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ABSTRACT
Inspired by several recent papers that focus on scheduling
disciplines for network flows, we present a mean delay anal-
ysis of Multilevel Processor Sharing (MLPS) scheduling dis-
ciplines in the context of M/G/1 queues. Such disciplines
have been proposed to model the effect of the differentiation
between short and long TCP flows in the Internet. Under
MLPS, jobs are classified into classes depending on their
attained service. We consider scheduling disciplines where
jobs within the same class are served either with Proces-
sor Sharing (PS) or Foreground Background (FB) policy,
and the class that contains jobs with the smallest attained
service is served first. It is known that the FB policy min-
imizes (maximizes) the mean delay when the hazard rate
of the job size distribution is decreasing (increasing). Our
analysis, based on pathwise and meanwise arguments of the
unfinished truncated work, shows that Two-Level Processor
Sharing (TLPS) disciplines, e.g., FB+PS and PS+PS, are
better than PS scheduling when the hazard rate of the job
size distribution is decreasing. If the hazard rate is increas-
ing and bounded, we show that PS outperforms PS+PS and
FB+PS. We further extend our analysis to study local op-
timality within a level of an MLPS scheduling discipline.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes;
F.2.2 [Nonnumerical Algorithms and Problems]: Se-
quencing and Scheduling; G.3 [Probability and Statis-
tics]: Queueing Theory

General Terms
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1. INTRODUCTION
Seminal work on one server scheduling disciplines was

made in the 1960’s and 1970’s. Schrage [1] proved that
the Shortest Remaining Processing Time (SRPT) discipline
minimizes the mean delay, i.e., the expected time in the sys-
tem. The SRPT discipline, however, requires the knowledge
of the remaining service times of all jobs, but these remain-
ing service times are not always known, e.g., the remaining
length of an Internet session is not known by the sched-
uler. Kleinrock [2] gives a thorough overview of scheduling
in such systems where only the attained service times are
known together with the service time distribution. Yashkov
[3] mentions that he has proven (in [4]) that the Foreground
Background (FB)1 discipline is optimal among this set of
scheduling disciplines if the hazard rate of the service time
distribution is decreasing (DHR). Righter and Shantikumar
[5] showed the optimality of FB in the stochastic sense, i.e.,
the tail of the queue-length distribution, P [NFB > k], is
minimal for all k ≥ 0. Righter et al. [6] show that FB min-
imizes the mean delay when the job size distribution is of
type New Worse than Used in Expectation (NWUE), which
is a weaker condition than DHR. In a recent paper, Feng
and Misra [9] prove the optimality of FB when the hazard
rate is decreasing.2 The performance of FB under job size
distributions with high variability and simulations of FB on
the packet level has been studied by Rai et al. [10].

These job size aware scheduling disciplines have lately re-
ceived new attention [7, 8, 9, 10, 11, 12] mainly due to the
measurement findings that Internet traffic is heavy tailed
[13, 14]. This means that data transfers are composed of
many very short flows, but the majority of traffic is due to
few very long flows. In such a case, it seems reasonable to
favor the short flows by a suitable scheduling algorithm. For
example, if a router is able to determine, for each flow, the
number of bytes or packets already transmitted, the flows
could be divided into different priority classes with the high-
est priority given to the flows with the least number of trans-
mitted bytes or packets. Such implementations are discussed

1Also called Feedback Processor Sharing (FBPS) and Least
Attained Service (LAS).
2There seems, however, to be a subtle deficiency in [6, 9] re-
garding the proof of FB’s optimality. We discuss this further
in Section 3.



in [15, 7, 12]. Another method, based on the packet arrival
rates within each flow, is described in [16].

On the flow level, these packet level scheduling algorithms
can be modelled using Multilevel Processor Sharing (MLPS)
scheduling disciplines.3 An MLPS discipline is defined by a
finite set of thresholds

0 = a0 < a1 < · · · < aN < aN+1 = ∞,

which define N + 1 levels. Jobs are classified into levels
based on their attained service. Between these levels, a strict
priority discipline is applied with the lowest level having
the highest priority. Thus, those jobs that have attained
service less than a1 time units are served first. In this paper,
the MLPS disciplines with two levels are called Two-Level
Processor Sharing (TLPS) disciplines.

With respect to the performance analysis of these MLPS
disciplines, the ordinary Processor Sharing (PS) discipline
is a natural point of comparison, since it has been proposed
as an ideal model for the bandwidth sharing among TCP
flows in a bottleneck router [17, 18]. Using a similar rea-
soning, the packet level priority discipline for TCP flows
described above could be modelled as an MLPS discipline
with PS used as the internal discipline within each level.
Another natural point of comparison is FB due to its op-
timality property in the case of job size distributions with
decreasing hazard rate, examples of which are the Pareto
and hyper-exponential distributions that have been used to
model flow sizes in the Internet.

In addition to the FB discipline, Feng and Misra [9] con-
sider a TLPS discipline (called FLIPS) where those jobs
with attained service time less than threshold a are served
according to the FB discipline. If such jobs do not exist,
the ordinary PS discipline is used. However, they do not
compare the FLIPS discipline to the other disciplines in the
mean delay sense. Guo and Matta [7] study, by simulations,
another TLPS discipline (called ML-PRIO) where those jobs
with attained service time less than threshold a are given
priority and served according to the PS discipline. If such
jobs do not exist, the ordinary PS discipline is used. The
same discipline is considered, by analytical and numerical
techniques, in [12]. Their numerical experimentations sug-
gest that ML-PRIO is better than PS when the hazard rate
is decreasing.

In this paper we compare the mean delays of TLPS dis-
ciplines for which the scheduling discipline within one level
is either FB or PS, more specifically FB+PS (FLIPS) and
PS+PS (ML-PRIO), in the context of M/G/1 queues. We
show that (i) if the hazard rate is decreasing, then

E[TFB] ≤ E[TFB+PS] ≤ E[TPS+PS] ≤ E[TPS],

but (ii) if the hazard rate is increasing and bounded, then

E[TFB] ≥ E[TFB+PS] ≥ E[TPS+PS] ≥ E[TPS].

For more general MLPS disciplines, we show that, within
a level, FB is always better than PS if the hazard rate is
decreasing and vice versa for a job size distribution with in-
creasing and bounded hazard rate. The results follow from
a thorough analysis of the unfinished truncated work (de-
fined in Section 2.1) including both meanwise and pathwise
arguments. In particular, we provide a framework to prove
that the mean unfinished truncated work is smaller under a

3Introduced by L. Kleinrock in the early 1970’s, see [2].

given scheduling discipline compared to some other schedul-
ing discipline.

The paper is organized as follows. Section 2 derives how,
for different scheduling disciplines, differences in the mean
delay can be deduced from differences in the mean unfin-
ished truncated work, given a job size distribution and its
hazard rate. In particular, we show that if the mean unfin-
ished truncated work in one scheduling discipline is smaller
than in another, the scheduling discipline has a smaller mean
delay when the hazard rate of the job size distribution is de-
creasing. In Section 2 we also provide a framework that gives
a sufficient condition for the comparison of the mean un-
finished truncated work for different scheduling disciplines.
Section 3 relaxes the Poisson arrival assumption and schedul-
ing disciplines are compared using pathwise arguments on
the unfinished truncated work for TLPS and MLPS schedul-
ing disciplines. Section 4 summarizes the results in form of
theorems, which order several TLPS disciplines according to
the mean delay and within a level of an MLPS scheduling
discipline, given assumptions on the hazard rate and the job
size distribution. Section 5 concludes the paper.

2. MEAN DELAY
Consider any work-conserving scheduling discipline of an

M/G/1 queue. Let λ denote the arrival rate and S the
service time of a job. We assume that E[S] < ∞ and the
system be stable, i.e., ρ = λE[S] < 1. Furthermore, we
assume that the service time distribution is continuous with
the corresponding density function denoted by f(x). Let

F (x) =

Z x

0

f(y) dy

and F (x) = 1− F (x). The corresponding hazard rate func-
tion is denoted by

h(x) =
f(x)

F (x)
.

2.1 Mean delay in terms of mean unfinished
truncated work

Let N denote the number of jobs in the system at an
arbitrary time, and denote the service times of these jobs
by Si and their attained services by Xi, i ∈ {1, . . . , N}.
The random variable Ux refers to the unfinished truncated
work with truncation threshold x, i.e., the sum of remaining
truncated service times of those jobs with attained service
less than x time units,

Ux =

NX
i=1

((Si ∧ x)− (Xi ∧ x)),

where we have used notation a ∧ b = min{a, b}. Note that
U0 = 0.

Let T (y) denote the delay of a job whose service time
is y time units, and N(y) the number of such jobs who has
attained service at most y time units. According to [2, equa-
tion (4.11)],

N
′
(y) = λF (y)T

′
(y), (1)

where we have used notation N
′
(y) = d

dy
E[N(y)] and T

′
(y) =

d
dy

E[T (y)]. In addition to the continuous part, for which

N(y+
i ) − N(y−i ) = 0, there may be a countable number of



points yi such that N(y+
i ) − N(y−i ) > 0. For example, for

the FIFO discipline, point 0 is such, and for the MLPS dis-
ciplines, the thresholds an > 0 are such. By Little’s result,
we conclude that, for all such points yi,

N(y+
i )−N(y−i ) = λF (yi)(T (y+

i )− T (y−i )). (2)

Formulas (1) and (2) can be combined as follows:

dN(y) = λF (y)dT (y), (3)

Let Rx(y) denote the remaining truncated service time of
a job that has attained service y time units,

Rx(y) = (S(y) ∧ x)− y, y < x,

where S(y) refers to the service time of a job whose at-
tained service is y time units. For the mean value Rx(y) =
E[Rx(y)] we have

Rx(y) = E[(S ∧ x)− y|S > y] =
1

F (y)

Z x

y

F (t) dt. (4)

In particular, we have

Rx(0) = E[(S ∧ x)] =

Z x

0

F (t) dt. (5)

From here on we restrict ourselves to such scheduling dis-
ciplines that do not use any information about the remain-
ing service times of the jobs, but only information on the
attained services. The family of such disciplines is denoted
by Π. For such disciplines, N ′(y) and Rx(y) (as well as
N(y+

i ) − N(y−i ) and Rx(yi)) are independent and we have
the following formula for the mean unfinished truncated
work Ux = E[Ux]:

Ux =

Z x−

0−
Rx(y)dN(y).

By applying (3) and (4), we get

Ux = λ

Z x−

0−

Z x

y

F (t) dt dT (y)

= λ

Z x

0

Z t−

0−
dT (y) F (t) dt

= λ

Z x

0

T (t−) F (t) dt.

Since almost everywhere in the interval [0, x], we have T (t−) =
T (t), the integral remains unchanged if we replace T (t−) by
T (t). Thus, we have the following result (cf. [2, equation
(4.60)]):

Ux = λ

Z x

0

F (t)T (t) dt. (6)

We note that the limiting value U∞ with x →∞ refers to
the mean unfinished work that is known to be the same for
all work-conserving disciplines. Furthermore, in the limit
x → ∞ formula (6) is valid even for more general ergodic
arrival processes than Poisson process [19].

Differentiating (6) yields

(Ux)′ = λF (x)T (x), (7)

where we have used notation (Ux)′ = d
dx

Ux. Thus,

T (x) =
(Ux)′

λF (x)
. (8)

By averaging over x, we get the following result for the mean
delay E[T ]:

E[T ] =

Z ∞

0

T (x)f(x) dx =
1

λ

Z ∞

0

(Ux)′h(x) dx. (9)

2.2 Difference of mean delays
Formula (9) is our main tool in the mean delay compar-

isons, as the following two propositions reveal.

Proposition 1. Let π1, π2 ∈ Π. If U
π1
x ≤ U

π2
x for all

x ≥ 0 and the hazard rate h(x) is decreasing, then

E[T π1 ] ≤ E[T π2 ].

Proof. If the hazard rate is bounded so that h(0) and
h(∞) exist, then the result can be derived easily as follows.
By (9), we have

E[T π1 ]− E[T π2 ] =
1

λ

Z ∞

0

[(U
π1
x )′ − (U

π2
x )′]h(x)dx.

After integrating by parts [20, pp. 118-119], we get

E[T π1 ]− E[T π2 ] =
1

λ
(U

π1
∞ − U

π2
∞ )h(∞)

− 1

λ
(U

π1
0 − U

π2
0 )h(0)− 1

λ

Z ∞

0

(U
π1
x − U

π2
x ) dh(x),

where the integral is defined as a Stieltjes integral with re-
spect to the decreasing function h(x). By observing that
U

π1
0 = U

π2
0 = 0 and U

π1
∞ = U

π2
∞ , we obtain

E[T π1 ]− E[T π2 ] = − 1

λ

Z ∞

0

(U
π1
x − U

π2
x ) dh(x),

from which the result straightly follows.
But if the hazard rate is unbounded near 0, we have to

apply Lemma 1 (in Appendix) to φ(x) = U
π1
x −U

π2
x implying

that, for all x ≥ 0,Z x

0

((Ūπ1
y )′ − (Ūπ2

y )′)h(y) dy ≤ 0.

Thus, in the limit x →∞,Z ∞

0

((Ūπ1
y )′ − (Ūπ2

y )′)h(y) dy ≤ 0.

The claim follows now from (9).

Proposition 2. Let π1, π2 ∈ Π. If U
π1
x ≤ U

π2
x for all

x ≥ 0 and the hazard rate h(x) is increasing and bounded,
then

E[T π1 ] ≥ E[T π2 ].

Proof. Since the hazard rate is assumed to be bounded,
we deduce, as in the first part of the proof of Proposition 1,
that

E[T π1 ]− E[T π2 ] = − 1

λ

Z ∞

0

(U
π1
x − U

π2
x ) dh(x),

where the integral is defined as a Stieltjes integral with re-
spect to the increasing function h(x). The result follows
straightly from this.

To compare two scheduling disciplines π1 and π2 in the
mean delay sense, it is, thus, sufficient to prove that U

π1
x ≤

U
π2
x for all x ≥ 0.



2.3 Framework for comparisons between schedul-
ing disciplines

In this subsection, we develop a mathematical framework
that gives a sufficient condition that U

π1
x ≤ U

π2
x for all x ≥ 0.

Proposition 3. Let π1, π2 ∈ Π. If there exists some
x∗ ≥ 0 such that T

π1(x) ≤ T
π2(x) for all x < x∗ and

T
π1(x) ≥ T

π2(x) for all x > x∗, then U
π1
x ≤ U

π2
x for all

x ≥ 0.

Proof. It follows from (6) that, for all x < x∗,

U
π1
x ≤ U

π2
x . (10)

On the other hand, for all x > x∗,

(U
π1
x )′ = λF (x)T

π1(x) ≥ λF (x)T
π2(x) = (U

π2
x )′.

Since both π1 and π2 are work-conserving disciplines, for
which the mean unfinished work is equal, we have

U
π1
∞ = U

π2
∞ .

The formulas above together with the fact that Ux is a con-
tinuous function of x guarantee that, for all x ≥ 0,

U
π1
x ≤ U

π2
x ,

which completes the proof.

Note that the condition of Proposition 3 seems natural in
the context of MLPS disciplines. For instance, let π1 ∈ Π
be a scheduling discipline that gives priority to short jobs.
If one compares the conditional mean delay of π1 with re-
spect to PS, one expects there will exist some x∗ such that

T
π1(x) ≤ T

PS
(x) for all x < x∗ and that T

π1(x) ≥ T
PS

(x)
for all x > x∗. In Section 2.4 we show that this is indeed
the case for π1 = PS + PS.

2.4 Comparison between PS+PS and PS disci-
plines

In this subsection we show that the PS+PS(a) discipline
is better than PS in reducing the value of Ux.

It is well known that the mean delay of a job with service
time x > 0 in a PS system reads as

T
PS

(x) =
x

1− ρ
.

According to [2, equations (4.27), (4.36), (4.39)], the cor-
responding mean delay in a PS+PS(a) system can be ex-
pressed as follows:

T
PS+PS(a)

(x) =

8><>:
x

1− ρa
if x ≤ a,

T
FB

(a) +
α(x− a)

1− ρa
if x > a.

(11)

Here ρa = λE[S ∧ a] refers to the truncated load, and α(x)
is such that α′(x) = d

dx
α(x) satisfies the following integral

equation:

α′(x) =
λ

1− ρa

Z x

0

α′(y)F (a + x− y) dy

+
λ

1− ρa

Z ∞

0

α′(y)F (a + x + y) dy + c(x) + 1

with c(x) ≥ 0. Note that T
PS+PS(a)

(x) is differentiable, at
least, for all x > a.

A numerical example of T
π
(x) is depicted in Figure 1 for

a bounded Pareto service time distribution BP(k, p, α). A
random variable X has a bounded Pareto distribution if its
distribution is given by F (x) = (1 − (k/x)α)/(1 − (k/p)α)
for all k ≤ x ≤ p. The hazard rate of a bounded Pareto
distribution is decreasing for all k ≤ x ≤ p.

0 500 1000 1500 2000 2500 3000 3500
0
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20
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70

x

E
[T

π x]

PS
PS+PS(1000)

Figure 1: Mean delay T
π
(x) of a job with service time

x, for π = {PS, PS + PS(1000)}, under service time dis-
tribution BP(13, 3500, 1.1) and load ρ = 0.9

Denote now

α∗ = inf
x>0

α′(x).

The following inequality follows straightforwardly from the
integral equation:

α∗ ≥ inf
x>0

� λ

1− ρa

Z x

0

α′(y)F (a + x− y) dy

+
λ

1− ρa

Z ∞

0

α′(y)F (a + x + y) dy + 1
	

≥ inf
x>0

� λ

1− ρa

Z x

0

α∗F (a + x− y) dy

+
λ

1− ρa

Z ∞

0

α∗F (a + x + y) dy + 1
	

=
λα∗

1− ρa

Z ∞

0

F (a + z) dz + 1.

Now, taking into account thatZ ∞

0

F (a + z) dz = E[S]− E[S ∧ a],

we deduce that

α∗ ≥ α∗
ρ− ρa

1− ρa
+ 1.

Thus,

α∗ ≥ 1− ρa

1− ρ
. (12)

By combining (11) and (12), we get8><>: (T
PS+PS(a)

)′(x) =
1

1− ρa
≤ 1

1− ρ
if x < a,

(T
PS+PS(a)

)′(x) ≥ α∗

1− ρa
≥ 1

1− ρ
if x > a.

(13)

Note further that

(T
PS

)′(x) =
1

1− ρ
. (14)



Proposition 4. For all a ≥ 0 and x ≥ 0,

U
PS+PS(a)
x ≤ U

PS
x .

Proof. We verify that T
PS+PS(a)

(x) and T
PS

(x) satisfy
the assumptions stated in Proposition 3.

Let a ≥ 0. Since T
PS

(0) = T
PS+PS(a)

(0) = 0, it follows
from (13) and (14) that, for all x < a,

T
PS+PS(a)

(x) ≤ T
PS

(x).

Since PS+PS is a work-conserving discipline, there exists a
value

x∗ = inf{x ≥ a | TPS+PS(a)
(x) ≥ T

PS
(x)}.

Thus, for all x < x∗.

T
PS+PS(a)

(x) ≤ T
PS

(x).

On the other hand by equations (13) and (14) we have,
for all x > x∗

T
PS+PS(a)

(x) ≥ T
PS

(x),

which completes the proof.

A numerical example of U
π
x is depicted in Figure 2 for a

bounded Pareto service time distribution BP(13, 3500, 1.1).
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Figure 2: Mean unfinished truncated work U
π
x of

those jobs with attained service less than x, for π =
{PS, PS + PS(1000)}, under service time distribution
BP(13, 3500, 1.1) and load ρ = 0.9

Combining Propositions 1 and 4, we deduce that PS+PS
is better than PS in the mean delay sense under condi-
tion DHR. This result gives a clue that the two-level packet
scheduling algorithm referred to in Section 1 is a reasonable
method to favor short flows in the Internet.

It is even possible to consider the pathwise difference Uπ1
x (t)−

Uπ2
x (t), from which relationships for the difference U

π1
x −U

π2
x

follow. The pathwise arguments in the following section are
based on the rate σπ

x (t) at which the unfinished truncated
work is reduced.

3. PATHWISE COMPARISON OF UNFIN-
ISHED TRUNCATED WORK

In this section we relax the assumption of Poisson ar-
rivals and concentrate on the pathwise comparison of the

unfinished truncated work with a fixed truncation thresh-
old x > 0. Therefore, we add the time dimension into our
considerations.

Consider any work-conserving discipline π. Let A(t) de-
note the number jobs who have arrived up to time t, Nπ(t)
the number of jobs at time t, and N π(t) the set of jobs in
the system at time t, where |N π(t)| = Nπ(t). Furthermore,
let Nπ

x (t) denote the number of such jobs with attained ser-
vice less than x and Uπ

x (t) the unfinished truncated work at
time t. Note that

Nπ
x (t) = 0 ⇔ Uπ

x (t) = 0.

Finally, let Ai denote the arrival time of job i, Si its service
time, and Xπ

i (t) its attained service at time t. Then we have
the following relationship:

i ∈ N π(t) ⇔ Ai ≤ t and Xπ
i (t) < Si.

Furthermore,

Uπ
x (t) =

A(t)X
i=1

((Si ∧ x)− (Xπ
i (t) ∧ x)),

or, equivalently,

Uπ
x (t) =

X
i∈Nπ(t)

((Si ∧ x)− (Xπ
i (t) ∧ x))

=
X

i∈Nπ
x (t)

((Si ∧ x)−Xπ
i (t)).

On the other hand, we have

Uπ
x (t) =

A(t)X
i=1

(Si ∧ x)−
Z t

0

σπ
x (u) du, (15)

where σπ
x (t) refers to the rate at which such jobs that have

attained service less than x units are served at time t. Cer-
tainly, we have, for any t,�

σπ
x (t) = 0, if Nπ

x (t) = 0,
σπ

x (t) ≤ 1, if Nπ
x (t) > 0.

(16)

For example, for the PS discipline this rate is as follows:

σPS
x (t) =

8<: 0, if NPS
x (t) = 0,

NPS
x (t)

NPS(t)
≤ 1, if NPS

x (t) > 0.
(17)

Note further that the first term in (15) is independent of the
scheduling discipline.

3.1 Optimal discipline to minimize unfinished
truncated work

Let Π∗x denote the family of work-conserving scheduling
disciplines that give full priority to jobs that have attained
service less than x units. Note that

FB, FB+PS(x), PS+PS(x) ∈ Π∗x.

Furthermore, FB+PS(a) ∈ Π∗x for all a ≥ x. For any π∗ ∈
Π∗x, we have

σπ∗
x (t) =

�
0, if Nπ∗

x (t) = 0,

1, if Nπ∗
x (t) > 0.

(18)

It follows that Uπ∗
x (t) is the same for all π∗ ∈ Π∗x. It is also

easy to show that any π∗ ∈ Π∗x is optimal in this sense.



Proposition 5. For any π∗ ∈ Π∗x and t ≥ 0,

Uπ∗
x (t) = min

π∈Π
Uπ

x (t).

Proof. This follows immediately from equations (15),
(16) and (18) combined with the observation that if σπ

x (t) >

σπ∗
x (t), then necessarily Nπ∗

x (t) = 0, which implies that

Uπ∗
x (t) = 0 ≤ Uπ

x (t).

Instead of Uπ
x (t), both Righter et al. [6] and Feng and

Misra [9] consider the corresponding untruncated random
variable

V π
x (t) =

X
i∈Nπ

x (t)

(Si −Xπ
i (t)).

Under the condition that V
π1
x ≤ V

π2
x for all x ≥ 0, Righter

et al. [6] prove that E[T π1 ] ≤ E[T π2 ] when the service time
distribution is of type NWUE; under the same condition,
Feng and Misra [9] obtain the same result when the hazard
rate is decreasing.

In order to prove the optimality of FB, both Righter et al.
[6] and Feng and Misra [9], use a similar pathwise argument
as above to demonstrate that FB minimizes V π

x (t) in the
pathwise sense.

However, if the remaining service times are not truncated,
there is a vertical downward jump in V π

x (t) amounting to
Si − x time units at time t when job i jumps out of N π

x (t).
This fact is not taken into account in the proofs of FB’s opti-
mality in [6, Lemma (3.5)] and [9, Lemma 2.4]4. Therefore,
while FB minimizes Uπ

x (t) (as seen above in Proposition 5),
FB does not minimize V π

x (t) nor V
π
x .

Numerical examples of V
π
x and U

π
x for a bounded Pareto

service time distribution BP (13, 3500, 1.1) are depicted in
Figures 3 and 4, respectively. The former one demonstrates
the non-optimality of FB regarding the unfinished untrun-
cated work, while the latter one illustrates the optimality
regarding the unfinished truncated work.
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Figure 3: Mean unfinished untruncated work V
π
x for

π = {PS, FB, PS + PS(1000)} under service time distri-
bution BP(13, 3500, 1.1) and load ρ = 0.9

4After a private communication Feng and Misra corrected
this deficiency independently utilizing the same defini-
tion as here of truncated remaining service time, see
http://www1.cs.columbia.edu/ misra/pubs/mama.pdf
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Figure 4: Mean unfinished truncated work U
π
x for

π = {PS, FB, PS + PS(1000)} under service time distri-
bution BP(13, 3500, 1.1) and load ρ = 0.9

3.2 Comparison between TLPS disciplines
Consider now the TLPS disciplines FB+PS(a) and PS+PS(a).

We show that the former one is better than the latter one
in minimizing Ux.

First we consider the TLPS disciplines FB+PS(a) and
PS+PS(a) for which a ≥ x.

Proposition 6. For any a ≥ x and t ≥ 0,

UFB
x (t) = UFB+PS(a)

x (t) ≤ UPS+PS(a)
x (t).

Proof. The result is due to Proposition 5 and the fact
that FB and FB+PS(a) belong to π∗x in this case.

Next we consider the TLPS disciplines FB+PS(a) and
PS+PS(a) for which a ≤ x. For the former one, we have

σFB+PS(a)
x (t) =

8<: N
FB+PS(a)
x (t)

NFB+PS(a)(t)
, if N

FB+PS(a)
a (t) = 0,

1, if N
FB+PS(a)
a (t) > 0,

(19)
and for the latter one

σPS+PS(a)
x (t) =

8<: N
PS+PS(a)
x (t)

NPS+PS(a)(t)
, if N

PS+PS(a)
a (t) = 0,

1, if N
PS+PS(a)
a (t) > 0.

(20)
It follows that in this case we have, for any t ≥ 0,

σFB+PS(a)
x (t) = σPS+PS(a)

x (t). (21)

Proposition 7. For any a ≤ x and t ≥ 0,

UFB
x (t) ≤ UFB+PS(a)

x (t) = UPS+PS(a)
x (t).

Proof. The first inequality follows from Proposition 5
and the fact that FB ∈ Π∗x. The second equality is due to
equations (15) and (21).

We note that in the particular case x = a, there is no
difference between the three disciplines,

UFB
a (t) = UFB+PS(a)

a (t) = UPS+PS(a)
a (t).

We further note that, while PS+PS is better than PS
regarding the mean value of the unfinished truncated work
(see Proposition 4), the pathwise version of this result is not
true, which we verified by a counter-example.



3.3 Comparison inside MLPS disciplines
In this subsection, we consider the multilevel PS disci-

plines MLPS(a1, . . . , aN ), where

0 = a0 < a1 < . . . < aN < aN+1 = ∞.

For any π ∈ MLPS(a1, . . . , aN ), let πn ∈ {FB, PS} de-
note the scheduling discipline used at level n, where n ∈
{1, . . . , N + 1}.

First we observe that π ∈ MLPS(a1, . . . , aN ) is (locally)
optimal, i.e., π ∈ Π∗x, if there is n ∈ {1, . . . , N +1} such that

(i) an = x, or

(ii) an−1 < x < an and πn = FB.

The reason is that, for all these disciplines π and for all
t ≥ 0, we have

σπ
x (t) = σFB

x (t).

Next we compare two MLPS disciplines. For that, define
the following order relation among the disciplines {FB, PS}:

FB ¹ FB, FB ¹ PS, PS 6¹ FB, PS ¹ PS.

Proposition 8. Assume that π ∈ MLPS(a1, . . . , aN ), π′ ∈
MLPS(a′1, . . . , a

′
N′), n ∈ {1, . . . , N+1} and n′ ∈ {1, . . . , N ′+

1} such that

an−1 = a′n′−1 ≤ x ≤ an = a′n′ .

(i) If πn = π′n′ , then Uπ
x (t) = Uπ′

x (t) for all t ≥ 0.

(ii) If πn ¹ π′n′ , then Uπ
x (t) ≤ Uπ′

x (t) for all t ≥ 0.

Proof. (i) Assume that πn = π′n′ . It is easy to see that

σπ
x (t) = σπ′

x (t) for all t ≥ 0 in this case. Thus, by (15), we

have Uπ
x (t) = Uπ′

x (t) for all t ≥ 0.
(ii) Due to (i), it is sufficient to consider the case πn = FB

and π′n′ = PS. In this case,

σπ
x (t) =

�
0, if Nπ

x (t) = 0,
1, if Nπ

x (t) > 0,

while (
σπ′

x (t) = 0, if Nπ′
x (t) = 0,

σπ′
x (t) ≤ 1, if Nπ′

x (t) > 0.

for all t ≥ 0. Thus, by (15), we have Uπ
x (t) ≤ Uπ′

x (t) for all
t ≥ 0.

Note that the results related to the comparison of the
TLPS disciplines FB+PS(a) and PS+PS(a) presented in
Propositions 6 and 7 follow from this one.

4. MEAN DELAY COMPARISONS OF MLPS
DISCIPLINES

As mentioned in section 2, in cases where the hazard rate
is monotonous, the order of the scheduling disciplines is de-
termined by the meanwise difference E[Uπ1

x − Uπ2
x ]. The

following theorems related to the mean delay comparisons
between scheduling disciplines follow from the propositions
in the previous sections.

Theorem 1. Assume that the hazard rate h(x) is decreas-
ing.

(i) E[TFB] = minπ∈Π E[T π].

(ii) For all a ≥ 0,

E[TFB] ≤ E[TFB+PS(a)] ≤ E[TPS+PS(a)] ≤ E[TPS].

(iii) For any π, π′ ∈ MLPS(a1, . . . , aN ) such that πn ¹ π′n
for all n ∈ {1, . . . , N + 1},

E[T π] ≤ E[T π′ ].

Proof. (i) The claim follows immediately from Proposi-
tions 1 and 5.5

(ii) The claim follows immediately from Propositions 1, 4,
6 and 7.

(iii) The claim follows immediately from Propositions 1
and 8.

This theorem strengthens the intuition that the multilevel
packet scheduling algorithm referred to in Section 1 is a
reasonable method to favor short flows in the Internet.

Theorem 2. Assume that the hazard rate h(x) is increas-
ing and bounded.

(i) E[TFB] = maxπ∈Π E[T π].

(ii) For all a ≥ 0,

E[TFB] ≥ E[TFB+PS(a)] ≥ E[TPS+PS(a)] ≥ E[TPS].

(iii) For any π, π′ ∈ MLPS(a1, . . . , aN ) such that πn ¹ π′n
for all n ∈ {1, . . . , N + 1},

E[T π] ≥ E[T π′ ].

Proof. (i) The claim follows immediately from Proposi-
tions 2 and 5.

(ii) The claim follows immediately from Propositions 2, 4,
6 and 7.

(iii) The claim follows immediately from Propositions 2
and 8.

4.1 Numerical comparison
In this subsection we present some numerical examples

that illustrate the benefits of PS+PS(a) and FB+PS(a) in
reducing the mean delay with respect to PS.

In Figure 5, we depict the mean delay of the disciplines
PS+PS(a) and FB+PS(a) as a function of the threshold
a. In addition the mean delay values for the PS and FB
disciplines are also depicted. The service time distribution
is bounded Pareto BP(13, 3500, 1.1).

We first note that since the hazard rate of a bounded
Pareto distribution is decreasing, the inequalities stated in
Theorem 1 are indeed satisfied. As expected, we observe
that

E[TFB+PS(0)] = E[TPS+PS(0)] = E[TPS]

and that

lim
a→∞

E[TFB+PS(a)] = E[TFB]

whereas

lim
a→∞

E[TPS+PS(a)] = E[TPS].

5Optimality of FB is not a new result [6]. We present it here
for the paper to be self-contained.
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Figure 5: Mean delay E[T π], for π =
{PS, PS + PS(a), FB + PS(a), FB}, as a function of
a under service time distribution BP(13, 3500, 1.1)
and load ρ = 0.9

Interestingly, we observe that choosing appropriately the
value of the threshold a, PS + PS(a) can significantly reduce
the mean delay value with respect to PS (up to 40% of
reduction). Similarly, with the same optimal choice of the
threshold a, PS + PS(a) can compete with FB in respect to
the mean delay.

Another positive performance characteristic of PS + PS(a)
stems from the apparent insensitivity properties with re-
spect to the value of the threshold. For instance, the mean
delay of PS + PS(a) does not vary significantly in the range
100 ≤ a ≤ 300 (F (100) = 0.9 and F (300) = 0.97). This
effect is even more pronounced when more heavy-tailed dis-
tributions are considered (for example unbounded Pareto).

5. CONCLUSIONS
We have shown, in the mean delay sense, the order be-

tween PS, FB and TLPS scheduling disciplines, FB+PS and
PS+PS, under given job size distributions. The analysis
considered general distributions, based on the characteristics
of their hazard rate. The given proofs are based on path-
wise and meanwise arguments. Using similar techniques, we
showed the order between disciplines within any level of an
MLPS discipline.

Our results imply that, under the current Internet traffic
mix, the better the scheduling policy takes into account the
attained service of the job, the smaller the mean delay of the
system is. Regarding implementations one must consider
how this is done on the packet level. As proposed by [7]
and [12], this can be done by assuming that the attained
service can be inferred from the packet count or byte count
(sequence number) of the flow. However, implementing a
packet level mechanism based on FB, would require a strict
ordering of each byte or packet of each flow at the core
router’s, e.g., infinite number of priority classes or full flow
level information at all routers. On the other hand for two-
level scheduling, such as PS+PS, only division of packets or
bytes into two priority classes at the edge of the network is
required.

Topics of further research include studying more general
MLPS disciplines including the quantitative gain between
changing a discipline within a level of an MLPS discipline.
Since the optimality of FB and SRPT holds under general

job arrival processes, one would expect that PS+PS would
be better than PS even when the Poisson assumption is re-
moved. Other further research includes studying the order of
these MLPS scheduling disciplines in terms of other metrics
than mean delay, e.g., slowdown or throughput, and gen-
eralizing the results to distributions with weaker conditions
than DHR, such as NWUE.

APPENDIX
Lemma 1. Let φ be a real-valued function on [0,∞) and

h a non-negative function on (0,∞). Assume that φ is dif-
ferentiable, φ(0) = 0, and φ(x) ≤ 0 for all x ≥ 0. Assume
further that h is decreasing. Then, for any x ≥ 0,Z x

0

φ′(y)h(y)dy ≤ 0.

Proof. Note first that, for all x ≥ 0,Z x

0

φ′(y)dy = φ(x) ≤ 0. (22)

Furthermore, since φ(0) = 0 and φ(x) ≤ 0 for all x ≥ 0,
there exists x0 such that φ′(x) ≤ 0 for all x < x0. Define
now Ab

1 = 0, and then recursively, for all k = 1, 2, . . .,

Ae
k = Bb

k = inf{x > Ab
k | φ′(x) > 0}

Be
k = Ab

k+1 = inf{x > Bb
k | φ′(x) ≤ 0}.

The x-axis is thus divided into intervals A1, B1, A2, B2, . . .,
where Ak = [Ab

k, Ae
k) and Bk = [Bb

k , Be
k). Note further that,

for all x ∈ (Ab
k, Ae

k),

φ′(x) ≤ 0, (23)

and, for all x ∈ (Bb
k , Be

k),

φ′(x) > 0. (24)

Furthermore, denote, for all k,

∆k =

Z Be
k

0

φ′(y)dy, (25)

Ik =

Z Be
k

0

φ′(y)h(y)dy. (26)

1◦ Consider first the intervals A1 and B1. By (23), we
have, for all x ∈ [Ab

1 , Ae
1],Z x

0

φ′(y)h(y)dy ≤ 0.

Let then x ∈ [Bb
1 , Be

1]. Now, since h is decreasing and Ae
1 =

Bb
1 , we haveZ x

0

φ′(y)h(y)dy =

Z Ae
1

0

φ′(y)h(y)dy +

Z x

Bb
1

φ′(y)h(y)dy

≤ h(Bb
1 )

Z x

0

φ′(y)dy ≤ 0.

The last inequality is due to (22). Thus, the claim is true in
these first intervals A1 and B1. In particular, we have

I1 ≤ h(Bb
1 )∆1 ≤ 0.

2◦ Let then k > 1 and assume that

Ik−1 ≤ h(Bb
k−1)∆k−1 ≤ 0. (27)



By (27) and (23), we have, for all x ∈ [Ab
k, Ae

k],Z x

0

φ′(y)h(y)dy = Ik−1 +

Z x

Ab
k

φ′(y)h(y)dy ≤ 0.

Let then x ∈ [Bb
k , Be

k]. Similarly as in 1◦, since h is decreas-
ing and Ae

k = Bb
k , we haveZ x

Ab
k

φ′(y)h(y)dy =

Z Ae
k

Ab
k

φ′(y)h(y)dy +

Z x

Bb
k

φ′(y)h(y)dy

≤ h(Bb
k)

Z x

Ab
k

φ′(y)dy.

Thus, by (27), (22) and the fact that h(Bb
k−1) ≥ h(Bb

k), we
haveZ x

0

φ′(y)h(y)dy = Ik−1 +

Z x

Ab
k

φ′(y)h(y)dy

≤ h(Bb
k−1)∆k−1 + h(Bb

k)

Z x

Ab
k

φ′(y)dy

≤ h(Bb
k)

Z x

0

φ′(y)dy ≤ 0.

Thus, the claim is true in these intervals Ak and Bk. In
particular, we have

Ik ≤ h(Bb
k)∆k ≤ 0,

which completes the proof.
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