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ABSTRACT
We investigate a resource allocation problem in a multi-class
server with convex holding costs and user impatience under
the average cost criterion. In general, the optimal policy
has a complex dependency on all the input parameters and
state information. Our main contribution is to derive in-
dex policies that can serve as heuristics and are shown to
give good performance. Our index policy attributes to each
class an index, which depends on the number of customers
currently present in that class. The index values are ob-
tained by solving a relaxed version of the optimal stochastic
control problem and combining results from restless multi-
armed bandits and queueing theory. They can be expressed
as a function of the steady-state distribution probabilities of
a one-dimensional birth-and-death process. For linear hold-
ing cost, the index can be calculated in closed-form and turns
out to be independent of the arrival rates and the number of
customers present. In the case of no abandonments and lin-
ear holding cost, our index coincides with the cµ-rule, which
is known to be optimal in this simple setting. For general
convex holding cost we derive properties of the index value
in limiting regimes: we consider the behavior of the index
(i) as the number of customers in a class grows large, which
allows us to derive the asymptotic structure of the index
policies, and (ii) as the abandonment rate vanishes, which
allows us to retrieve an index policy proposed for the multi-
class M/M/1 queue with convex holding cost and no aban-
donments. In fact, in a multi-server environment it follows
from recent advances that the index policy is asymptotically
optimal for linear holding cost. To obtain further insights
into the index policy, we consider the fluid version of the
relaxed problem and derive a closed-form expression for the
fluid index. The latter coincides with the stochastic model
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by a research grant of the Foundation Airbus Group
(http://fondation.airbus-group.com/).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
Copyright 2014 ACM 978-1-4503-2789-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591971.2591983 .

in case of linear holding costs. For arbitrary convex holding
cost the fluid index can be seen as the Gcµ/θ-rule, that is,
including abandonments into the generalized cµ-rule (Gcµ-
rule). Numerical experiments show that our index policies
become optimal as the load in the system increases.

1. INTRODUCTION
In this paper our objective is to develop a unifying frame-

work to obtain well performing control policies in a multi-
class single-server queue with convex holding costs and im-
patient customers. The single-server queue is the canonical
model to study resource allocation problems and it can be
considered as one of the most classical decision problems.
It has been widely studied due to its applicability to any
situation where a single-resource is shared by multiple con-
current customers. Abandonment or reneging takes place
when customers, unsatisfied of their long waiting time, de-
cide to voluntarily leave the system. It has a huge impact
in various real life applications such as the Internet or call
centers, where customers may abandon while waiting in the
queue, or even while being served. In the presence of aban-
donments and/or convex holding cost, a characterization of
the optimal control is out of reach.

When the holding costs are linear and customers are not
impatient, a classical result shows that the celebrated cµ-
rule rule is optimal, that is, to serve the classes in decreas-
ing order of priority according to the product ckµk, where
ck is the holding cost per class-k customer, and µ−1

k is the
mean service requirement of class-k customers, [13, 18]. The
cµ-rule is a so-called index policy, that is, the solution to
the stochastic control problem is characterized by an index,
ckµk, which determines which customer is optimal to serve.
This simple structure of the optimal policy vanishes however
in the presence of convex costs and/or impatient customers.
The optimal policy will in general be a complex function of
all the input parameters function and the number of cus-
tomers present in all the classes.

Optimality of index policies has enjoyed a great popu-
larity. The solution to a complex control problem that, a
priori, might depend on the entire state space, turns out to
have a strikingly simple structure. For instance, in the case
of the cµ-rule, the solution does not depend on the num-
ber of customers in the various classes. Another classical
result that can be seen as an index policy is the optimal-
ity of Shortest-Remaining-Processing-Time (SRPT), where
the index of each customer is given by its remaining service
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time. Both examples fit the general context of Multi-Armed
Bandit Problems (MABP). A MABP is a particular case of a
Markov Decision Process: at every decision epoch the sched-
uler needs to select one bandit, and an associated reward is
accrued. The state of this selected bandit evolves stochas-
tically, while the state of all other bandits remain frozen.
The scheduler knows the state of all bandits, the rewards
in every state, and the transition probabilities, and aims at
maximizing the total average reward. In a ground-breaking
result Gittins showed that the optimal policy that solves a
MABP is an index-rule, nowadays commonly referred to as
Gittins’ index [19]. Thus, for each bandit, one calculates
an index that depends only on its own current state and
stochastic evolution. The optimal policy activates in each
decision epoch the bandit with highest current index.

Despite its generality, in multiple cases of practical inter-
est the problem cannot be cast as a MABP. In a seminal
work [35], Whittle introduced the so-called Restless Multi-
Armed Bandit Problems (RMABP), a generalization of the
standard MABP. In a RMABP all bandits in the system in-
cur a cost. The scheduler selects a number of bandits to be
made active. However, all bandits might evolve over time
according to a stochastic kernel that depends on whether
the bandit is selected for service or not. The objective is to
determine a control policy that optimizes the average perfor-
mance criterion. RMABP provides a more general modeling
framework, but its solution has in general a complex struc-
ture that might depend on the entire state-space descrip-
tion. Whittle considered a relaxed version of the problem
(where the restriction on the number of active bandits needs
to be respected on average only, and not in every decision
epoch), and showed that the solution to the relaxed prob-
lem is of index type, referred to as Whittle’s index. Whittle
then defined a heuristic for the original problem where in
every decision epoch the bandit with highest Whittle index
is selected. It has been shown that the Whittle index policy
performs strikingly well, see [28] for a discussion, and can
be shown to be asymptotically optimal, see [33, 31]. The
latter explains the importance given in the literature to cal-
culate Whittle’s index. In order to calculate Whittle’s index
there are two main difficulties, first one needs to establish
a technical property known as indexability, and second the
calculation of the index might be involved or even infeasible.

In our main contribution of the paper, we verify index-
ability and calculate Whittle’s index for the average cost
criterion of the multi-class queue with abandonments and
convex cost. In fact, our model can be written as a RMABP
where each class is represented by a bandit and the state of a
bandit describes the number of customers in that class. The
evolution of the number of customers being birth-and-death,
the bandit is of birth-and-death type. An important obser-
vation we make is that the Whittle index we obtain, which
is expressed as a function of the steady-state probabilities, is
in fact applicable for any birth-and-death bandit. This is a
simple observation that has far reaching consequences since
it allows to derive Whittle’s index for a general class of con-
trol problems, as will be explained in the paper. Note that
indexability would be needed to be established on a case-by-
case basis. For the abandonment model with convex holding
cost, we prove indexability by showing that threshold poli-
cies are optimal for the relaxed optimization problem and
using properties of the steady-state distributions.

Having characterized Whittle’s index in terms of steady-
state distributions, we then apply it to various cases. In
the case of linear holding cost, we show that the Whit-
tle’s index is a constant that is independent of the num-
ber of customers in the system and of the arrival rate. In
fact, this index policy (with linear holding cost) coincides
with the index policies as proposed in [7] and [5], for spe-
cific model assumptions, and is asymptotically optimal for a
multi-server environment. For general convex holding cost
we derive properties of the index value in limiting regimes:
we consider the behavior of the index (i) as the number of
customers in a class grows large, which allows us to derive
the asymptotic structure of the index policies, and (ii) as
the abandonment rate vanishes, which allows us to retrieve
an index policy proposed for the multi-class M/M/1 queue
with convex holding cost and no abandonments.

Our index is expressed as a function of the steady-state
probabilities and it can thus efficiently be calculated, but
it does not always allow to obtain qualitative insights. We
therefore formulate a fluid version of the relaxed optimiza-
tion problem, where the objective is bias optimality, i.e., to
determine the policy that minimizes the cost of bringing the
fluid to its equilibrium. We show how to derive an index
for the fluid model, and we compare it with Whittle’s index
as obtained for the stochastic model. The advantage of the
fluid approach lies in its relatively simple expressions com-
pared to the stochastic one. It shows equivalence with the
Gcµ/θ-rule, that is, including abandonments into the gener-
alized cµ-rule (Gcµ-rule) and provides useful insights on the
dependence on the parameters. With linear holding cost the
Whittle index and the fluid index are identical.

Numerical experiments show that our index policies work
well and become optimal as the load in the system is large.

In summary the main contributions of this paper are:

• Unifying approach to obtain Whittle’s index for schedul-
ing problems under average cost criterion.
• For a multi-class queue with convex holding costs and

abandonments we prove indexability and obtain Whit-
tle’s index as a function of steady-state probabilities.
• For linear holding costs Whittle’s index is independent

on the arrival rate and state.
• Development of a fluid-based approach to derive a closed-

form formula for the indices for general holding cost.

The paper is organized as follows. In Section 2 we give an
overview of related work and in Section 3 we describe the
model. In Section 4 we present the relaxation of the original
problem and show that threshold policies are optimal. We
establish indexability and calculate Whittle’s index under
the average cost criterion. In Section 5 we explain a heuris-
tic index policy, based on Whittle’s index, for the original
optimization problem. In Section 6 we calculate Whittle’s
index for linear holding cost and derive properties for gen-
eral convex holding costs. In Section 7 we calculate the index
for an M/M/1 queue without abandonments. Section 8 de-
scribes the asymptotic optimality result, and in Section 9 we
present the fluid model and derive the fluid index. Finally,
in Section 10 we numerically evaluate the performance of
Whittle’s index policy and the fluid index policy.

2. RELATED WORK
There are four main literature bodies that are relevant

to our work: literature on (i) index policies for resource
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allocation problems, (ii) scheduling with convex costs, (iii)
scheduling in the presence of impatient customers, and (iv)
fluid-based scheduling. We provide below a brief summary
of some of the main contributions in each of the domains.

(i) The seminal work on the optimality of index policies for
MABP is in the book by Gittins et. al. [19]. The optimality
of the cµ-rule, i.e., strict priority is given according to the
indices cµ, in a multi-class single server queue for average
reward and discounted cost criteria, in the preemptive and
non-preemptive cases, is shown in [13, 18]. Index policies for
RMABP were introduced in the seminal paper [35]. In [28]
the author develops an algorithm that allows to establish
whether a problem is indexable, and if yes, to numerically
calculate, in an efficient way, Whittle’s index. Under the
assumption that an ODE has an equilibrium point and that
all bandits are symmetric, in [33] it is shown that Whittle’s
index policy is asymptotically optimal as the number of ban-
dits and the number of bandits that can be made active grow
to infinity, while their ratio is kept constant. This result is
generalized in [31] to the case in which there are various
classes of bandits, and new bandits can arrive over time.
In addition to resource allocation problems, Whittle’s index
has been applied in a wide variety of cases, including oppor-
tunistic spectrum access, website morphing, pharmaceutical
trials and many others, see for example [19, Chapter 6]. The
recent survey paper [21] is a good up-to-date reference on
the application of index policies in scheduling.

(ii) A seminal paper on scheduling in the presence of con-
vex costs is [30], where the author introduced the Generalized-
cµ-rule (Gcµ) and showed its optimality in heavy-traffic for
convex delay cost. The Gcµ-rule associates to each class-
i customer with experienced delay di the index C′i(di)µi,
where Ci(·) denotes the class-i delay cost. The optimal-
ity of the Gcµ-rule in a heavy-traffic setting with multiple
servers was established in [27]. In [1] the authors calculate
Whittle’s index policy for a multi-class queue with general
holding cost functions. In [12], convex holding costs are con-
sidered as well and, taking a stochastic approach, the author
obtains an index rule that consists on first-order differences
of the cost function, rather than on its derivatives.

(iii) The impact of abandonments has attracted consider-
able interest from the research community, with a surge in
recent years. To illustrate the latter, we can mention the
recent Special Issue in Queueing Systems on queueing sys-
tems with abandonments [23] and the survey paper [15] on
abandonments in a many-server setting. Related literature
that is more close to our present work consists of papers that
deal with optimal scheduling or control aspects of multi-class
queueing systems in the presence of abandonments, see for
instance [20, 2, 4, 16, 5, 7, 3, 24, 26, 10]. Note that, with
the exception of [3], these papers consider linear holding
cost. In the case of one server the authors of [16, 10] show
that (for exponential distributed service requirements and
impatience times) under an additional condition on the or-
dering of the abandonment rates an index policy is optimal
for linear holding cost. In the case of no arrivals and non-
preemptive service, the authors of [2] provide partial charac-
terizations of the optimal policy and show that an optimal
policy is typically state dependent. It is worthwhile to men-
tion that [2] is inspired by a patient triage problem which
illustrates that abandonments are as well an important is-
sue in other areas than information technology. As far as
the authors are aware, the above two settings are the only

ones for which structural optimality results have been ob-
tained. State-dependent heuristics for the multi-class queue
are proposed in [2] for two classes and no arrivals and in [20]
for an arbitrary number of classes including new arrivals.
In [7] the authors obtain Whittle’s index for a multi-class
abandonment queue without arrivals, that is, each customer
is a bandit and the state of a bandit is either present or de-
parted. In an overload setting the abandonment queue has
been studied under a fluid scaling in [4, 5], where the au-
thors scale the number of servers and the arrival rate and
show that an index rule is asymptotically fluid optimal. In
our analysis we will show how the indices of [7] and [4, 5]
coincide with the Whittle’s index rule in the case of linear
holding costs and in the presence of arrivals. In [26] the op-
timal policy is obtained for two classes of customers for a
fluid approximation of the stochastic model, which allows to
propose a heuristic for the stochastic model for an arbitrary
number of classes. We finally mention [3, 24] where the au-
thors derive index policies by studying the Brownian control
problem arising in heavy traffic. In [3] general delay costs
are considered while in [24] the impatience of customers has
a general distribution with increasing failure rate.

(iv) The approach of using the fluid control model to find
an approximation for the stochastic optimization problem
finds its roots in the pioneering works by Avram et al. [6]
and Weiss [34]. It is remarkable that in some cases the
optimal control for the fluid model coincides with the opti-
mal solution for the stochastic problem. See for example [6]
where this is shown for the cµ-rule in a multi-class single-
server queue and [9] where this is shown for Klimov’s rule
in a multi-class queue with feedback. For other cases, re-
searchers have aimed at establishing that the fluid control
is asymptotically optimal, that is, the fluid-based control
is optimal for the stochastic optimization problem after a
suitable scaling, see for example [8, 17, 32]. We conclude
by mentioning that the fluid approach owes its popularity
to the groundbreaking result stating that if the fluid model
drains in finite time, the stochastic process is stable, see [14].

3. MODEL DESCRIPTION
We consider a multi-class single-server queue withK classes

of customers. Class-k customers arrive according to a Pois-
son process with rate λk and have an exponentially dis-
tributed service requirement with mean 1/µk, k = 1, . . . ,K.
We denote by ρk := λk/µk the traffic load of class k, and

by ρ :=
∑K
k=1 ρk the total load to the system. We model

abandonments of customers in the following way:

• Any class-k customer not served abandons after an
exponentially distributed amount of time with mean
1/θk, k = 1, . . . ,K, with θk > 0.
• A class-k customer that is being served abandons af-

ter an exponentially distributed amount of time with
mean 1/θ′k, k = 1, . . . ,K, with θ′k ≥ 0.

The server has capacity 1 and can serve at most one cus-
tomer at a time, where the service can be preemptive. We
make the following natural assumption: µk + θ′k ≥ θk, for
all k. That is, for a class-k customer its departure rate is
higher when being served than when not being served.

At each moment in time, a policy ϕ decides which class
is served. Because of the Markov property, we can focus on
policies that only base their decisions on the current number
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of customers present in the various classes. For a given pol-
icy ϕ, Nϕ

k (t) denotes the number of class-k customers in the
system at time t, (hence, including the one in service), and
~Nϕ(t) = (Nϕ

1 (t), . . . , Nϕ
K(t)). Let Sϕk ( ~Nϕ(t)) ∈ {0, 1} rep-

resent the service capacity devoted to class-k customers at
time t under policy ϕ. The constraint on the service amount
devoted to each class is Sϕk (~n) = 0 if nk = 0 and

K∑
k=1

Sϕk (~n) ≤ 1. (1)

The above describes a birth-and-death process with tran-
sition rates: qϕk (~n, ~n+ ~ek) = λk, and

qϕk (~n, ~n− ~ek) = µkS
ϕ
k (~n) + θk(nk − Sϕk (~n)) + θ′kS

ϕ
k (~n), (2)

for nk > 0, with ~ek a K-dimensional vector with all zeros
except for the k-th component which is equal to 1.

Let Ck(n, a) denote the cost per unit of time when there
are n class-k customers in the system and when either class k
is not served (if a = 0), or when class k is served (if a =
1). We assume Ck(·, 0) and Ck(·, 1) are convex and non-
decreasing functions and satisfy for all n ≥ 0,

Ck(n, 0)− Ck((n− 1)+, 0) ≤ Ck(n+ 1, 1)− Ck(n, 1)

≤ Ck(n+ 1, 0)− Ck(n, 0).
(3)

Observe that if Ck(0, 0) ≥ Ck(0, 1), then (3) implies that,
for all n, Ck(n, 0) ≥ Ck(n, 1). We also note that (3) is
always satisfied when (i) Ck(n, a) = Ck(n), or when (ii)
Ck(n, a) = Ck((n − a)+). Case (i) represents holding costs
for customers in the system, while (ii) represents holding
costs for customers in the queue.

We further introduce a cost dk for every class-k customer
that abandoned the system when not being served and a
cost d′k for a class-k customer that abandoned the system
while being served.

The objective of the paper is to find the optimal schedul-
ing policy ϕ under the average-cost criteria, that is,

lim sup
T→∞

K∑
k=1

1

T
E
(∫ T

0

Ck(Nϕ
k (t), Sϕk ( ~Nϕ(t))) dt

+dkR
ϕ
k (T ) + d′kR

′ϕ
k (T )

)
, (4)

where Rϕk (T ) and R′ϕk (T ) denote the number of class-k cus-
tomers that abandoned the queue while waiting and while
being served respectively, in the interval [0, T ] under pol-

icy ϕ. We have E(Rϕk (T )) = θkE
(∫ T

0
(Nϕ

k (t)− Sϕk ( ~Nϕ(t)))dt
)

and E(R′ϕk (T )) = θ′kE
(∫ T

0
Sϕk ( ~Nϕ(t))dt

)
, by Dynkin’s for-

mula. We now introduce the following notation to denote
the total cost in state nk under action a ∈ {0, 1}:

C̃k(nk, a) := Ck(nk, a) + dkθk(nk − a)+ + d′kθ
′
k min(a, nk),

(5)
so that the objective (4) can be equivalently written as

lim sup
T→∞

K∑
k=1

1

T
E
(∫ T

0

C̃k(Nϕ
k (t), Sϕk ( ~Nϕ(t))) dt

)
. (6)

The above described stochastic control problems have proved
to be very difficult to solve. Already for the special case of
linear holding cost, deriving structural properties of optimal

policies is extremely challenging. For example, in [16] op-
timal dynamic scheduling is studied for two classes of cus-
tomers (K = 2), dk = d′k, θk = θ′k, µ1 = µ2 = 1, and
linear holding cost. Define c̃k := ck + dkµk. For the spe-
cial case where c̃1 ≥ c̃2 and θ1 ≤ θ2, the authors show
that it is optimal to give strict priority to class 1, see [16,
Theorem 3.5]. It is intuitively clear that giving priority
to class 1 is the optimal thing to do, since serving class 1
myopically minimizes the (holding and abandonment) cost
and in addition it is advantageous to keep the maximum
number of class-2 customers in the system (without idling),
since they have the highest abandonment rate. In [10] op-
timal dynamic scheduling is studied for Ck(n, a) = ckn,
dk = d′k, and either θk = θ′k or θ′k = 0. For the spe-
cial case where the classes can be ordered such that c̃1 ≥
· · · ≥ c̃K , c̃1(µ1 + θ′1 − θ1) ≥ · · · ≥ c̃K(µK + θK − θ′K), and
c̃1(µ1 + θ′1 − θ1)/θ1 ≥ . . . ≥ c̃K(µK + θ′K − θK)/θK , the au-
thors show that it is optimal to give strict priority to the
class having the highest index.

Outside these special parameter settings, or for convex
holding cost, an optimal policy is expected to be state de-
pendent, and as far as the authors are aware, no (structural)
results exist for this stochastic optimal control problem.

In order to obtain insights into optimal control for con-
vex holding cost, in this paper we will solve a relaxed ver-
sion of the optimization problem that allows us to propose
a heuristic for the original model. This relaxation technique
is described in the next section.

4. RELAXATION AND INDEXABILITY
The solution to (6) under constraint (1) cannot be solved

in general. Following Whittle [35], we study the relaxed
problem in which the constraint on the service devoted to
each class must be satisfied on average, and not in every
decision epoch. The control policy must thus satisfy

lim sup
T→∞

1

T

∫ T

0

K∑
k=1

Sϕk ( ~Nϕ(t))dt ≤ 1. (7)

The objective of the relaxed problem is hence to determine
the policy that solves (6) under constraint (7). This can be
solved by considering the following unconstrained control
problem: find a policy ϕ that minimizes

lim sup
T→∞

1

T
E

(∫ T

0

( K∑
k=1

C̃k(Nϕ
k (t), Sϕk ( ~Nϕ(t)))

−W (1−
K∑
k=1

Sϕk ( ~Nϕ(t)))

)
dt

)
, (8)

where W is the Lagrange multiplier. The key observation
made by Whittle is that problem (8) can be decomposed
into K subproblems, each corresponding to a different class
(or bandit when using terminology from the RMABP liter-
ature). Thus, the solution to (8) is obtained by combining
the solution to the separate optimization problems.

For the remainder of this section we drop the dependency
on the class, and for a given W we consider the individual
optimization problem for a given class, that is, minimize

lim sup
T→∞

1

T
E
(∫ T

0

(
C̃(Nϕ(t), Sϕ(Nϕ(t)))

−W (1− Sϕ(Nϕ(t)))

)
dt

)
, (9)
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where now Nϕ(t) is the state of a given class at time t.
Under a stationarity assumption, we can invoke ergodicity
to show that (9) is equivalent to minimizing

E(C̃(Nϕ, Sϕ(Nϕ))−WE(1Sϕ(Nϕ)=0), (10)

where Nϕ denotes the steady-state number of customers in
a class under policy ϕ. We observe that the multiplier W
can be interpreted as subsidy for passivity.

In summary, the relaxed optimization problem can be
written as K independent one-dimensional Markov Decision
Problems (9). In the next section we will determine the
structure of the optimal control of the relaxed problem (9).

4.1 Threshold policies
In the following proposition we show that an optimal so-

lution of the relaxed problem (9) is of threshold type, i.e.,
when the number of customers is above a certain thresh-
old n, the class is served, and is not served otherwise. We
denote by ϕ = n the threshold policy with threshold n, that
is, Sn(m) = 1 if m > n, and Sn(m) = 0 otherwise.

Proposition 1. There is an n such that the policy ϕ = n
is an optimal solution of the relaxed problem (9).

Proof. The value function V (n) satisfies

(µ+ θ′ +mθ + λ)V (m) + g

= λV (m+ 1) + θ(m− 1)V ((m− 1)+)

+ min{C̃(m, 0)−W + (µ+ θ′)V (m) + θV ((m− 1)+),

C̃(m, 1) + (µ+ θ′)V ((m− 1)+) + θV (m)}, (11)

where g is the average cost incurred under an optimal policy.
Proving optimality of a threshold policy is hence equivalent
to showing that if it is optimal in (11) for state m+1, m ≥ 0
to be passive, then it is also optimal in (11) for state m to

be passive, i.e., C̃(m+ 1, 0)−W + (µ+ θ′ − θ)V (m+ 1) ≤
C̃(m+ 1, 1) + (µ+ θ′− θ)V (m), implies C̃(m, 0)−W + (µ+

θ′−θ)V (m) ≤ C̃(m, 1)+(µ+θ′−θ)V ((m−1)+). A sufficient
condition for the above to be true is (3) together with the
inequality V (m + 1) + V ((m − 1)+) ≥ 2V (m), for m ≥ 0.
The latter condition, convexity of the value function, will be
proved below, which concludes the proof.

In case of bounded transition rates, one can uniformize the
system and use Value-Iteration in order to prove convexity.
However, our transition rates are unbounded. We therefore
look to the truncated space, truncated by L > 1, and smooth
the arrival transition rates as follows: qk(m,m+ 1) = λ(1−
m/L), m = 0, . . . , L. Denote by V L(m) the value function
of the L-truncated system. By [11, Theorem 3.1] we have
that V L(m) → V (m) as L → ∞. Hence, convexity of the
function V is implied by convexity of V L for all L, and we
are left with proving the latter. The latter is uniformizable,
hence we can use the Value-Iteration technique. The proof
for convexity of V L is available in [25].

Below we write the steady-state distribution of threshold
policy ϕ = n. We denote the steady-state probability of
being in state i under policy ϕ = n by πn(i), and have

πn(i) =

i∏
m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0), i = 1, 2, . . . , (12)

where πn(0) =

(
1 +

∑∞
i=1

∏i
m=1

qn(m− 1,m)

qn(m,m− 1)

)−1

.

4.2 Indexability and Whittle’s index
Indexability is the property that allows to develop a heuris-

tics for the original problem. This property requires to es-
tablish that as the Lagrange multiplier, or equivalently the
subsidy for passivity, W , increases, the collection of states in
which the optimal action is passive increases, i.e., the opti-
mal threshold n increases. It was first introduced by Whittle
[35] and we formalize it in the following definition.

Definition 1. A class is indexable if the set of states
in which passive is an optimal action (denoted by D(w))
increases in W , that is, W ′ < W ⇒ D(W ′) ⊆ D(W ).

An optimal solution of problem (9) is a threshold policy,
or more specifically, if it is optimal to be passive in state m,
m ≥ 1, then it is also optimal to be passive in state m− 1,
see the proof of Proposition 1. We can therefore equivalently
write the following definition for indexability.

Definition 2. Let n(W ) denote the largest value such
that the threshold policy n(W) minimizes (9). A class is
indexable if n(W ) is non-decreasing in W , that is, W ′ <
W ⇒ n(W ′) ≤ n(W ).

Provided we can establish indexability, the Whittle index
in a state m is defined as the largest value for the subsidy
such that the optimal policy is indifferent of the action in
state m. Formally:

Definition 3. When a class is indexable, the Whittle’s
index in state m is defined by W (m) := inf {W : m ≤ n(W )} .

The solution to the relaxed control problem (8) will then
be to activate all classes k that are in a state nk such that
their Whittle’s index exceeds the subsidy for passivity, i.e.,
Wk(nk) > W . A standard Lagrangian argument shows that
there exists a value of W for which the constraint (7) is
binding, i.e., the optimal policy ϕ that solves Problem (8)
will on average activate 1 class.

Obviously, the solution to the relaxed optimization prob-
lem is not feasible for the original problem. Following Whit-
tle, we use Whittle’s index to construct the following heuris-
tic for the original problem (6) under the constraint (1): se-
lect in every decision epoch the class with largest Whittle
index. We will formally describe this in Section 5.

To conclude this subsection we show that for the model
under consideration, the classes are indexable.

Proposition 2. All classes are indexable.

Proof. Since an optimal policy for (9) is of threshold
type, for a given subsidy W the optimal average cost under
threshold n will be g(W ) := minn{g(n)(W )}, where

g(n)(W ) :=

∞∑
m=0

C̃(m,Sn(m))πn(m)−W
n∑

m=0

πn(m). (13)

The function g(W ) is a lower envelope of linear non-increasing
functions in W (see Figure 1, where we depict the lower-
envelope for the case of quadratic cost). It thus follows that
g(W ) is a concave non-increasing function.

It follows directly that the right-derivative of g(W ) inW is

given by −
∑n(W )
m=0 πn(W )(m). Moreover, we will prove below

that
∑n
m=0 π

n(m) is strictly increasing in n. Since g(W ) is
concave in W , its second derivative is non-increasing in W .
It hence follows that n(W ) is non-decreasing in W .
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Figure 1: Lower envelop g = minn{g(n)} when

C̃(n, a) = (1 + 2θ)n + 3n2, for a = 0, 1, and θ = 6, λ =
33, µ = 10.

We now prove that
∑n
i=0 π

n(i) is strictly increasing, or
equivalently, that 1 −

∑∞
i=n+1 π

n(i) is strictly decreasing.
Using (12), the latter is equivalent to verifying that∑∞

m=n+1

∏m
i=1

qn(i−1,i)
qn(i,i−1)∑∞

m=n

∏m
i=1

qn−1(i−1,i)

qn−1(i,i−1)

<
1 +

∑∞
m=1

∏m
i=1

qn(i−1,i)
qn(i,i−1)

1 +
∑∞
m=1

∏m
i=1

qn−1(i−1,i)

qn−1(i,i−1)

.

(14)
holds for all n. Note that qn(m − 1,m) = qn−1(m − 1,m)
for all m and qn(m,m− 1) = qn−1(m,m− 1) for all m 6= n.
From the assumption µ + θ′ ≥ θ we have qn(n, n − 1) ≤
qn−1(n, n − 1). Hence, the left-hand-side of (14) is strictly
less than 1, while the right-hand-side is larger than or equal
to 1. This proves (14).

4.3 Derivation of Whittle’s index
We are now in position of deriving Whittle’s index. An

optimal policy is fully characterized by a threshold n such
that the passive action is prescribed for states m ≤ n, and
the active action for states m > n. Our key observation to
derive Whittle’s index is that it is not necessary to solve the
optimality equation (11), but that it suffices to determine
the average cost for threshold policies. In turn, the average
reward g can be expressed as a function of the steady-state
probabilities, which in the case of birth-and-death processes
have a well-known solution. This explains the novelty of our
approach with respect to the literature as it gives a unifying
framework and determines the Whittle’s index for any in-
dexable birth-and-death process. We will come back to this
at the end of this section.

We can now state the main result of the paper.

Proposition 3. If

E(C̃(Nn, Sn(Nn)))− E(C̃(Nn−1, Sn−1(Nn−1)))∑n
m=0 π

n(m)−
∑n−1
m=0 π

n−1(m)
, (15)

with πn(m) the steady-state probability of being in state m
under policy n, is non-decreasing in n, then Whittle’s index
W (n) is given by (15).

Proof. Let W̃ (n) be the value for the subsidy such that
the average cost under threshold policy n is equal to that
under policy n − 1. Hence, using (10), we have that for

all n ≥ 1, E(C̃(Nn, Sn(Nn)) − W̃ (n)E(1Sn(Nn)=0) is equal

to E(C̃(Nn−1, Sn−1(Nn−1))− W̃ (n)E(1Sn−1(Nn−1)=0). For
threshold policy n we have E(1Sn(Nn)=0) =

∑n
m=0 π

n(m),

hence W̃ (n) is given by (15).

It can be verified that W̃ (n) being non-decreasing, im-

plies that g(W̃ (n)) = g(n)(W̃ (n)) = g(n−1)(W̃ (n)). In ad-

dition, since dg(n)(W )

dW
= −

∑n
m=0 π

n(m) is decreasing in n

(see proof of Proposition 2), we have g(W ) = g(n−1)(W ) for

W̃ (n − 1) ≤ W ≤ W̃ (n). This implies that Whittle’s index

is given by W (n) = W̃ (n).

Equation (15) can be numerically computed, since the cost
function and the steady-state probabilities are known. In
Section 6 closed-form expressions and limiting properties for
Whittle’s index will be derived for special cases.

A few comments are in order. The first concerns the form
of (15). The numerator in (15) can be interpreted as the in-
crease in cost by deciding to become passive in state n and
keeping all other actions unchanged, and similarly the de-
nominator can be understood as the corresponding increase
of passivity rate for the process, measured by the additional
probability in which a subsidy is received. Thus W (n) can
be interpreted as a measure of increased cost per unit of
increased passivity, a term coined as Marginal Productivity
Index by Niño-Mora [28].

The second comment regards the applicability of Whit-
tle’s index (15) in other contexts. Indeed we can outline a
general recipe to develop Whittle’s indices for bandits whose
evolution can be described by general birth-and-death pro-
cesses:

(i) Establish optimality of monotone policies (as in Propo-
sition 1).

(ii) Establish indexability (as in Proposition 2).
(iii) If (i) and (ii) can be established, then Whittle’s in-

dex is given by Proposition 3, where the steady-state
probabilities are as in (12).

Steps (i) and (ii) are model dependent, but (iii) is immediate
and the index will always be given by Proposition 3.

To the best of our knowledge we are the first to observe
that for bandits whose evolution can be described by a birth-
and-death process, one can get an explicit closed-form ex-
pression for Whittle’s index. Perhaps a reason for this lies
in the difficulty to solve the optimality equation (11), which
has two unknowns g and V (m), and this has led researcher
to circumvent this difficulty by considering the discounted
cost first, equating the total discounted costs as done in
Proposition 3 for average cost and then taking the limit in
order to retrieve an index for the average cost case. This
is for instance the approach taken in [1] to derive an index
for convex costs without abandonments or in [19, Section
6.5] for bi-directional bandits in which the active and pas-
sive actions push the process in opposite directions. In [22]
the authors develop an algorithm to calculate an index in a
multi-class queue with admission control. All these models
have in common that after the relaxation, the bandits are
birth-and-death, and the obtained Whittle’s index is thus
equal to (15). We will explain in Section 7 how to derive the
index of [1] using this approach. Regarding the bi-directional
bandit it can be directly checked that Index (15) is equiva-
lent to the index of [19, Theorem 6.4]. Finally, we note that
by adapting the cost structure we obtain that index (15) is
equivalent to that of [22, Theorem 2].
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Having made this remark on the applicability of (15) in a
more wider context, in the remainder of the paper we will
discuss the properties of Whittle’s index (15) in the context
of a queue with convex costs and abandonments.

5. WHITTLE’S INDEX POLICY
In this section we describe how the solution to the re-

laxed optimization problem is used to obtain a heuristic for
the original stochastic model. The optimal control for the
relaxed problem is not feasible for the original stochastic
model, since in the latter at most one class can be served at
a time. Whittle [35] therefore proposed the following heuris-
tic, which is nowadays known as Whittle’s index policy:

Definition 4 (Whittle’s index policy). Assume at

time t we are in state ~N(t) = ~n. Whittle’s index policy
prescribes to serve the class k having currently the highest
non-negative Whittle’s index Wk(nk),

Wk(nk) = (16)

E(C̃k(N
nk
k , Snk (N

nk
k )))− E(C̃k(N

nk−1
k , Snk−1(N

nk−1
k )))∑nk

m=0 π
nk
k (m)−

∑nk−1
m=0 π

nk−1
k (m)

,

where π
nk
k (m) is the steady-state probability in state m under

policy nk for class k.

Note that in case all classes have a negative index, we define
that Whittle’s index policy will keep the server idle (until
there is a class having a positive value for its index). This
follows, since, when the Whittle’s index is negative, in the
relaxed problem you will keep the class passive even though
a negative subsidy is given.

When C̃k(mk, 0) ≥ C̃k(mk, 1) for all mk, the Whittle in-
dex Wk(nk) will always be positive. This can be seen as
follows. Recall that Wk(nk) refers to the value of W such
that a threshold policy nk is an optimal solution of the re-
laxed problem. Hence, for all mk ≤ nk, it is optimal to keep
the class passive, that is, C̃k(mk, 0)−Wk(nk) + (µk + θ′k −
θk)V (mk) ≤ C̃k(mk, 1)+(µk+θ′k−θk)V (mk−1), as we saw

in the proof of Proposition 1. Since C̃k(mk, 0) ≥ C̃k(mk, 1),
µk+θ′k ≥ θk, and V (·) is non-decreasing (see proof of Propo-
sition 1), it follows that Wk(nk) ≥ 0.

Instead, when C̃(mk, 0) < C̃(mk, 1) for an mk, Wk(nk)
can be negative for certain states nk. For example, when
θ′k = θk and d′k >> dk. Then, even though the total depar-
ture rate of class-k customers is highest when serving class k,
for certain states nk it might be better not to serve class k.
The latter follows since having a class-k customer abandon
while being served, will incur a much higher cost than when
it abandons while waiting. The latter is taken care of by the
possibility of the Whittle index Wk(nk) to be negative.

From the practical point of view, the interest of index (16)
lies in the fact that the index of class k does not depend on
the number of customers present in the other classes j, j 6= k.
Hence, it provides a systematic way to derive simple imple-
mentable policies which we will show perform very well, see
Section 10, and which in fact are asymptotically optimal in
certain settings, see Section 8.

6. CASE STUDIES
In this section we further investigate properties of the ob-

tained Whittle’s index (16). In Section 6.1 we obtain that
the index is state-independent for linear holding cost. In

Section 6.2 we derive asymptotic properties of the index for
general convex holding cost functions.

6.1 Linear holding cost
In this section we consider linear holding cost, that is,

Ck(nk, a) = ck(nk − a)+ + c′k min(nk, a). Hence, under this
function, any class-k customer in the queue contributes with
ck to the cost, and a class-k customer in service contributes
with c′k to the cost. In particular, if c′k = ck, then Ck repre-
sents the linear holding cost of customers in the system and
if c′k = 0 then Ck represents the linear holding cost of cus-
tomers in the queue. These two holding cost functions have
been considered in the literature in the context of abandon-
ments, for example [7] considers the former, while [4] takes
the latter. From our formula (16) we will be able to obtain
a full characterization of Whittle’s index. Interestingly, we
show that the Whittle’s index becomes state-independent
and does not depend on the arrival rate λk.

It will be convenient to define c̃k := ck + dkθk, k =
1, . . . ,K, which can be interpreted as the total cost per unit
of time incurred by a customer who can abandon the system.

We now state the main result of this section. The proof
can be found in the technical report [25].

Proposition 4. Assume linear holding cost Ck(nk, a) =
ck(nk − a)+ + c′k min(nk, a). Then, the Whittle’s index for
class k is

Wk(nk) =
c̃k(µk + θ′k)

θk
− c̃′k, for all nk. (17)

An interesting feature of (17) is that it is independent of
the arrival rate λk and independent on the number of class-k
customers present, nk. In Section 6.2 we will show that this
observation only holds for linear holding costs.

The index (17) allows for the following interpretation.
Consider there is only one class-k customer in the system
and no future arrivals, we then have C̃k(1, 1) = c̃′k, C̃(1, 0) =
c̃k, q1

k(1, 0) = θk, q0
k(1, 0) = µk + θ′k. Index (17) can equiva-

lently be written as (µk + θ′k)
(
c̃k
θk
− c̃′k

µk+θ′
k

)
, which is equal

to q0
k(1, 0)

(
C̃(1,0)

q1
k

(1,0)
− C̃k(1,1)

q0
k

(1,0)

)
. Hence, the index can be in-

terpreted as the reduction in cost when making a class-k
bandit active instead of keeping him passive (the term within
the brackets) during a time lag equal to the departure time
in the active phase.

We now consider some particular cases that have been
studied in the literature. For example, let us consider first
the case in which all customers can abandon the system, i.e.,
θ′k = θk, for k = 1, . . . ,K, and that the cost for abandon-
ment is the same for both active and passive, so dk = d′k. Let
us consider two cases: In the first case all customers in the
system incur a holding cost. This implies that ck = c′k, and
thus c̃k = c̃′k. Substituting into (17) we get Wk(nk) = c̃kµk

θk
.

In the second case we consider that only customers in the
queue incur a holding cost, so we take c′k = 0, which gives
c̃k− c̃′k = ck, and upon substitution in (17) we get the index

Wk(nk) = c̃kµk
θk

+ ck.

We now assume that only customers in the queue can
abandon, that is, the customer in service will not abandon,
hence θ′k = 0, for k = 1, . . . ,K. This is the model assump-
tion of [7] and [4]. We first assume that all customers in the
system incur a holding cost, that is, ck = c′k, and we thus get
c̃′k = c̃k. From (17) we get Wk(n) = c̃kµk

θk
−ck. We can simi-

larly calculate the index in the case in which only customers
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in the queue incur a holding cost, i.e., c′k = 0, to obtain
the index Wk(nk) = c̃kµk

θk
. These two last indices have been

derived in [7] and [4], respectively. More specifically, [7] de-

rives the index c̃kµk
θk
− ck when studying one customer and

no future arrivals. Interestingly, we observe that the index
remains the same in the presence of random arrivals as con-
sidered in this paper. When the customer in service does
not contribute to the holding cost our model coincides with
that analyzed in [4], where it is shown that the index rule
c̃kµk
θk

is asymptotically fluid optimal in a multi-server queue

in overload (ρ > 1). We therefore conclude that the Whit-
tle’s index, Wk(nk), we have derived, retrieves index policies
that had been proposed in the literature when studying the
system in special parameter regimes.

To finish this subsection we now provide an intuition to
understand the result of Proposition 4 in the case θ′k = θk
and ck = c′k. In this setting, at any moment in time, all
customers in the system incur a holding cost ck and can
abandon at rate θk. Substituting E(C̃k(Nn

k , S
n
k (Nn

k ))) =

c̃kE(Nn
k ) and Wk(n) = c̃kµk

θk
in (16), we get the relation

θk(E(Nn−1
k )−E(Nn

k )) = µk

(
∞∑
m=n

πn−1
k (m)−

∞∑
m=n+1

πnk (m)

)
,

which can be seen as a rate conservation. Indeed, the term
on the left-hand-side represents the difference in the average
number of customers that abandons the system per time
unit when comparing both policies n and n− 1. The right-
hand-side represents the difference in the average number of
customers that is served per time unit when comparing both
policies n and n − 1. The left-hand-side being equal to the
right-hand-side is exactly the rate conservation.

6.2 Convex increasing holding cost
In this section we characterize Whittle’s index for general

convex non-decreasing holding cost functions. We first note
that the cost associated to abandonments of customers are
linear functions. We can thus use the result of Proposition 4
to rewrite Whittle’s index as

Wk(nk) = dk(µk + θ′k)− d′kθ′k+ (18)

E(Ck(N
nk
k , Snk (N

nk
k )))− E(Ck(N

nk−1
k , Snk−1(N

nk−1
k )))∑nk

m=0 π
nk
k (m)−

∑nk−1
m=0 π

nk−1
k (m)

.

In the remainder of this section, we will focus on the sec-
ond term in (18), that is, the term corresponding to the
holding cost. We will characterize Whittle’s index for large
state values and we will observe that for non-linear hold-
ing cost the index Wk(nk) is dependent on nk, that is, is
state-dependent.

We assume that the holding costs Ck(nk, 1) and Ck(nk, 0)
are upper bounded by polynomials of finite degrees Pk <∞
and Qk <∞, respectively . Hence, we can write Ck(nk, a) =
Ek(nk, a) + o(nk), for large values of nk, where Ek(nk, 1) =∑Pk
i=0 C

(Pk,i)
k nik, with

C
(Pk,i)
k := lim

nk→∞

Ck(nk, 1)−
∑Pk
j=i+1 C

(Pk,j)
k njk

nik
,

and Ek(nk, 0) =
∑Pk
i=0 E

(Qk,i)
k nik, with

E
(Qk,i)
k := lim

nk→∞

Ck(nk, 0)−
∑Qk
j=i+1 E

(Qk,j)
k njk

nik
.

We assume w.l.o.g. that Pk is such that C
(Pk,Pk)
k > 0 and

Qk such that E
(Qk,Qk)
k > 0.

In the following proposition we give the expression for
Whittle’s index for large states. The proof can be found in
the technical report [25]:

Proposition 5. Assume that Ck(nk, 1) and Ck(nk, 0) are
upper bounded by a polynomial of degree Pk and Qk respec-
tively. Then, we have Wk(nk) = W∞k (nk)+o(1), as n→∞,
where W∞k (nk) := dk(µk + θ′k)− d′kθ′k +W c

k (nk) and

W c
k (nk) := (Ek(nk, 0)− Ek(nk, 1)) + (µk + θ′k − θk)/θk

·

(
Ek(nk, 0)

nk
+

Pk∑
i=2

C
(Pk,i)
k

i−2∑
j=0

ni−2−j
k

(
λk
θk

)j+1
)
. (19)

Assume for example that Pk = Qk ≥ 2 and C
(Pk,Pk)
k =

E
(Qk,Qk)
k , then for states that are large enough, in the case

when Ck(nk, a) = Ck(nk) or Ck(nk, a) = Ck((nk−a)+), the
value of W∞k (nk) is determined by the highest polynomial.
For this example, this is given by(
E

(Pk,Pk−1)
k − C(Pk,Pk−1)

k +
µk + θ′k − θk

θk
E

(Pk,Pk)
k

)
n
Pk−1
k .

(20)
The latter is independent of the arrival rate λk, and hence,
so is W∞k for large enough states. This robust index (20) can
serve as an approximation for Whittle’s index policy when
there are a large number of customers in the system. In
particular, it can be of interest in overload settings.

7. M/M/1 MULTI-CLASS QUEUE
The multi-class M/M/1 queue without abandonments has

received lot of attention from the research community. In the
case of linear holding cost, the cµ-index rule has been proved
to be optimal in two main settings: (i) with exponential dis-
tributed service times and preemptive scheduling [13], and
(ii) general service time distributions and non-preemptive
scheduling [18]. A brief explanation of the optimality of
an index rule is that having a linear holding cost ck for a
class-k customer per unit of time is equivalent to a prob-
lem where a reward ck is received upon service completion
(and no holding cost) [19, Section 4.9]. The latter can be
seen as a MABP, for which an index rule (in this case cµ)
is optimal1. However, this equivalence holds only for linear
holding costs, which explains why for general cost functions
the structure of the optimal scheduling policy is no longer
of index type. In that context, a fruitful approach has been
to derive scheduling policies with near-optimal performance
or asymptotically optimal performance in a limiting regime,
see the references as stated in Section 2.

In this section, we derive an index policy for the multi-
class M/M/1 system by considering the limit of our Whittle
index as the abandonment rate tends to 0. Note that the
Whittle’s index Wk(nk) goes to ∞ as θk → 0, and it turns
out that when scaling the index by θk we get a non-trivial
limit. The proof of the next proposition may be found in
the technical report [25].

1This is known as the tax formulation of a MABP, see [19,
Section 4.9].
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Proposition 6. Assume Ck(nk, a) = Ck(nk), a = 0, 1,
θ′k = θk, and dk = d′k = 0. Then,

lim
θk→0

θkWk(nk) =
µk(1− ρk)

ρk

·
[ ∞∑
m=0

ρmk (1− ρk)Ck(nk − 1 +m)− Ck(nk − 1)

]
. (21)

A heuristic for the M/M/1 queue with as objective to
minimize the holding cost can now be derived as follows.
Set θk = θ′k for all k and consider the index multiplied by
θk as θk → 0. A heuristic is then to give priority according
to the index as given in (21).

In case of linear holding costs Ck(nk) = cknk, the in-
dex (21) coincides with the ckµk-rule. For general hold-
ing cost the index in (21) was also obtained in Glazebrook
et.al [1] (see also Section [19, Section 6.5]) by carrying out
a model-dependent analysis, which consists in considering
first the total discounted holding cost criterion, calculating
the corresponding Whittle’s index, and afterwards taking
the limit in the discounting factor. In that case too, index-
ability needs to be established. Proposition 6 illustrates the
versatility of our approach where after having established in-
dexability and obtained the index for the general multi-class
model with abandonments, one can apply it to more specific
settings such as in the case of no abandonments (θk = 0).

As pointed out in [19, Section 6.5] applying directly the
average cost criteria to the M/M/1 queue without aban-
donments gives no meaningful index. Consider an M/M/1
queue with threshold policy n, where the taken action is
passive for all states below and equal to n, and active for all
states above n. A classical queueing theory result shows that
in the absence of abandonments, under policy n the prob-
ability of being in state n will be 1 − ρ, i.e., independently
of where the threshold is set. This result that the subsidy
obtained is W (1 − ρ), that is, independent of the policy n,
and therefore, the subsidy does not allow to “calibrate” the
states. In our approach this is circumvented by obtaining
an index for the, well-defined, case with abandonments and
then letting θ → 0, while in [19, Section 6.5] this is circum-
vented by looking at the discounted problem and scaling the
immediate cost.

For large values of nk, the index (21) is approximately
equal to C′k(nk)µk, which we refer to as the Gcµ-rule. This
rule was introduced in [30] for convex delay cost. The equiv-
alence with the Gcµ rule can be seen as follows. We have
for nk large,

∑∞
m=0 ρ

m
k (1 − ρk)Ck(nk − 1 + m) − Ck(nk −

1)
∑∞
m=0 ρ

m
k (1− ρk) = (1− ρk)

∑∞
m=0 ρ

m
k (C(nk − 1 +m)−

C(nk−1)) ≈ (1−ρk)
∑∞
m=0 mρ

m
k C
′(nk−1) = C′(nk) ρk

(1−ρk)
,

where we used that for nk large with respect to m, we have
C(nk−1+m)−C(nk−1)

m
≈ C′(nk) and that large values of m

have a negligible weight on the summation. Hence, we can
write limθk→0 θkWk(nk) ≈ C′k(nk)µk.
Numerical example. In Table 1 we compare the subopti-
mality of the C′(n)µ-rule and index-rule (21) in an M/M/1
queue without abandonments. Note that when θk = 0, for
all k, we need to assume

∑K
k=1 ρk < 1 in order to assure sta-

bility of the system. Consider 4 classes of customers with the
following parameters: µ1 = 16, µ2 = 27, µ3 = 12 and µ4 =
21, ρ1 = 3ρ/9, ρ2 = ρ/9, ρ3 = 5ρ/9 and ρ4 = ρ/9. The hold-
ing cost of each class are cubic, Ck(nk) := αk+βknk+γkn

2
k+

δkn
3
k, for which (21) simplifies to: βkµk + γkµk

(
3ρk − 1

1− ρk
+

ρ 0.11 0.21 0.31 0.41
(21) 4.25e-06 1.51e-05 6.07e-06 5.02e-07
C′(n)µ 0.0072 0.0636 0.1002 0.1320

ρ 0.51 0.61 0.71 0.81
(21) 0.008 0.0291 0.0919 1.7129
C′(n)µ 0.1689 0.3616 1.8280 4.9539

Table 1: Suboptimality gap

2nk

)
+ δkµk

(
3n2

k + 3

(
2ρk − 1

1− ρk

)
nk +

4ρ2
k + ρk + 1

(1− ρk)2

)
. We

take the particular example: C1(n1) = 6n1 + 2n2
1 + 2n3

1,
C2(n2) = 2n2 + 2n2

2 + 2n3
2, C3(n3) = n3 + n2

3 + 3n3
3 and

C4(n4) = 8n4 + 2n3
4. We observe that for this example the

C′(n)µ-rule is outperformed by the index-rule (21), but both
policies give nearly optimal performance.

8. ASYMPTOTIC OPTIMALITY
In this section we will discuss asymptotic optimality of

Whittle’s index policy.
For linear holding cost, asymptotic optimality can be de-

rived directly from [31]. Assume there are M servers and
the arrival rate of class-k customers is Mλk. Let Wk be the
state-independent index as given in (17). In [31, Proposi-
tion 6.2] it is shown that the index policy (W ), where at
each moment in time a server serves a customers having
highest non-negative index Wk, is asymptotically optimal in
the following sense: for any policy ϕ,

lim
M→∞

lim
T→∞

1

T

K∑
k=1

E
(∫ T

0

C(Nk(t), S
(W )
k (t))dt

)

≤ lim inf
M→∞

lim
T→∞

1

T

K∑
k=1

E
(∫ T

0

C(Nk(t), Sϕk (t))dt

)
.

For general holding cost, we can not derive asymptotic
optimality. We do expect however that under certain con-
ditions one would have the following. Assume there are M
servers and xkM queues where class-k customers arrive with
rate λk, k = 1, . . . ,K2. A queue can be served by at most
one server. In bandit terminology this represents having
xkM class-k bandits whose state (that is, the number of
customers in the queue) has values in S := {0, 1, . . .}, and
the scheduler needs to decide which M bandits to make ac-
tive (so which M queues to serve). In case the state space S
would have been finite, the result in [33, 31] implies (under
certain conditions) asymptotic optimality of Whittle’s index
policy as M → ∞. However, for infinite state space, as is
the case for our model, no result is known so far.

9. FLUID INDEX
In Section 4 we derived the optimal policy of the relaxed

optimization problem (9), which was described by the in-
dex value (3). Unfortunately, for non-linear holding cost the
index could not be written in closed-form. In this section
we will therefore solve the fluid version of the relaxed opti-
mization problem (9), that is, we only take into account the
average behavior of the system. This will allow to obtain a

2This can represent for example a setting where there are
xkM class-k flows having newly arriving packets (repre-
sented by customers).
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closed-form expression for the fluid index. In Section 9.1 we
describe the fluid control problem we need to solve and in
Section 9.2 we obtain the solution and the fluid index. In
addition, we compare the fluid index with the index for the
stochastic model.

9.1 Fluid model description
We approximate the stochastic model as presented in Sec-

tion 3 by a deterministic fluid model, where only the mean
dynamics are taken into account. Let mk(t) be the amount
of class-k fluid and sk(t) the control parameter. The dy-
namics is then given by

dmk(t)

dt
=λk − µksk(t)− θk(mk(t)− sk(t))+

− θ′k min(sk(t),mk(t)).

and the control sk(·) needs to satisfy 0 ≤ sk(t) ≤ 1, mk(t) ≥
0. At time t, the cost for the fluid model is defined as
C̃(m(t), s(t)) = (1−s(t))C̃(m(t), 0)+s(t)C̃(m(t), 1)−W (1−
s(t)), since s(t) can be viewed as the fraction of time the pas-
sive action is taken at time t. The cost functions are con-
tinuous in both m and s. Note that we have used the same
notation as in the stochastic model where the cost functions
were discrete in m and s (slight abuse of notation). Assume

dC(m, 1)

dm
≤ dC(m, 0)

dm
, (22)

which is the continuous equivalence of the RHS of (3).

An equilibrium point (m̄k, s̄k) of
dmk(t)

dt
is such that 0 =

λk − µks̄k − θk(m̄k − s̄k)+ − θ′k min(m̄k, s̄k), s̄k ∈ [0, 1], and
m̄k ≥ 0. For the remainder of this section we drop the
dependence on classes from the notation.

In the stochastic model the aim is to minimize (9), that
is, to minimize the time-average cost minus the subsidy ob-
tained. In equilibrium, s̄ is the average amount of time
the system is passive, hence, the fluid version of (9) will
be to find the equilibrium point that minimizes TC(s̄) :=

(1− s̄)C̃(m̄, 0)+ s̄C̃(m̄, 1)−W (1− s̄). We denote by (m∗, s∗)
an optimal equilibrium point and define

TC∗ := (1− s∗)C̃(m∗, 0) + s∗C̃(m∗, 1)−W (1− s∗). (23)

Since the time-average criteria will be attained by several
controls, in the next section we will study controls that are
bias-optimal. That is, among all controls that reach the
optimal equilibrium point, a bias-optimal control is the one
that minimizes the cost to get to this point.

9.2 Fluid index for bias optimality
Having characterized the optimal equilibrium point in the

previous section, the question is which control minimizes the
cost to get to this equilibrium, referred to as bias-optimality.
Hence, our aim is to find the control that minimizes∫ ∞

0

(
C̃(m(t), s(t))−W (1− s(t))− TC∗

)
dt. (24)

That is, minimize the total cost over time minus the optimal
cost in equilibrium. The optimal solution to the fluid bias
optimal problem is stated below. For the sake of clarity, we
will focus on the case θ = θ′ and we refer to the technical
report [25] for the general setting. Full details on the proof
can be found in [25].

Proposition 7. Assume θ = θ′ and d = d′. An optimal
control for the relaxed fluid problem (24) is s∗(t) = 1 if
W < w(m(t)) and s∗(t) = 0 otherwise, with

w(m) := C(m, 0)− C(m, 1) + dµ

+


w(1)(m) if m < ((λ− µ)/θ)+,

w(2)(m) if ((λ− µ)/θ)+ ≤ m ≤ λ/θ,
w(3)(m) if m > λ/θ,

with

w(1)(m) =
µ

θ

C(λ−µ
θ
, 1)− C(m, 1)

(λ− µ)/θ −m ,

w(2)(m) =
(λ− θm) d

dm
C(m, 1) + (θm+ µ− λ) d

dm
C(m, 0)

θ
,

w(3)(m) =
µ

θ

C(m, 0)− C(λ/θ, 0)

m− λ/θ .

The fluid index w(m) is non-decreasing and continuous.

Proof. The holding cost functions C(m,a) are convex
and non-decreasing, hence (C(m,a) − C(m′, a))/(m −m′),
m ≥ m′ is non-decreasing in m and m′. Together with (22)

this implies that the functions w(1), w(2), and w(3) are non-
decreasing in m. Continuity of w(1), w(2) and w(3) follows

from the fact that limm↑(λ−µ)/θ
C(λ−µ

θ
,1)−C(m,1)

(λ−µ)/θ−m = dC(m,1)

dm

and limm↓λ/θ
C(m,0)−C(λ/θ,0)

m−λ/θ = dC(m,0)

dm
.

An optimal control that minimizes (24) is of threshold
type, that is, there is an m′ such that when m ≤ m′ it is
optimal to set s(t) = 0 and when m > m′ it is optimal to
set s(t) = 1, see [25]. Recall that the optimal equilibrium
point is denoted by (m∗, s∗) and minimizes TC(s̄).

First assume s∗ ∈ (0,min(λ/µ, 1)). In that case, the op-
timal equilibrium point satisfies ((λ − µ)/θ)+ < m∗ < λ/θ

and, due to the convexity of TC(s̄) in s̄, we have dTC(s∗)

ds̄
=

0. Using that 0 = λ − µs∗ − θm∗, dTC(s∗)

ds̄
= 0 can equiv-

alently be written as W = C(m∗, 0) − C(m∗, 1) + dµ +

w(2)(m∗). Hence, for this choice of W , the optimal equi-
librium point is given by m∗. Note that dm(t)/dt is strictly
negative when s(t) = 1 and m(t) ∈ (((λ − µ)/θ)+,∞], and
strictly positive when s(t) = 0 and m(t) ∈ [0, λ/θ). It hence
follows directly that the only possible threshold policy that
has m∗ as equilibrium point, is the threshold policy m∗.
Hence, we conclude that for W = C(m∗, 0) − C(m∗, 1) +

dµ+ w(2)(m∗), the bias-optimal policy is m∗.
The analysis for the cases s∗ = 0 or s∗ = min(λ/µ, 1) is

more involved. We define the cost-to-go function Kn(m,W )
as the cost (24) under the threshold policy n when starting
in state m and assuming a subsidy W for passivity. First
assume s∗ = 0, and let m > λ/θ = m∗. After some calcula-
tions we obtain that for any such m, Kn(m,W ) is minimized

in n ≥ λ/θ when W = C(n, 0) − C(n, 1) + dµ + w(3)(n).
Hence, we conclude that the threshold policy n, with n ≥
λ/θ, is bias-optimal for this specific choice of subsidy. Sim-
ilarly, setting s∗ = min(λ/µ, 1) we obtain that a thresh-
old policy n, with n ≤ ((λ − µ)/θ)+, is bias-optimal when

W = C(n, 0)− C(n, 1) + dµ+ w(1)(n).
Hence, we conclude that n is an optimal threshold policy

when W = w(n). This, together with the fact that w(n)
is non-decreasing in n, proves that if W < w(m(t)), then a
threshold policy m′, with m′ < m(t) is bias-optimal, hence
s∗(t) = 1. Similarly, if W ≥ w(m(t)), then s∗(t) = 0.
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We make the following observations:

• For linear holding cost, the fluid indices are state-
independent and coincide with those of the stochastic
model as stated in Proposition 4.
• Assume C(m,a) = C(m). In that case,

w(2)(m) =
µ

θ

d

dm
C̃(m),

which corresponds to theGcµ/θ-rule. The terms w(1)(m)

and w(3)(m) reduce to

w(1)(m) =
µ

θ

C̃((λ− µ)/θ)− C̃(m)

(λ− µ)/θ −m ,

w(3)(m) =
µ

θ

C̃(m)− C̃(λ/θ)

m− λ/θ .

We refer to [12] where index policies based on first-
order difference have also been proposed and are shown
to empty the system with the lowest cost possible in a
single server multi-class queue without abandonments
and no future arrivals.
• For large enough values of m, the fluid index w(m)

is determined by the value of C(m, 0) − C(m, 1) +

dµ + µ
θ
C(m,0)
m

(see w(3)(m)). In case of polynomial
bounded cost functions, as considered in Proposition 5,
this coincides with the highest polynomial as deter-
mined in (20) for the stochastic model with P = Q

and C(P,P ) = E(Q,Q).

Having solved the fluid version of the relaxed problem, we
can now propose the following heuristic for the stochastic
model based on the fluid index w(m).

Definition 5 (Fluid index policy). Assume at time t

we are in state ~N(t) = ~n. The fluid index policy prescribes
to serve the class k having currently the highest non-negative
fluid index wk(nk).

10. NUMERICAL ANALYSIS
The objective of the present section is to show in which

regimes the Whittle index policy W (n) (Equation (15)) per-
forms well. We will focus on holding cost functions of the
shape Ck(nk, a) = Ck(nk), that is, the holding cost is a
function of the number of class-k customers in the system.
Throughout this section we assume θk = θ′k and d′k = dk,
so that all class-k customers abandon at the same rate and
same cost. Hence, C̃k(nk, a) reduces to Ck(nk) + dkθknk.

In Section 10.1 we compare the structure of Whittle’s in-
dex policy with the structure of the optimal policy, which
is numerically obtained through value iteration [29]. In Sec-
tion 10.2 we then numerically compare the performance of
the index policies with that of the optimal policy.

10.1 Structure of different policies
We compare the structure of the different index policies

and the optimal policy for linear and convex holding cost.

10.1.1 Linear holding cost
We performed numerical analysis for a wide range of pa-

rameters and observed that for linear holding cost Ck(n, a) =
ckn the optimal policy is of the following structure: when
(N1, . . . , NK) is close enough to the origin (and Ni denotes

the number of class-i customers in the system), it is op-
timal to prioritize classes according to the c̃µ-rule, other-
wise to prioritize classes according to the c̃µ/θ-rule, where
c̃k := ck + dkθk, see Figure 2 (left) with ε = 0 as described
in the next section. Hence, the Whittle’s index (which cor-
responds to the c̃µ/θ-rule in the linear case) captures the
optimal action for states that are not too close to the origin.

10.1.2 General holding cost
To discuss the structure of index policies for general hold-

ing cost, we focus on two classes of customers (K = 2). In a
state (N1, N2), the action taken by Whittle’s index rule is to
serve the class having highest value Wk(Nk). Since Wk(Nk)
is an non-decreasing function, this implies that there is an
increasing switching curve (SC) such that when (N1, N2) is
below the SC, Whittle’s index policy serves class 1 and for
any state (N1, N2) above the curve the policy serves class 2.
Note that for linear holding cost this switching curve col-
lapses either to the vertical or horizontal axis.

By simulations we observed that an optimal policy is as
well of switching curve type. For example, in Figure 2 (left)
we plot the switching curve of the optimal policy with the
following holding cost: C1(n) = n+ εn2 and C2(n) = n (pa-
rameters λ = [9, 10], µ = [14, 16], θ = [2, 0.05], d = [4, 0.3]).
When ε = 0, we obtain a decreasing switching curve, which
describes the behavior of the optimal policy for linear cost
as explained in Section 10.1.1. As ε becomes positive, the
switching curve becomes increasing. In addition, ε becomes
larger, and hence the quadratic cost of class 1 increases, and
therefore, class 1 gets priority in a larger region.

We now compare the actions taken under Whittle’s in-
dex policy and the optimal policy. We consider an exam-
ple with quadratic costs C1(n) = (c11 + d1θ1)n+ c21n

2 and
C2(n) = (c12 +d2θ2)n+c22n

2, and set the following parame-
ters µ = [15, 18]; θ = [4, 7]; c1 = [1, 4]; c2 = [2, 1]; d = [8, 6.5].
In Figures 2 (middle and right) we plot the optimal actions
(obtained by value iteration) for load ρ = 0.8 and ρ = 2.5, re-
spectively, and compare it to the actions taken under Whit-
tle’s index policy. We observe that the optimal policy can
be described by a switching curve. In addition the optimal
policy coincides with that of Whittle’s index W (n) in al-
most all the state space as the workload increases. We also
plotted the switching curve corresponding to the fluid index
w(n) and observe a very good fit.

10.2 Performance evaluation
In this section we evaluate numerically the performance

of the index policies. This is carried out by computing the
relative sub optimality gap between the average cost of the
optimal solution and an index policy. In order to compute
this we use the Value Iteration algorithm [29].

We saw in Section 7 that the index policy with index (21)
performs very well in an M/M/1 multi-class systems (when
there are no abandonments). We considered cubic costs and
4 classes of customers and compared the Generalized index
rule (Gcµ) and the index-rule of (21) and we observed there
that the latter performs slightly better than the Gcµ-rule.

In this section we will consider scenarios allowing aban-
donments. We will evaluate the following indices: (i) the
Whittle index W (n) (Equation (15)), (ii) the Whittle index
for large states W∞(n) and (iii) the fluid index w(n). We
compare these to the two index policies proposed for a multi-
class queue without abandonments: the Gcµ-rule, and the
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Figure 2: (Left:) Switching curves of the optimal policy for varying holding cost (from linear to quadratic).
(Middle and right:) Actions under the optimal policy, the index policy W (n), and the fluid index policy for
quadratic holding cost. Area with “+”: W (n) serves class 1 while it is optimal to serve class 2, Area with “*”:
W (n) serves class 2, which is also optimal, and in the white area W (n) serve class 1, which is also optimal.

index-rule corresponding to (21) which is an approximation
of W (n) for θ close to zero. We will analyze two different
scenarios: (1) varying the workload ρ, and (2) varying the
abandonment rates θk.

10.2.1 Varying Workload
In this section we aim at observing the behavior of index

policies for varying workload.
Example with linear holding cost: We set Ck(n, a) =

ckn, µ = [15, 25], θ = [4, 2], c = [1, 1], d = [5, 3.2], and let
ρ =

∑2
k=1 λk/µk vary in the interval [0, 3.4], with λ1/µ1 =

λ2/µ2. For linear holding costs, the indices W (n),W∞(n)
and w(n) reduce to the c̃µ/θ-rule and the indices Gcµ and
(21) reduce to the c̃µ-rule, with c̃k = ck + dkθk.

In Figure 3 (left) we observe that the c̃µ-rule is optimal in
underload, while the c̃µ/θ-rule performs optimal in overload.
The latter can be explained by the structure of the optimal
policy as discussed in Section 10.1.1. In a state far from
the origin, the optimal action is to serve according to c̃µ/θ,
which is the region in which the process will live in overload,
explaining why the c̃µ/θ-rule performs well in this case. In
underload, apparently the effect of abandonments is not that
important and the c̃µ-rule performs very well.

Example with quadratic holding cost: Consider the
following parameters: µ = [15, 18], θ = [4, 7], c1 = [1, 4],
c2 = [2, 1], d = [8, 6.5], and we let λ vary, but keeping
λ1/µ1 = λ2/µ2. We assume quadratic costs C1(n) = (c11 +
d1θ1)n + c21n

2 and C2(n) = (c12 + d2θ2)n + c22n
2. See

Figure 3 (middle) for the sub-optimality gap.
We observe that for low load the Gcµ-rule and the index-

rule (21) behave very well. However, as the load grows
larger, the sub-optimality gap of these θ-independent poli-
cies grows large, while our Whittle index policy W (n), the
Whittle index policy for large states W∞(n) and the fluid
index policy w(n) become near optimal as ρ > 2 in this ex-
ample. Hence, our index policies are very suitable for the
overload setting, which are in practice of main importance.
Note that the jump around ρ = 2 for the index-rule (21) is
a result of undefined values around λk = µk.

10.2.2 Varying abandonment rates
In this section we evaluate the performance of the index

policies for varying abandonment rates.

Linear holding cost: In this case, the 5 index poli-
cies mentioned above reduce to the c̃µ/θ-rule and the c̃µ-
rule, as explained in Section 10.2.1. As θk → 0, we ob-
served in simulations that the c̃µ-rule performs optimal,
while the c̃µ/θ-rule might perform very bad when the aban-
donment rates are negligibly small. It is known that for
the non-reneging case, the c̃µ-rule is optimal in underload
(the celebrated cµ-rule for a multi-class M/M/1 queue). The
c̃µ/θ = (c + dθ)µ/θ index might however give an opposite
priority rule when θ’s are very small, which explains the
non-optimality of the c̃µ/θ-rule when θk’s are very small.

Quadratic holding cost: Consider a system with 2
classes of customers. We assume quadratic holding costs
C1(n) = c̃11n+c21n

2 where, c̃11 = (c11 +d1θ1), and C2(n) =
c̃21n+ c22n

2, where c̃21 = (c21 + d2θ2) and fix the following
parameters: λ = [4, 5], µ = [15, 17], c1 = [1, 4], c2 = [5, 1],
d = [2, 3], θ1 = ε1p and θ2 = ε2p, where ε1 = 0.05 and
ε2 = 0.01, and let p vary. Hence, ρ =

∑
k ρk < 1 so that the

stability of the system is assured as θk → 0.
In Figures 3 (right) we plot the sub-optimality gap as p

varies from 0 to 200, hence θ1 and θ2 range from [0, 10] and
[0, 2], respectively. We observe for the θ-dependent indices
a sub-optimality gap of 25% around p = 0. As θ grows
large, this gap disappears however very fast. Note that the
θ-independent indices work well, as we are in an underload
scenario.
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