Shortest-Elapsed-Processing-Time (SEPT),
depending on the context, see NUYENS and WIERMAN (2008).

2Non-anticipating disciplines are sometimes called non-anticipative, non-clairvoyant, or blind, again depending
on the context.
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We refer to an MLPS discipline with level thresholdsan and internal disciplinesDn by using
the notationD1 + . . . + DN+1(a1, . . . , aN). For example, PS+PS(a) refers to the two-level
discipline with thresholda that applies PS as the internal discipline at both levels.

In this paper we consider the MLPS disciplines in the context of the M/G/1 queue with Pois-
son arrivals and independent and identically distributed service times with a general distribution.
Throughout the paper,λ refers to the arrival rate of new customers, andS stands for a generic
service time with a cumulative distribution function denoted byF (x) = P{S ≤ x}, x ≥ 0. In
addition, letF (x) = 1 − F (x) denote the corresponding tail distribution function. We assume
that the mean service time is finite,E[S] < ∞, and the traffic loadρ = λE[S] satisfies the
stability conditionρ < 1.

3 Classical results for the conditional mean sojourn time

For any disciplineπ ∈ Π, let E[T π|S = x] denote the conditional mean sojourn time of a
customer with service timex. In addition, letE[Rπ|S = x] denote the correspondingslowdown
ratio defined by

E[Rπ|S = x] =
E[T π|S = x]

x
.

Assume now that an MLPS discipline withN + 1 levels is applied, and consider a customer
whose service timex satisfiesan−1 < x ≤ an for somen ≤ N + 1. So the customer passes
levels1, . . . , n − 1 before leaving the system at leveln. Because of strict priority between the
levels, the customer enters the final leveln at the moment when the attained service time of all
the customers in the system is at leastan−1. Note that this time epoch is independent of all the
internal disciplines. After entering the final level, the time until the customer leaves the system
depends only on the internal disciplineDn of that level. The upper levels have no effect on this
departure time due to the strict priority between the levels. On the other hand, if a new customer
enters the system, the service of the customers at leveln is delayed until the attained service
time of all the customers in the system is again at leastan−1, which is independent of all the
internal disciplines. Thus, for any MLPS disciplineπ, the conditional mean sojourn time takes
the following form,

E[T π|S = x] = t1(an−1) + t2(Dn, an−1, x, an), for all an−1 < x ≤ an.

The three possible internal disciplines are discussed separately below. Before that we, however,
give some elementary results for systems with truncated service times. All the results of this
section can be found in KLEINROCK (1976).

Truncated service times Let x ≥ 0, and replace, for a while, the service timesS by their
truncated versionsS ∧ x = min{S, x}. It is easy to see that

E[S ∧ x] =

∫ x

0

F (t) dt, E[(S ∧ x)2] = 2

∫ x

0

t F (t) dt.
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Furthermore, let the truncated load be denoted by

ρx = λE[(S ∧ x)].

Clearly,ρx ≤ ρ < 1 for all x. The mean workload (i.e., unfinished work) for a work-conserving
M/G/1 queue with truncated service times is, by the Pollaczek-Khinchin formula,

wx =
λE[(S ∧ x)2]

2(1 − ρx)
.

Of course, whenx → ∞, we get the ordinary Pollaczek-Khinchin formula,

w∞ =
λE[S2]

2(1 − ρ)
.

Internal discipline FCFS Let us return to the original service timesS. First we consider the
conditional mean sojourn time for MLPS disciplines within an FCFS level. If there is just one
level, then, for allx ≥ 0,

E[T FCFS|S = x] = w∞ + x.

If π is an MLPS discipline with FCFS applied at leveln, then, for allan−1 < x ≤ an,

E[T π|S = x] =
wan + x

1 − ρan−1

.

Internal discipline FB Next we consider the conditional mean sojourn time for MLPS disci-
plines within an FB level. If there is just one level, then, for allx ≥ 0,

E[T FB|S = x] =
wx + x

1 − ρx
.

If π is an MLPS discipline with FB applied at leveln, then, for allan−1 < x ≤ an,

E[T π|S = x] = E[T FB|S = x] =
wx + x

1 − ρx
.

Internal discipline PS Finally we consider the conditional mean sojourn time for MLPS dis-
ciplines within a PS level. If there is just one level, then, for allx ≥ 0,

E[TPS|S = x] =
x

1 − ρ
.

If π is an MLPS discipline with PS applied at leveln, then, for allan−1 < x ≤ an,

E[T π|S = x] = E[T FB|S = an−1] +
α(x − an−1)

1 − ρan−1

.
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Hereα(t) refers to the conditional mean sojourn time in a certainMX/G/1 queue with batch
arrivals and PS discipline, whose derivativeα′(t) satisfies the following integral equation, for all
0 < t < an − an−1,

α′(t) = 1 + 2λE[T FB|S = an−1]F (an−1 + t)

+
λ

1 − ρan−1

∫ an−an−1−t

0

α′(u)F (an−1 + t + u) du

+
λ

1 − ρan−1

∫ t

0

α′(u)F (an−1 + t − u) du. (1)

More explicit expressions have been derived only for a slight generalization of the exponential
distribution (see KLEINROCK (1976)) and for the hyperexponential distribution (see OSIPOVA

(2007)).

4 Asymptotic analysis of the conditional mean sojourn time

In this section we consider the asymptotic analysis of the conditional mean sojourn timeE[T π|S =
x] and the slowdown ratioE[Rπ|S = x] as the service timex tends to infinity. Clearly, only the
internal disciplineDN+1 at the highest level matters in this case. Below we concern each disci-
pline separately.

Internal discipline FCFS First we consider the MLPS disciplinesπ with DN+1 = FCFS. If
the service time distribution has a finite second momentE[S2] < ∞ (so thatw∞ < ∞), the
conditional mean sojourn time has clearly an asymptote with slope1/(1 − ρaN

) and a constant
positive bias, for allx > aN ,

E[T π|S = x] − x

1 − ρaN

=
w∞

1 − ρaN

.

In addition, the asymptotic slowdown ratio is in this case as follows:

lim
x→∞

E[Rπ|S = x] =
1

1 − ρaN

≤ 1

1 − ρ
.

On the other hand,E[T π|S = x] = ∞ for all the service time distributions with an infinite
second momentE[S2] = ∞.

Internal discipline FB Consider now the MLPS disciplinesπ with DN+1 = FB. HARCHOL-
BALTER et al. (2002) show that the asymptotic slowdown ratio is as follows,

lim
x→∞

E[Rπ|S = x] =
1

1 − ρ
.

The limit exists even for the service time distributions with an infinite second moment but there
is no asymptote for the conditional mean sojourn timeE[T π|S = x] as AVRACHENKOV et al.
(2004) demonstrates.
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Internal discipline PS Finally we consider the MLPS disciplinesπ with DN+1 = PS. An
asymptotic analysis of the conditional mean sojourn time is presented in AVRACHENKOV et al.
(2005). Below we summarize their results. A natural baseline discipline is now PS for which

E[TPS|S = x] =
x

1 − ρ
and E[RPS|S = x] =

1

1 − ρ
.

Thus, even for the service time distributions with an infinite second moment, the conditional
mean sojourn time of PS has an asymptote with slope1/(1 − ρ).

Theorem 4.1 Letπ ∈ MLPS such thatDN+1 = PS. The conditional mean sojourn time has an
asymptote with slope1/(1 − ρ) and a positive (finite) bias,

lim
x→∞

(
E[T π|S = x] − x

1 − ρ

)
=

waN
(1 − ρaN

) + aN(ρ − ρaN
)

(1 − ρ)2
.

Corollary 4.2 Let π ∈ MLPS such thatDN+1 = PS. The asymptotic slowdown ratio is the
same as for the PS discipline,

lim
x→∞

E[Rπ|S = x] =
1

1 − ρ
.

5 Optimality of MLPS disciplines

As originally shown by SCHRAGE (1968), the mean sojourn time in an M/G/1 queue is mini-
mized by the SRPT discipline. However, the information about the remaining service times is
not always available, but one is obliged to only consider the non-anticipating disciplines. Thus,
we are looking for anoptimaldisciplineπ∗ ∈ Π such that

E[T π∗
] = min

π∈Π
E[T π].

There are two well-known optimality results among these disciplines. If the service time
distribution belongs to the class NBUE, then FCFS is optimal (minimizing the mean sojourn
time) as shown by RIGHTER et al. (1990), while FB is optimal for DHR service times, see
YASHKOV (1987); RIGHTER and SHANTHIKUMAR (1989). Recently, an additional optimality
result was found, giving a condition under which a two-level MLPS discipline FCFS+FB is
optimal, see AALTO and AYESTA (2007a,b). In this section, we describe how these results can
be derived based on the so-called Gittins index approach developed in GITTINS (1989).

As before, for anyπ ∈ Π, let E[T π|S = x] denote the conditional mean sojourn time of a
customer with service timex, andE[Rπ|S = x] the corresponding slowdown ratio. The mean
sojourn time and the mean slowdown ratio have respectively the following expressions:

E[T π] =

∫ ∞

0

E[T π|S = x] dF (x), E[Rπ] =

∫ ∞

0

E[Rπ|S = x] dF (x).
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5.1 Service time distribution classes

From here on, we assume that the service time can take any positive value. Thus,F (x) > 0
for all x. In addition, we assume that the service time distribution is continuous with a density
function denoted byf(x). The corresponding hazard (or failure) rateh(x) is as follows:

h(x) =
f(x)

F (x)
=

f(x)∫ ∞
0

f(x + t) dt
.

Furthermore, we define, for allx,

H(x) =

∫ ∞
0

f(x + t) dt∫ ∞
0

F (x + t) dt
=

F (x)∫ ∞
0

F (x + t) dt
.

Note that1/H(x) is in fact the conditional mean of the remaining service time,

E[S − x | S > x] =

∫ ∞
0

F (x + t) dt

F (x)
=

1

H(x)
.

All the following distribution classes (except the last one) are well-known, see e.g. SHAKED

and SHANTHIKUMAR (1994). A service time distribution belongs to the class

• Decreasing Hazard Rate(DHR) if h(x) is decreasing3 for all x;

• Increasing Mean Residual Lifetime(IMRL) if 1/H(x) is increasing for allx;

• New Worse than Used in Expectation(NWUE) if 1/H(0) ≤ 1/H(x) for all x.

ClassesIncreasing Hazard Rate(IHR), Decreasing Mean Residual Lifetime(DMRL), andNew
Better than Used in Expectation(NBUE) are defined correspondingly.4 It is known that

DHR ⊂ IMRL ⊂ NWUE and IHR ⊂ DMRL ⊂ NBUE.

Moreover, the service time distributions in the first three classes have a coefficient of variation
greater than 1. Thus, they are more variable than the exponential distribution. Correspondingly,
the distributions in the last three classes are less variable than the exponential distribution.

Finally, letk > 0. A service time distribution belongs to the class NBUE+DHR(k) if

(i) 1/H(0) ≥ 1/H(x) for all x < k, and

(ii) h(x) is decreasing for allx > k.

3Throughout the paper we use the terms “decreasing” and “increasing” in their weak form so that the corre-
sponding functions need not bestrictly monotonic.

4Classes DHR and IHR are also calledDecreasing Failure Rate(DFR) andIncreasing Failure Rate(IFR),
respectively.

Statistica Neerlandica



Sojourn time results for MLPS disciplines 9

This class was introduced in AALTO and AYESTA (2007b). An example is the Pareto distribution
with shape parameterα > 1 and scale parameterk > 0,

F (x) =





0, 0 ≤ x < k,

1 −
(

k

x

)α

, x ≥ k.

Note, however, that another version of the Pareto distribution with shape parameterβ > 1 and
scale parameterb > 0 that is defined by

F (x) = 1 −
(

1

1 + bx

)β

, x ≥ 0,

belongs to the class DHR.

5.2 Gittins index

TheGittins indexof a customer with agex is defined by

G(x) = sup
∆≥0

J(x,∆),

where

J(x,∆) =

∫ ∆

0
f(x + t) dt

∫ ∆

0
F (x + t) dt

=
F (x) − F (x + ∆)∫ ∆

0
F (x + t) dt

.

Note that

J(x, 0) =
f(x)

F (x)
= h(x) and J(x,∞) =

F (x)∫ ∞
0

F (x + t) dt
= H(x).

Furthermore, let
∆∗(x) = sup{∆ ≥ 0 | J(x,∆) = G(x)}.

By definition,
G(x) = J(x,∆∗(x)).

Note further thatJ(x,∆) is continuous with respect to both arguments. In addition, the
one-sided partial derivatives with respect to∆ are defined for any pair(x,∆),

∂

∂∆
J(x,∆) =

f(x + ∆)
∫ ∆

0
F (x + t) dt− F (x + ∆)

∫ ∆

0
f(x + t) dt

(
∫ ∆

0
F (x + t) dt)2

. (2)

Lemma 5.1 If the service time distribution belongs to DHR, thenJ(x,∆) is decreasing with
respect to∆ for any fixedx.
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Proof. Let x ≥ 0. Assume that the service time distribution belongs to DHR. Let∆ ≥ 0.
Now h(x + t) ≥ h(x + ∆) for all 0 ≤ t ≤ ∆, which is equivalent with

f(x + t)

f(x + ∆)
≥ F (x + t)

F (x + ∆)
. (3)

By (2), we have

∂

∂∆
J(x,∆) ≤ 0 ⇐⇒ f(x + ∆)∫ ∆

0
f(x + t) dt

≤ F (x + ∆)∫ ∆

0
F (x + t) dt

⇐⇒ 1∫ ∆

0
f(x+t)
f(x+∆)

dt
≤ 1

∫ ∆

0
F (x+t)

F (x+∆)
dt

.

The claim follows from this by (3). 2

Proposition 5.2 If the service time distribution belongs to DHR, thenG(x) is decreasing for all
x.

Proof. Let x ≥ 0. Assume that the service time distribution belongs to DHR. ThenG(x) =
J(x, 0) = h(x) by Lemma 5.1, and, thus,G(x) is decreasing. 2

Similarly, by using the counterpart of Lemma 5.1, we deduce that if the service time distri-
bution belongs to IHR, thenG(x) = J(x,∞) = H(x) and, thus,G(x) is increasing for allx.
Below we present a relevant result for the more general class NBUE.

Lemma 5.3 The service time distribution belongs to NBUE if and only ifJ(0,∆) ≤ J(0,∞)
for any∆.

Proof. By definition the service time distribution belongs to NBUE if and only ifJ(0,∞) =
H(0) ≤ H(x) = J(x,∞) for anyx. Let x ≥ 0. Now

J(0, x) ≤ J(0,∞) ⇐⇒ 1 − F (x)∫ x

0
F (t) dt

≤ 1∫ ∞
0

F (t) dt

⇐⇒
∫ ∞

x

F (t) dt ≤ F (x)

∫ ∞

0

F (t) dt

⇐⇒ 1∫ ∞
0

F (t) dt
≤ F (x)∫ ∞

x
F (t) dt

.

The claim follows from this, since the last inequality is equivalent with the inequalityJ(0,∞) ≤
J(x,∞). 2

Proposition 5.4 If the service time distribution belongs to NBUE, thenG(x) ≥ G(0) for all x.

Statistica Neerlandica
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Proof. Let x ≥ 0. Assume that the service time distribution belongs to NBUE. Then

J(x,∞) = H(x) ≥ H(0) = J(0,∞)

by definition, andG(0) = J(0,∞) by Lemma 5.3. Thus,

G(x) ≥ J(x,∞) ≥ J(0,∞) = G(0),

which completes the proof. 2

The following Proposition is proved in AALTO and AYESTA (2007b).

Proposition 5.5 If the service time distribution belongs to NBUE+DHR(k), wherek > 0, then

(i) ∆∗(0) ≥ k,

(ii) G(x) ≥ G(0) for all x < ∆∗(0),

(iii) G(x) is decreasing for allx > k.

If additionally∆∗(0) < ∞, then

(iv) G(∆∗(0)) ≤ G(0).

5.3 Optimality results

The Gittins index disciplineπ∗ assigns the whole service capacity to the customeri ∈ N π∗
(t)

with the highest Gittins index,

G(Xπ∗

i (t)) = max
j∈Nπ∗

(t)
G(Xπ∗

j (t)).

Recall thatXπ∗
i (t) denotes the attained service time of customeri. If there are multiple customers

with the same highest index, any one of them can be chosen. The Gittins index discipline is
clearly work-conserving and non-anticipating, belonging thus toΠ.

It is known that the Gittins index disciplineπ∗ is optimal with respect to the mean sojourn
time (among the work-conserving and non-anticipating disciplines), see Theorem 3.28 in GIT-
TINS (1989) or Theorem 4.7 in YASHKOV (1992). Together with the three Propositions presented
in the previous subsection, this justifies the following optimality results.

Theorem 5.6 If the service time distribution belongs to

(i) DHR, thenE[T FB] = infπ∈Π E[T π];

(ii) NBUE, thenE[T FCFS] = infπ∈Π E[T π];5

5In fact, not only FCFS but any non-preemptive work-conserving discipline is optimal in this case.
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(iii) NBUE+DHR(k), thenE[T FCFS+FB(∆∗(0))] = infπ∈Π E[T π].

As mentioned above, the first two of these results are already about 20 years old, while the
third one was detected recently in AALTO and AYESTA (2007b). A less general version appeared
before that in AALTO and AYESTA (2007a).

Instead of the mean sojourn time, FENG and MISRA (2003) consider the minimization of
the mean slowdown ratio obtaining the following result. However, the Gittins index cannot be
applied for the proof but another approach is needed, see Section 6.3.

Theorem 5.7 If the service time distribution belongs to DHR, thenE[RFB] = infπ∈Π E[Rπ].

6 Comparison among MLPS disciplines

In this section we review recent results related to the mean sojourn time and slowdown ratio
comparison among the MLPS disciplines. The section is mainly based on the following papers:
FENG and MISRA (2003); AALTO et al. (2004); AALTO (2006); AALTO and AYESTA (2006a);
AALTO et al. (2007).

6.1 Mean sojourn time comparison for IMRL and DMRL service times

When comparing the mean sojourn time of different disciplines for IMRL or DMRL service
times in an M/G/1 queue, a key variable is the so-calledlevel-x (or truncated) workloadV π

x (t),
which refers to the sum of the remaining service times of those customers whose attained service
is less than a given thresholdx,

V π
x (t) =

∑

i∈Nπ
x (t)

(Si − Xπ
i (t)),

where
N π

x (t) = {i ∈ N π(t) | Ai ≤ t andXπ
i (t) < x},

see AALTO (2006); AALTO and AYESTA (2006b).
If the conditional mean remaining service time1/H(x) is monotonic (and, thus alsoH(x)),

the mean sojourn timesE[T π] andE[T π′
] in two systems with disciplinesπ, π′ ∈ Π, respectively,

may be compared as follows:

E[T π] − E[T π′
] = −1

λ

∫ ∞

0

(E[V π
x ] − E[V π′

x ]) dH(x).

This yields the following lemma.

Lemma 6.1 Let π, π′ ∈ Π such thatE[V π
x ] ≤ E[V π′

x ] for all x ≥ 0. If the service time distribu-
tion belongs to

(i) IMRL, thenE[T π] ≤ E[T π′
];
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(ii) DMRL, thenE[T π] ≥ E[T π′
].

By this approach, the following result has been obtained in AALTO (2006), which compares
certain MLPS disciplines with the baseline discipline PS.

Theorem 6.2 Let π ∈ MLPS such that the internal disciplines belong to{FB,PS}. If the
service time distribution belongs to

(i) IMRL, thenE[T π] ≤ E[TPS];

(ii) DMRL, thenE[T π] ≥ E[TPS].

This approach has also been used in AALTO and AYESTA (2006b) to demonstrate that FB
doesnot minimize the mean sojourn time within the class IMRL, contrary to what was earlier
believed.

6.2 Mean sojourn time comparison for DHR and IHR service times

When comparing the mean sojourn times of different disciplines for DHR or IHR service times,
one should no longer concentrate on the level-x workload but a slightly modified variable called
theunfinished truncated workUπ

x (t), which refers to the sum of the remaining truncated service
times of those jobs in the system whose attained service is less than a given truncation thresh-
old x,

Uπ
x (t) =

∑

i∈Nπ
x (t)

((Si ∧ x) − Xπ
i (t)),

whereSi ∧ x = min{Si, x}, see AALTO et al. (2004, 2005).
If the hazard rateh(x) is monotonic, the mean sojourn timesE[T π] andE[T π′

] in two systems
with disciplinesπ, π′ ∈ Π, respectively, may be compared as follows:

E[T π] − E[T π′
] = −1

λ

∫ ∞

0

(E[Uπ
x ] − E[Uπ′

x ]) dh(x).

As a consequence, we have the following lemma.

Lemma 6.3 Let π, π′ ∈ Π such thatE[Uπ
x ] ≤ E[Uπ′

x ] for all x ≥ 0. If the service time distribu-
tion belongs to

(i) DHR, thenE[T π] ≤ E[T π′
];

(ii) IHR, thenE[T π] ≥ E[T π′
].

By this approach, the following more detailed comparison results have been obtained in
AALTO and AYESTA (2006a), giving a partial order with respect to the mean sojourn time among
the MLPS disciplines.
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Theorem 6.4 Let π, π′ ∈ MLPS such thatπ is derived fromπ′ by one of the following opera-
tions:

• an internal discipline is changed from PS to FB, or from FCFS to PS;

• any level with FCFS internal discipline is split into two adjacent FCFS levels; or

• level 1 with PS internal discipline is split into two adjacent PS levels.

Now if the service time distribution belongs to

(i) DHR, thenE[T π] ≤ E[T π′
];

(ii) IHR, thenE[T π] ≥ E[T π′
].

Note that splitting a PS level that is not the lowest one is still an open problem. In AALTO

and AYESTA (2006a), a conjecture is presented that would be sufficient to prove that for DHR
[IHR] service times, the mean sojourn time is decreased [increased] if any PS level is split into
two adjacent PS levels.

Lemma 6.3 can also be used to prove the optimality of FB with respect to the mean sojourn
time for DHR service times, see FENG and MISRA (2003); AALTO et al. (2004). This is due to
the fact that FB minimizes the unfinished truncated work process for anyx even stochastically.
Earlier proofs used different approaches.

6.3 Mean slowdown ratio comparison

Finally, we compare the MLPS disciplines with respect to the mean slowdown ratioE[Rπ].
Define, for allx ≥ 0,

g(x) =
h(x)

x
,

whereh(x) refers to the hazard rate as before. Note that for any DHR service time distribu-
tion, the functiong(x) is decreasing. However, for an IHR distribution, this function may be
nonmonotonic.

If g(x) is monotonic, the mean slowdown ratiosE[Rπ] and E[Rπ′
] in two systems with

disciplinesπ, π′ ∈ Π, respectively, may be compared as follows:

E[Rπ]− E[Rπ′
] = −1

λ

∫ ∞

0

(E[Uπ
x ] − E[Uπ′

x ]) dg(x).

This results in the following lemma.

Lemma 6.5 Letπ, π′ ∈ Π such thatE[Uπ
x ] ≤ E[Uπ′

x ] for all x ≥ 0. If g(x) is

(i) decreasing for allx, thenE[Rπ] ≤ E[Rπ′
];

(ii) increasing for allx, thenE[Rπ] ≥ E[Rπ′
].
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By combining this lemma with the results found in AALTO and AYESTA (2006a), the follow-
ing theorem was discovered in AALTO et al. (2007).

Theorem 6.6 Let π, π′ ∈ MLPS such thatπ is derived fromπ′ by one of the operations men-
tioned in Theorem 6.4. Ifg(x) is

(i) decreasing for allx, thenE[Rπ] ≤ E[Rπ′
];

(ii) increasing for allx, thenE[Rπ] ≥ E[Rπ′
].

Corollary 6.7 Let π, π′ ∈ MLPS such thatπ is derived fromπ′ by one of the operations men-
tioned in Theorem 6.4. If the service time distribution belongs toDHR, thenE[Rπ] ≤ E[Rπ′

].

This approach was originally used in FENG and MISRA (2003) to prove the optimality of FB
with respect to the mean slowdown ratio for DHR service times.

6.4 Optimization of the level thresholds

From a designer point of view, a key issue for the successful implementation of an MLPS disci-
pline lies on the choice of the level thresholds. Numerical experiments reported in AALTO and
AYESTA (2006a) propose that with DHR service times, an MLPS discipline with only 2 or 3
levels but with an appropriate choice of level thresholds, can provide a mean sojourn time very
close to the optimal value achieved by FB.

The problem of obtaining analytical expressions for the optimal choice of the thresholds is
largely open. AVRACHENKOV et al. (2007) consider the two-level PS+PS disciplines assuming
a hyperexponential distribution,

F (x) = 1 − pe−µ1x − (1 − p)e−µ2x,

which belongs to the class DHR. Theorem 6.4 says that, for anya,

E[T FB] ≤ E[TPS+PS(a)] ≤ E[TPS]

in this case. AVRACHENKOV et al. (2007) find that, ifµ1 � µ2, the optimal thresholda∗ is well
approximated by

ã =
1

µ1 − µ2
log

(
µ1 − λ

µ2(1 − ρ)

)
.

Numerical results reported in AALTO and AYESTA (2006a) indicate that the above approximation
may work well even whenµ1 andµ2 are of the same order.
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7 Summary and open problems

The paper reflects the progress that has been made in recent years in the study of the sojourn
time for the MLPS disciplines. This family of disciplines has attracted a lot of attention due to its
broad definition, which covers a wide variety of non-anticipating policies, including well known
disciplines like PS, FCFS, or FB.

We have seen that under the rather realistic assumption of DHR service time distributions, the
mean sojourn time of FB is optimal within the set of non-anticipating policies. Unfortunately, the
combination of the difficulties in implementing FB, together with the fear that large jobs might
suffer from starvation, has led to a situation where age-based scheduling disciplines are rarely
implemented in real systems.

An important conclusion we can draw on the performance of MLPS is that the mean sojourn
time of an MLPS discipline with just 2 or 3 priority levels matches very closely the mean sojourn
time obtained with FB, while at the same time reducing the degradation received by the largest
jobs (see Section 4). Thus, MLPS disciplines might be more suitable in practical implementa-
tions than the theoretically optimal policies like FB.

As an important research avenue for the future we believe that in the coming years the perfor-
mance of scheduling disciplines in networks of queues should deserve more attention. Indeed,
the vast majority of researchers consider the simplest case of a single bottleneck scenario, and
only partial results exist for the more realistic case, where scheduling disciplines like MLPS
might be implemented in various parts of a network.

A challenge also remains for the single bottleneck scenario M/G/1, viz. the completion of
Theorem 6.4 to cover the case where a PS level, that is not the lowest one, is split.
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