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Abstract

We study the steady-state queue-length vector in a multi-class queue with relative priorities. Upon
service completion, the probability that the next served customer is from class k is controlled by
class-dependent weights. Once a customer has started service, it is served without interruption
until completion. We establish a state-space collapse for the scaled queue length vector in the
heavy-traffic regime, that is, in the limit the scaled queue length vector is distributed as the prod-
uct of an exponentially distributed random variable and a deterministic vector. We observe that
the scaled queue length reduces as classes with smaller mean service requirement obtain relatively
larger weights. We finally show that the scaled waiting time of a class-k customer is distributed
as the product of two exponentially distributed random variables.
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1 Introduction

In this paper we study a multi-class M/G/1 queue with relative priorities. Service is non-preemptive
and upon service completion, the probability that the next customer to be served is from class k is

nkpk∑
j njpj

, (1)

where, pj > 0, j = 1, . . . ,K, are given class-dependent weights, and nj is the number of class-j
customers at the decision epoch. The intra-class scheduling discipline is non-preemptive and non-
anticipating. A non-anticipating policy does not use information of the actual service requirement of
the customers.
The relative priority model is quite general, and it provides an appropriate framework to provide
service differentiation in non-preemptive systems. In fact, following the analysis of Section 8.4.1 in [10]
it could be shown that the family of relative priority policies as studied in this paper is complete, i.e.,
within this family of policies one can achieve any performance vector in the achievable region of the
non-preemptive M/G/1 queue.
The relative priority model can have application in various domains, in particular in ATM networks [3],
telecommunication networks [6], or genetic networks, where molecules are analogous to customers, the
enzyme is analogous to the server and protein species correspond to classes, see [18]. In this paper we
do not focus on any application in particular. Instead, our goal is to provide a thorough analysis in
order to obtain insights into the performance of the relative priority model that could potentially be
applied to different contexts. We also believe that our methodology can be of independent interest in
the study of other queueing networks.
A special case of the model under study is when the intra-class scheduling discipline is uniform
random, that is, within a class a customer is selected uniformly at random. This model was proposed
in [11] and it is referred to as discriminatory-random-order-of-service (DROS). In recent years several
interesting studies have been published on DROS, [12, 13, 14]. Expressions for the mean waiting time
of a customer given its class have been obtained in [12]. In [13, 14] the authors derive differential
equations that the transform of the joint queue lengths and the waiting time in steady-state must
satisfy, respectively, and this allows the authors to find the moments of the queue lengths as a solution
of linear equations.
In the single class case, DROS reduces to the well-studied random-order-of-service (ROS) discipline.
Classical papers on ROS are for example [16, 17, 19]. The Laplace transform for the waiting time
distribution was obtained in [16]. In [16, 17, 21], ROS is studied in a heavy-traffic setting and for
service requirements having finite variance it was shown that (i) the scaled queue length converges to
an exponential distribution, and (ii) the scaled waiting time is equal in distribution to the product of
two independent exponential random variables. More recently, the authors of [7] obtained the waiting
time distribution in heavy traffic for certain service requirements having infinite variance. In addition,
waiting time tail asymptotics have been obtained in [7]. In [5] the authors derive the relationship
between the waiting time under ROS and the sojourn time under the processor-sharing discipline.
In the present study, we establish a state-space collapse for the scaled queue length vector in the heavy-
traffic regime for a multi-class M/G/1 queue with relative priorities and non-preemptive services,
that is, in the limit the scaled queue length vector is distributed as the product of an exponentially
distributed random variable and a deterministic vector. We note that a similar state-space collapse
result was observed in [20] for the discriminatory processor sharing model. The result shows that in
the limit, the queue length vector is the product of an exponentially distributed random variable and
a deterministic vector. In particular, this allows to show that the scaled number of customers in the
system reduces as classes with higher value of ck/E[Bk] obtain a relatively larger weight, where ck is
the cost associated to class k, and E[Bk] is the mean service requirement of a class-k customer. This
can be seen as an extension of the optimality result of the cµ-rule [10], the strict priority discipline
that gives priority in decreasing order of ck/E[Bk].
For DROS, i.e., under the additional assumption that the intra-class discipline is uniform random we
study in addition the waiting time in the heavy-traffic setting. Using the state-space collapse result,
we obtain the distribution of the waiting time for a customer of a given class in heavy traffic and
prove that it is distributed as the product of two exponentially distributed random variables. This
generalizes [17] where this result was shown for the single-class ROS queue. Moreover, we also find the
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value of the weights that minimizes the m-th moment of the waiting time for a customer of arbitrary
class.
Finally, we simulate a system with two different classes of customers under a DROS discipline and
depict the queue length distribution and the first and second moments of the queue length and the
waiting time in order to evaluate the analytical results outside the heavy-traffic regime.
We note that in this paper we consider the heavy-traffic limit of the steady-state metrics. In the
literature there are state-space results available for the transient queue length processes, that is,
when the heavy-traffic limit is directly taken of the queue length processes. See for example [8] for
the heavy-traffic analysis of a multi-class system where all classes receive simultaneously service. In
general, the heavy-traffic and steady-state limits cannot be interchanged, which explains the interest
of our approach. Another important difference is that our approach allows to investigate the waiting
time in the system, a metric that does not have a clear counterpart in the “process” world.
The paper is organized as follows. In Section 2 the model is introduced and the heavy-traffic scaling is
defined. In Section 3 and 4 the distribution of the scaled queue length vector at departure epochs and
arbitrary epochs are presented, respectively. In Section 5 the distribution of the scaled waiting time
of a given customer is presented. In Section 6 it is shown how the results presented in the previous
sections can be used to optimize the scaled holding cost and the moments of the scaled waiting time
of an arbitrary customer. In Section 7 we present our numerical results.
An extended abstract version of this paper appeared in [2].

2 Model description

We consider a multi-class single-server queue withK classes of customers. Class-k customers, k = 1, . . . ,K,
arrive according to independent Poisson processes with rate λk > 0. We denote the overall arrival rate
by λ =

∑K
k=1 λk. We assume that class-k customers have i.i.d. generally distributed service require-

ments Bk, with distribution function Bk(x) and Laplace-Stieltjes transform B∗k(s) =
∫∞
0

e−sxdBk(x),

and we define B∗
′

k (s) =
dB∗k(s)

ds . We assume E[B2
k] < ∞, for all k. The traffic intensity for class-k

customers is ρk = λkE[Bk] and

ρ :=

K∑
k=1

ρk =

K∑
k=1

λkE[Bk] = λ

K∑
k=1

αkE[Bk],

denotes the total traffic intensity, where αk = λk/λ denotes the probability that an arrival is of class k.
Service is non-preemptive and upon service completion, the probability that the next customer to be
served is of class k is given as in (1). Once a class is chosen to be served, an intra-class scheduling
discipline determines which customer in this class will be served. We assume the intra-class discipline
to be non-preemptive and not to make any use of information on the actual service requirements of
the customers.
We investigate the queue when it is near saturation, i.e., ρ ↑ 1, which is commonly referred to as the
heavy-traffic regime. This regime can be obtained by letting

λ ↑ λ̂ :=
1∑K

k=1 αkE[Bk]
, (2)

since then ρ = λ
∑K
k=1 αkE[Bk] ↑ 1. When passing to the heavy-traffic regime we keep the fraction of

class-k arrivals, αk, fixed and we define λ̂k := αkλ̂.
We denote the steady-state number of class-k customers in the system at departure epochs by Qk and
at arbitrary epochs by Nk. We denote the waiting time of an arbitrary class-k customer by Wk. We
note that, throughout the paper, we do not explicitly reflect the dependence of the random variables
on the traffic load ρ, in order to keep notation compact. In Section 3, Section 4 and Section 5 we will
analyze Qk, Nk and Wk, respectively, in the heavy-traffic setting.

3 Queue length at departure epochs

In this section we present the state-space collapse result for the steady-state queue length distribution
at departure epochs. The next proposition states the main result of this section and shows that in
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the limit, the queue length vector is the product of an exponentially distributed random variable and
a deterministic vector. The proof is provided in Section 3.2.

Proposition 3.1. When scaled by 1 − ρ, the queue length vector at departure epochs has a proper
limiting distribution as (λ1, . . . , λK)→ (λ̂1, . . . , λ̂K), such that as ρ ↑ 1,

(1− ρ)(Q1, . . . , QK)
d→ (Q̂1, ..., Q̂K)

d
= (

λ̂1
p1
, . . . ,

λ̂K
pK

) · Y,

where
d→ denotes convergence in distribution and Y is some one-dimensional random variable.

In Remark 2 of Section 4 we will show that, in fact, Y is exponentially distributed. To show this we
require additional results presented in Section 4, and thus we refer the reader to Remark 2 for more
details.
Before focusing on the heavy-traffic regime, we will introduce a system of equations that is satisfied by
the probability generating function of the queue length distribution at departure epochs, as obtained
by Kim et al, see [14]. Define

π(q1, . . . , qK) := P
(
(Q1, . . . , QK) = (q1, . . . , qK)

)
,

and let

p(~z) = E[zQ1

1 · · · z
QK
K ] =

∞∑
q1=0

· · ·
∞∑

qK=0

zq11 . . . zqKK π(~q)

be its joint probability generating function. We define

r(~z) := E

[
zQ1

1 · . . . · z
QK
K∑K

k=1Qkpk
· 1(

∑K
k=1Qk>0)

]
=

∑
(q1,...,qK)6=(0,...,0)

π(~q)

q1p1 + . . .+ qKpK
zq11 . . . zqKK .

In [14] the distribution of the queue length was studied assuming that the intra-class scheduling is
uniform random. However, since the service discipline is non-preemptive, non-anticipating and all
class-k customers in the queue are stochastically equivalent, the distribution of the queue length
vector does not depend on the particular choice of the intra-class policy. Hence, for any arbitrary
work-conserving intra-class policy we have the following result from [14].

Theorem 3.2. [14, Theorem 1 and 2] (a) The probability generating function p(z1, . . . , zK) of the
joint stationary queue lengths at departure epochs satisfies

p(z1, . . . , zK) = 1− ρ+

K∑
i=1

pizi
∂

∂zi
r(z1, . . . , zK). (3)

(b) The function r(z1, . . . , zK) satisfies

K∑
i=1

pi

zi −B∗i (λ−
K∑
j=1

λjzj)

 ∂

∂zi
r(z1, . . . , zK) = (ρ− 1)

1−
K∑
i=1

λi
λ
B∗i (λ−

K∑
j=1

λjzj)

 . (4)

In Section 3.1 we will show that Equations (3) and (4) simplify under the heavy-traffic scaling, which
we will use in Section 3.2 to prove Proposition 3.1.

3.1 Heavy-traffic scaling

In this section we present three lemmas needed for the proof of Proposition 3.1. In the first lemma
we show that the scaled queue length at departure epochs is tight. The proof may be found in
Appendix A.

Lemma 3.3. The random vector (1 − ρ)(Q1, . . . , QK) is tight for ρ close enough to 1, that is, for
all ε there is a ρ̄ ∈ (0, 1) and M > 0 such that P((1− ρ)Qk ≥ M) < ε, for all k = 1, ...K, and ρ > ρ̄.
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It will be convenient to use the change of variables zi = e−si with si > 0, i = 1, . . . ,K. Denote
~s = (s1, . . . , sK) and e−(1−ρ)~s = (e−(1−ρ)s1 , . . . , e−(1−ρ)sK ). If

lim
ρ↑1

p(e−(1−ρ)~s) = lim
ρ↑1

E[e−(1−ρ)s1Q1 · · · e−(1−ρ)sKQK ] (5)

exists, then there is a (possibly defective) random vector (Q̂1, Q̂2, . . . , Q̂K) such that (1−ρ)(Q1, Q2, . . . , QK)
converges in distribution to (Q̂1, Q̂2, . . . , Q̂K), and the distribution of (Q̂1, Q̂2, . . . , Q̂K) is uniquely
determined by the limit in (5) (cf.the Continuity theorem, see Feller (1971) [9]). For now, we assume
that the limit exists; we come back to this assumption in the last part of the proof of Proposition 3.1.
Below we give two lemmas that describe properties of limρ↑1 p(e

−(1−ρ)~s). In particular, in Lemma 3.5
we obtain a partial differential equation which will be the key element in the proof of Proposition 3.1.
In order to describe the behaviour of the generating function, we define

r̂(~s) = E

[
1− e−s1Q̂1 · · · e−sKQ̂K∑K

k=1 Q̂kpk
1(

∑K
k=1 Q̂k>0)

]
. (6)

The “1” in the numerator is to ensure that the expression between brackets remains bounded when
the Q̂j ’s are all near zero.

Lemma 3.4. If limρ↑1 p(e
−(1−ρ)~s) exists, then it satisfies

lim
ρ↑1

p(e−(1−ρ)~s) =

K∑
i=1

pi
∂r̂(~s)

∂si
. (7)

Proof: From (3) we have

lim
ρ↑1

p(e−(1−ρ)~s) = lim
ρ↑1

K∑
i=1

pi
∂r(~z)

∂zi

∣∣∣
~z=e−(1−ρ)~s

. (8)

By definition of r(~z) we can write

lim
ρ↑1

∂r(~z)

∂zi

∣∣∣
~z=e−(1−ρ)~s

= lim
ρ↑1

∂E
[
z
Q1
1 ·...·z

QK
K∑K

k=1Qkpk
· 1(

∑K
k=1Qk>0)

]
∂zi

∣∣∣∣∣
~z=e−(1−ρ)~s

= lim
ρ↑1

E

[
Qi∑K

k=1Qkpk
· e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sKQK

e−(1−ρ)si
· 1(

∑K
k=1Qk>0)

]

= E

[
Q̂i∑K

k=1 Q̂kpk
· e−s1Q̂1 · . . . · e−sKQ̂K · 1(

∑K
k=1 Q̂k>0)

]

=
∂r̂(~s)

∂si
. (9)

In the third step we used that Qi∑K
k=1Qkpk

·e−(1−ρ)s1Q1 ·. . .·e−(1−ρ)sKQK ·1(
∑K
k=1Qk>0) is upper bounded

by 1
minj(pj)

, and, cf. the continuous mapping theorem, converges in distribution to Q̂i∑K
k=1 Q̂kpk

·e−s1Q̂1 ·

. . . · e−sKQ̂K · 1(
∑K
k=1 Q̂k>0). From (8) and (9) we obtain (7). �

In the following lemma we show that the partial differential equation as given in (4) simplifies consid-
erably in the heavy-traffic regime.

Lemma 3.5. If limρ↑1 p(e
−(1−ρ)~s) exists, then the function r̂(~s) satisfies the following partial differ-

ential equation:

0 =

K∑
i=1

Fi(~s)
∂r̂(~s)

∂si
= ~F (~s) · 5r̂(~s), ∀ ~s ≥ ~0,
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where ~F (~s) = (F1(~s), . . . , FK(~s)), and

Fi(~s) = pi(−si + E[Bi]

K∑
k=1

λ̂ksk) i = 1, . . . ,K, (10)

with λ̂j = αj λ̂ and λ̂ as defined in (2).

Proof: Taking ~z equal to e−(1−ρ)~s in (4), dividing both sides by (1− ρ) and taking the limit of ρ ↑ 1,
we obtain

lim
ρ↑1

∑K
i=1 pi(e

−(1−ρ)si −B∗i (λ−
∑K
j=1 λje

−(1−ρ)sj ))

1− ρ
∂

∂zi
r(z1, . . . , zK)

∣∣∣
zi=e−(1−ρ)si

= lim
ρ↑1
−(1−

K∑
i=1

λi
λ
B∗i (λ−

K∑
j=1

λje
−(1−ρ)sj )) = 0. (11)

where the last equality follows by noting that B∗i (0) = 1, ∀i. Making the change of variable xi = e−si

we obtain

lim
ρ↑1

∑K
i=1 pi(e

−(1−ρ)si −B∗i (λ−
∑K
j=1 λje

−(1−ρ)sj ))

1− ρ
∂

∂zi
r(z1, . . . , zK)

∣∣∣
zi=e−(1−ρ)si

= lim
ρ↑1

∑K
i=1 pi(x

1−ρ
i −B∗i (λ−

∑K
j=1 λjx

1−ρ
j ))

1− ρ
∂

∂zi
r(z1, . . . , zK)

∣∣∣
zi=x

1−ρ
i

= lim
ρ↑1

K∑
i=1

pi(x
1−ρ
i lnxi

+

 1

E(B)
−

 1

E(B)

K∑
j=1

αjx
1−ρ
j −

K∑
j=1

λjx
1−ρ
j lnxj

 (B∗
′

i (λ−
K∑
j=1

λjx
1−ρ
j )))

∂

∂zi
r(z1, . . . , zK)

∣∣∣
zi=x

1−ρ
i

=

K∑
i=1

pi(−si + E(Bi)

K∑
j=1

λ̂jsj)
∂r̂(~s)

∂si
,

where in the second step we used l’Hopital’s rule and in the third step we used (9) and that B∗
′

i (0) :=
dB∗i (s)

ds

∣∣∣
s=0

= −E[Bi] for all i.

Together with (11), we then obtain that

K∑
i=1

pi(−si + E(Bi)

K∑
j=1

λ̂jsj)
∂r̂(~s)

∂si
= 0.

�

3.2 Proof of Proposition 3.1

This subsection contains the proof of Proposition 3.1. The proof is based on the fact that the function
r̂(~s) satisfies the partial differential equation as described in Lemma 3.5. From this partial differential
equation the following property for the function r̂(·) can be derived:

Lemma 3.6. If limρ↑1 p(e
−(1−ρ)~s) exists, then the function r̂(s) is constant on the (K−1)-dimensional

hyperplane

Hc := {~s ≥ ~0:

K∑
k=1

λ̂k
pk
sk = c}, c > 0.
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The proof of Lemma 3.6 may be found in Appendix B. We can now give the proof of Proposition 3.1.

Proof of Proposition 3.1: Assume limρ↑1 p(e
−(1−ρ)~s) exists. We come back to this assumption

at the end of the proof. As r̂(~s) is constant on Hc, see Lemma 3.6, r̂(·) depends on ~s only through∑K
k=1

λ̂k
pk
sk, so there exists a function r̂∗ : R −→ R such that r̂(~s) = r̂∗(

∑K
k=1

λk
pk
sk). From Lemma 3.4

and ∂r̂(s)
∂si

= λ̂i
pi

dr̂∗(v)
dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

we obtain

E[e−
∑K
i=1 siQ̂i ] = lim

ρ→1
p(e−(1−ρ)~s) =

K∑
i=1

pi
∂r̂(s)

∂si
=

K∑
i=1

λ̂i
dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

= λ̂
dr̂∗(v)

dv
|
v=

∑K
k=1

λ̂k
pk
sk
,

(12)

which again depends on ~s only through
∑K
k=1

λ̂k
pk
sk. Equivalently, we can write

E
[
e−

∑K
i=1 siQ̂i

]
= E

[
e
− p1
λ̂1
Q̂1

∑K
i=1

λ̂i
pi
si−s2 λ̂2p2 (

p2
λ̂2
Q̂2− p1

λ̂1
Q̂1)−...−sK

λ̂K
pK

(
pK
λ̂K

Q̂K− p1
λ̂1
Q̂1)
]
.

Since (by (12)) this only depends on
∑K
k=1

λ̂k
pk
sk, it implies pi

λ̂i
Q̂i =

pj

λ̂j
Q̂j almost surely for all i, j,

and we obtain that

(Q̂1, ..., Q̂K) = (
λ̂1
p1
,
λ̂2
p2
, ...,

λ̂K
pK

)
p1

λ̂1
Q̂1,

almost surely. Writing Y
d
= p1

λ̂1
Q̂1 we get

(Q̂1, ..., Q̂K)
d
= (

λ̂1
p1
,
λ̂2
p2
, ...,

λ̂K
pK

)Y. (13)

Recall that we assumed that, for the sequence ρ, limρ↑1 p(e
−(1−ρ)~s) exists, thereby showing that there

is a unique limit (13). Since (1−ρ)(Q1, . . . , QK) is tight, see Lemma 3.3, and since for any converging
subsequence of ρ we obtain the same limit, we obtain that the limit itself exists (see corollary on
page 59, Billingsley 1999). This concludes the proof. �

4 Queue length at arbitrary epochs

In this section we focus on the number of customers in the system at arbitrary epochs, (N1, . . . , NK).
The following result shows that in the limit the queue length vector at arbitrary epochs is the product
of an exponentially distributed random variable and a deterministic vector. We refer to the latter as
a state-space collapse. The proof is presented in Section 4.2

Remark 1. We note that a similar state-space collapse result was observed in [20] (Proposition 2.1)
for the discriminatory processor sharing model. In fact, the proof technique is similar to that of [20].

Proposition 4.1. When scaled by 1 − ρ, the queue length vector at arbitrary epochs has a proper
limiting distribution as (λ1, . . . , λK)→ (λ̂1, . . . , λ̂K), such that ρ ↑ 1,

(1− ρ)(N1, . . . , NK)
d→ (N̂1, ..., N̂K)

d
= (

λ̂1
p1
,
λ̂2
p2
, ...,

λ̂K
pK

)X, (14)

where
d→ denotes convergence in distribution and X is an exponentially distributed random variable

with mean 1/ν(~p), where

ν(~p) :=
2
∑K
k=1

λ̂k
pk

E[Bk]∑K
k=1 λ̂kE[B2

k]
. (15)
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Before focusing on the heavy-traffic regime, we will introduce a system of equations that is satisfied
by the probability generating function of the queue length distribution, as obtained by Kim et al,
see [14]. Let ψ(z1, ..., zK) be the joint probability generating function of (N1, . . . , NK), i.e,

ψ(z1, ..., zK) := E[zN1
1 · · · z

NK
K ].

As mentioned in Section 3, the distribution of the queue length vector is independent of the particular
choice of the intra-class scheduling discipline. We can therefore use the following result from [14].

Theorem 4.2. [14, Theorem 3 and Theorem 4] The joint probability generating function ψ(z1, ..., zK)
of the joint stationary queue lengths at arbitrary time epochs is given by

ψ(z1, ..., zK) = 1− ρ+

K∑
i=1

λiziφi(z1, ..., zK)
1−B∗i (λ−

∑K
k=1 λkzk)

λ−
∑K
k=1 λkzk

, (16)

where φi(z1, . . . , zK) (representing the joint probability generating function of the stationary queue
lengths excluding the customer who has already started service, at service initiation epochs of class-i
customers) is given by

φi(z1, ...zK) = 1− ρ+
λpi
λi

∂

∂zi
r(z1, ...zK). (17)

In Section 4.1 we will show that Equation (16) simplifies under the heavy-traffic scaling, and in
Section 4.2 we will use this to characterize the distribution of the scaled queue length vector at
arbitrary epochs, that is, to prove Proposition 4.1.

4.1 Heavy-traffic scaling

In the next lemma we characterize Equation (16) in heavy traffic.

Lemma 4.3. The limit of ψ(e−(1−ρ)~s) as ρ ↑ 1 exists and satisfies

lim
ρ↑1

ψ(e−(1−ρ)~s) =

K∑
i=1

pi
∂r̂(s)

∂si
= λ̂

dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk
,

with r̂∗(·) some function r̂∗ : R −→ R.

Proof: Since (1− ρ)(Q1, . . . , QK) converges in distribution to (Q̂1, . . . , Q̂K), we know that the limit

of p(e−(1−ρ)~s) exists, and hence, by Equation (8), the limit of ∂r(~z)
∂zi

∣∣∣
~z=e−(1−ρ)~s

exists. It now follows

directly from (17) that limρ↑1 φi(e
−(1−ρ)~s) exists and it is given by λ̂pi

λ̂i

∂r̂(s)
∂si

.

As we have seen in Lemma 3.6, r̂(~s) is constant on Hc. Therefore, it depends on ~s only through∑K
k=1

λ̂k
pk
sk, so there exists a function r̂∗ : R −→ R such that r̂(~s) = r̂∗(

∑K
k=1

λk
pk
sk) and ∂r̂(s)

∂si
=

λ̂i
pi

dr̂∗(v)
dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

.

This, together with (16) gives that

lim
ρ↑1

ψ(e−(1−ρ)~s) = lim
ρ↑1

(
1− ρ+

K∑
i=1

λie
−(1−ρ)siφi(e

−(1−ρ)~s)
1−B∗i (λ−

∑K
k=1 λke−(1−ρ)sk)

λ−
∑K
k=1 λke−(1−ρ)sk

)

=

K∑
i=1

λ̂i
λ̂pi

λ̂i

∂r̂(~s)

∂si
(−B∗

′

i (0)) =

K∑
i=1

λ̂λ̂iE[Bi]
dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

= λ̂
dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

K∑
i=1

λ̂iE[Bi] = λ̂
dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk
,

where in the first step we used l’Hopital’s rule and B∗
′

i (0) :=
dB∗i (s)

ds

∣∣∣
s=0

= −E[Bi] for all i. �

In particular, Lemma 4.3 implies that there exists a vector (N̂1, . . . , N̂K) such that the scaled queue
length vector at arbitrary epochs converges in distribution to it.
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4.2 Proof of Proposition 4.1

This subsection contains the proof of Proposition 4.1. It consists of two steps. Firstly, we show that
the queue length vector is the product of a random variable and a deterministic vector, and secondly,
we determine the distribution of the random variable X, concluding that it is exponentially distributed
with mean as given in (15).

Proof of Proposition 4.1: Since limρ↑1 ψ(e−(1−ρ)~s) exists, see Lemma 4.3 we know there exists a

random vector (N̂1, . . . , N̂K) such that

E
[
e−

∑K
k=1 skN̂k

]
= lim

ρ↑1
ψ(e−(1−ρ)~s) = λ̂

dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk
. (18)

Using the same steps as in the proof of Proposition 3.1 we obtain that

(N̂1, ..., N̂K)
d
= (

λ̂1
p1
,
λ̂2
p2
, ...,

λ̂K
pK

)X, (19)

with X distributed as p1
λ̂1
N̂1.

In order to determine the distribution of X, we consider the total workload in the queue at arbitrary
epochs, denoted by V arb. We first note that the total workload at the system is independent of the
work-conserving scheduling discipline being used. In [15], Kingman considered a FCFS queue and
showed that the scaled total workload in a M/G/1 queue has a proper distribution as ρ ↑ 1:

(1− ρ)V arb
d→ V̂ arb,

where V̂ arb is exponentially distributed with mean

E[V̂ arb] =

∑K
k=1 λ̂kE[B2

k]

2
. (20)

Under the discipline DROS, the total workload at arbitrary epochs can equivalently be represented as

V arb =

K∑
k=1

Nk−1∑
h=1

Bk,h +

K∑
k=1

B̃k,

with Bk,h the service requirement of the h-th class-k customer and B̃k the remaining service require-
ment of the first class-k customer in line. On one hand, note that the service requirements of all class-k

customers are i.i.d., more precisely, Bk,h
d
= Bk for all h. On the other hand, B̃k is distributed as Bk if

the Nk-th class-k customer is not being served, and otherwise is given by the forward-recurrence time
of Bk. Hence, for the scaled workload at arbitrary epochs we can write

E
[
e−sV̂

arb]
= lim

ρ↑1
E
[
e−(1−ρ)sV

arb]
= lim

ρ↑1
E
[
e−(1−ρ)s(

∑K
k=1

∑Nk−1

h=1 Bk,h+
∑K
k=1 B̃k)

]
= lim

ρ↑1
E
[
e
−s

∑K
k=1(1−ρ)(Nk−1)

∑Nk−1
h=1

Bk,h
(Nk−1) e−(1−ρ)s

∑K
k=1 B̃k

]
= E

[
e−s

∑K
k=1 E[Bk]N̂k

]
, (21)

where in the last step we used that e
−s

∑K
k=1(1−ρ)(Nk−1)

∑Nk−1
h=1

Bk,h
(Nk−1) is bounded by 1 and converges in

distribution to e−s
∑K
k=1 E[Bk]N̂k . From (21) we obtain that

V̂ arb
d
=

K∑
k=1

E[Bk]N̂k, (22)
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and together with (19) this gives

V̂ arb
d
= X

K∑
k=1

λ̂k
pk

E[Bk]. (23)

Since V̂ arb is exponentially distributed, the same is true for X. Hence, taking expectations in (23)
and applying (20) we obtain

E[X] =

∑K
k=1 λ̂kE[B2

k]

2
∑K
k=1

λ̂k
pk

E[Bk]
,

which concludes the proof of Proposition 4.1. �

Remark 2. In this remark we show that the two random variables that characterize the heavy traffic
at departure and arbitrary epochs, Y and X, respectively, are equal in distribution. Let us consider the
arbitrary arrival of a class-k customer. By the PASTA property, the number of class-k customers in
the system at this time is equal to Nk. The number of customers in the system after the first departure
epoch is distributed as (Q1, . . . , QK). The number of customers that arrive in the time it takes for the
customer in service to depart is of the order ρ, since it is distributed as the number of arrivals in a
residual service requirement. It then follows that

Qk
d
= Nk + O(ρ).

Multiplying the above equation by (1 − ρ) and taking the limit ρ ↑ 1 we get that Q̂k
d
= N̂k and hence

X
d
= Y .

5 Waiting time

In this section we investigate the waiting time in the heavy-traffic setting. We focus on the random
intra-class scheduling discipline, that is, we consider the specific model DROS.
Let Wl denote a generic random variable for the waiting time of an arbitrary class-l customer. We refer
to this customer as the tagged class-l customer. Let Q∗k denote the number of class-k customers in the
system (excluding the tagged customer) immediately after service initiation of the tagged customer
in case the tagged customer arrives while the server is busy, i.e., Wl > 0. We now define the following
joint transform:

Tl(u, z1, . . . , zK) := E[e−uWlz
Q∗1
1 · · · z

Q∗K
K 1{Wl>0}]. (24)

Note that the transform of the waiting time Wl of the tagged class-l customer is given by

E[e−uWl ] = E[e−u·01{Wl=0} + e−u·Wl1{Wl>0}] = 1− ρ+ Tl(u,~0), (25)

since 1−ρ is the probability that the tagged class-l customer arrives in an idle period. For the random
intra-class scheduling discipline we have from [14] the following result for the transform Tl(u, ~z).

Theorem 5.1. [14, Theorem 8] For the random intra-class scheduling discipline, the joint transform
Tl(u, z1, . . . , zK) satisfies

K∑
i=1

pi
pl

(
∂

∂zi
Tl(u, z1, . . . , zK))(zi−B∗i (u+λ−

K∑
k=1

λkzk)) +Tl(u, z1, . . . , zK) = W 1
l (u, z1, . . . , zK), (26)

where W 1
l (u, z1, . . . , zK) satisfies

W 1
l (u, z1, . . . , zK)

=

K∑
i=1

((1− ρ)λi + λpi
∂

∂zi
r(z1, . . . , zK))

B∗i (λ−
K∑
k=1

λkzk)−B∗i (u+ λ−
K∑
k=1

λkzk)

u
. (27)

In order to study the scaled waiting time, we will need to assume throughout this section that (1−ρ)Q∗k
is uniform integrable, for all k. As we mention in Section 7.2, numerics show arguments to believe
that this is indeed satisfied.
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Assumption 1. For a random intra-class scheduling discipline, the family of random variables {(1−
ρ)Q∗k} is uniform integrable for all k.

We can now state our result that shows that in the limit the waiting time of a tagged class-l customer,
Wl, is the product of two exponentially distributed independent random variables.

Proposition 5.2. Let Assumption 1 be satisfied and consider the random intra-class scheduling dis-
cipline (i.e., DROS). Then, as ρ ↑ 1,

(1− ρ)(Wl, Q
∗
1, . . . , Q

∗
K)

d→ (Ŵl, Q̂
∗
1, ..., Q̂

∗
K)

d
= (Zl,

λ̂1
p1
,
λ̂2
p2
, ...,

λ̂K
pK

)X,

where
d→ denotes convergence in distribution and X and Zl are exponentially distributed independent

random variables with E[X] = 1/ν(~p) and E[Zl] = 1/pl.

Remark 3. Proposition 5.2 is a generalization of Kingman’s result, see [17], where the asymptotic
waiting time distribution is obtained for the single-class DROS queue (i.e., ROS).

In order to prove Proposition 5.2, we will need the following three technical lemmas. The first lemma
states that the scaled vector (Q∗1, . . . , Q

∗
K) has a proper limit.

Lemma 5.3. When scaled by 1 − ρ, the queue length vector (Q∗1, . . . , Q
∗
K) has a proper limiting

distribution as (λ1, . . . , λK)→ (λ̂1, . . . , λ̂K), such that as ρ ↑ 1,

(1− ρ)(Q∗1, . . . , Q
∗
K)

d→ (Q̂∗1, ..., Q̂
∗
K)

d
= (

λ̂1
p1
, . . . ,

λ̂K
pK

) ·X,

where
d→ denotes convergence in distribution and X is an exponentially distributed random variable

with mean 1/ν(~p).

Proof: Denote by Q̃i the class-i queue length at a service initiation epoch of a tagged class-i customers
(excluding the tagged customer). By definition the following equality is satisfied:

φl(e
−s1 , . . . , e−sK ) = E[e−

∑K
i=1 siQ̃i ]

= E
[
e−

∑K
i=1 siQ̃i1{Wi=0}

]
+ E

[
e−

∑K
i=1 siQ̃i1{Wi>0}

]
= 1− ρ+ Tl(0, e

−s1 , . . . , e−sK ).

Hence, from Equation (17) we obtain that Tl(0, e
−s1 , . . . , e−sK ) = λpi

λi
∂
∂zi
r(z1, ...zK)|~z=e−~s . We have

limρ↑1
∂
∂zi
r(z1, ...zK)|~z=e−(1−ρ)~s = λ̂i

pi

dr̂∗(v)
dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

(see proof of Lemma 4.3), hence

lim
ρ↑1

Tl(0, e
−s1 , . . . , e−sK ) = λ̂

dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk
. (28)

From (18) we obtain E(e−
∑K
k=1 skN̂k) = λ̂dr̂∗(v)

dv

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk

. Together with Equation (28) and Propo-

sition 4.1 this concludes the proof. �

The following technical lemma characterizes the value that the function W 1
l (u, z1, . . . , zK), as defined

in (27), takes in heavy traffic.

Lemma 5.4. We consider the random intra-class scheduling discipline (i.e., DROS). Then, as ρ ↑ 1,
the limit W 1

l ((1− ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK ) exists and satisfies

lim
ρ↑1

W 1
l ((1− ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK ) =

ν(~p)

ν(~p) +
K∑
k=1

sk
λ̂k
pk

,

with 1/ν(~p) as given in (15).

11



The result of Lemma 5.4 implies that in heavy traffic the function limρ↑1W
1
l ((1−ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK )

depends on s only through a linear combination of its components. The proof of Lemma 5.4 may be
found in Appendix C. In the following lemma we show that the scaled waiting time of a class-l customer
has a proper limit.

Lemma 5.5. Let Assumption 1 be satisfied and consider the random intra-class scheduling discipline
(i.e., DROS). Then, there exists a Ŵl such that (1− ρ)Wl converges in distribution to Ŵl as ρ ↑ 1.

Proof: By definition, the following two equalities are satisfied:

Tl(u, 1, . . . , 1) = E[e−uWl1{Wl>0}], (29)

and
∂

∂zi
Tl(u, z1, . . . , zK)

∣∣∣
~z=1

= E[Q∗i e
−uWl1{Wl>0}]. (30)

Now, considering Equation (26) with ~z = 1 in heavy traffic we get:

lim
ρ↑1

W 1
l ((1− ρ)u, 1, . . . , 1) (31)

= lim
ρ↑1

K∑
i=1

pi
pl

(1− ρ)
∂

∂zi
Tl((1− ρ)u, z1, . . . , zK)

∣∣∣
~z=1

1−B∗i ((1− ρ)u)

(1− ρ)

+ lim
ρ↑1

Tl((1− ρ)u, 1, . . . , 1)

= lim
ρ↑1

K∑
i=1

pi
pl
uE[Bi]E

[
(1− ρ)Q∗i e

−(1−ρ)uWl1{Wl>0}
]

+ lim
ρ↑1

E
[
e−(1−ρ)uWl1{Wl>0}

]
= lim

ρ↑1
E
[( K∑

i=1

pi
pl
uE[Bi](1− ρ)Q∗i + 1

)
e−(1−ρ)uWl1{Wl>0}

]

= E
[

lim
ρ↑1

( K∑
i=1

pi
pl
uE[Bi](1− ρ)Q∗i + 1

)
e−(1−ρ)uWl1{Wl>0}

]
, (32)

where in the second step we used (29) and (30) and in the fourth step we used the hypothesis that
(1−ρ)Q∗i is uniformly integrable (Assumption 1), [4, Theorem 3.5]. Note that W 1

l ((1−ρ)u, e−(1−ρ)~s),
which is defined in Equation (27), has a proper limit when ρ ↑ 1, see Lemma 5.4. Since (31) con-

verges, the same must hold for (32). Besides,
K∑
i=1

pi
pl
uE[Bi](1 − ρ)Q∗i converges in distribution to

K∑
i=1

pi
pl
uE[Bi]

λ̂k
pk
X (see Lemma 5.3) and therefore, we conclude that the waiting time of an arbitrary

class-l customer in heavy traffic converges in distribution to some random variable Ŵl. �

From Lemma 5.4, we note that (32) should in fact be independent of u. It can be checked that in case

(1− ρ)(Wl, Q
∗
1, . . . , Q

∗
K) is distributed as X(Zl,

λ̂1

p1
, . . . , λ̂KpK ), as we want to show, see Proposition 5.2,

this is indeed satisfied.
We can now prove Proposition 5.2 which consists in finding Tl(·) by solving Equation (26) after the
heavy-traffic scaling.

Proof of Proposition 5.2: We know by Lemma 5.5 that there is a random variable Ŵl such that
(1− ρ)Wl converges in distribution to Ŵl. Hence, we can define the function T̂l(u,~s) as follows:

T̂l(u,~s) := E[e−uŴle−
∑K
i=1 siQ̂

∗
i ]

= lim
ρ↑1

E[e−(1−ρ)uWle−(1−ρ)s1Q
∗
1 . . . e−(1−ρ)sKQ

∗
K ]

= lim
ρ↑1

Tl((1− ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK ).
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We will evaluate Equation (26) in the point (u, ~z) = (u(1 − ρ), e−(1−ρ)~s) as ρ ↑ 1. We first focus on
the first term. We have

lim
ρ↑1

(1− ρ)
∂

∂zi
Tl(u, ~z)

∣∣∣
u=(1−ρ)u,~z=e−(1−ρ)~s

= lim
ρ↑1

(1− ρ)E(
Q∗i e

−(1−ρ)uWle−(1−ρ)s1Q
∗
1 · · · e−(1−ρ)si(Q∗i−1) · · · e−(1−ρ)sKQ∗K

e−(1−ρ)si
)

= E[Q̂∗i e
−uŴle−s1Q̂

∗
1 · · · e−sKQ̂

∗
K ] = − ∂

∂si
T̂l(u,~s), (33)

where in the second step we used Assumption 1 and [4, Theorem 3.5].

Moreover, realize that T̂l(u,~s) = E[e−uŴle−
∑K
i=1 siQ̂

∗
i ] depends on ~s = (s1, . . . , sK) only through

y =
K∑
k=1

λ̂k
pk
sk (see Lemma 5.3). Thus, we will write T̂l(u,~s) = T̂l(u, y) and by the chain rule:

∂

∂si
T̂l(u,~s) =

∂

∂si
T̂l(u, y) =

∂

∂y
T̂l(u, y)

∂y

∂si
=
λ̂i
pi

∂

∂y
T̂l(u, y)

∣∣∣
y=

∑K
k=1 sk

λ̂k
pk

. (34)

Then, taking the heavy-traffic limit in Equation (26) and using Equations (33), (34), Lemma 5.4 and

the relation limρ↑1

(e−(1−ρ)si −B∗i ((1− ρ)u+ λ−
K∑
k=1

λke−(1−ρ)sk))

1− ρ
= −si + E[Bi]

(
u+

K∑
k=1

λ̂ksk

)
,

which follows from l’Hopital’s rule, we arrive to the following ordinary differential equation (ODE):

−
K∑
i=1

pi
pl

λ̂i
pi

∂T̂l(u, y)

∂y

∣∣∣
y=

K∑
i=1

si
λ̂i
pi

(−si + E[Bi](u+

K∑
k=1

λ̂ksk)) + T̂l(u, y) =
ν(~p)

ν(~p) + y
.

Since
∑K
i=1 λ̂i

(
−si + E[Bi]

(
u+

K∑
k=1

λ̂ksk

))
= u, the latter can be written as

− u
pl

∂T̂l(u, y)

∂y

∣∣∣
y=

K∑
k=1

sk
λ̂k
pk

+ T̂l(u, y) =
ν(~p)

ν(~p) + y
. (35)

The solution of the ODE (35) is

T̂l(u, y) =
pl
u

e
pl
u y

∫ ∞
y

e−
pl
u x

ν(~p)

ν(~p) + x
dx, (36)

see Appendix D for the details.
Let Zl and X be two exponentially distributed random variables with E[Zl] = 1/η and E[X] = 1/ν(~p).
Then, the Laplace Transform of (Zl ·X, λ1

p1
X, . . . , λKpKX) is given by:

E[e
−uZl·X−s1

λ1
p1
X−...−sK

λK
pK

X
] = E[e

−uZl·X−
∑K
k=1 sk

λk
pk
X

] = E[e−uZl·X−yX ]

= E[E[e−uzlX−yX |zl = Zl]] = E[
ν(~p)

ν(~p) + uZl + y
] =

∫ ∞
0

ηe−ηzl
ν(~p)

ν(~p) + uzl + y
dzl

=
1

u

∫ ∞
ν(~p)+y

ηe−η
x−ν(~p)−y

u
ν(~p)

x
dx =

ν(~p)η

u
eη

ν(~p)+y
u

∫ ∞
ν(~p)+y

e−η
x
u

1

x
dx

=
ν(~p)η

u
eη

ν(~p)+y
u

∫ ∞
η
ν(~p)+y
u

e−l

l
dl. (37)

Making the change of variable z = pl
ν(~p)+x
u in Equation (36) we obtain

T̂l(u, y) = ν(~p)
pl
u

epl
y
u

∫ ∞
y

e−pl
x
u

1

ν(~p) + x
dx = pl

ν(~p)

u
epl

ν(~p)+y
u

∫ ∞
pl
ν(~p)+y
u

e−z
1

z
dz.
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Hence, it coincides with the Laplace Transform of (Zl · X, λ1

p1
X, . . . , λKpKX) obtained in (37) with

pl = η. Since the Laplace transform of a probability distribution is unique, (uniqueness theorem,
[9]), we conclude that (1 − ρ)(Wl, Q

∗
1, . . . , Q

∗
K) converges in distribution to (Zl · X, λ1

p1
X, . . . , λKpKX),

where, as we have previously mentioned, Zl and X are exponentially distributed independent random
variables with E(Zl) = 1/pl and E(X) = 1/ν(~p). �

6 Optimal selection of the weights

In this section we show how the results of Proposition 4.1 and Proposition 5.2 can be used in order to
optimize the performance. In particular, in Section 6.1 we focus on the holding cost and in Section 6.2
we find the weights that minimize the moments of the waiting time of an arbitrary customer.

6.1 Holding Cost

With each class of customers we associate a cost ck ≥ 0, k = 1, ...,K. As performance measure we
take the holding cost

∑K
k=1 ckNk. In this section we will write Nk(~p), N̂k(~p) instead of Nk, N̂k to

emphasize the dependence on the weights ~p := (p1, . . . , pK). From Proposition 4.1 we obtain that the

scaled holding cost, (1 − ρ)
∑K
k=1 ckNk(~p), converges in distribution to an exponentially distributed

random variable with mean

K∑
k=1

ckE[N̂k(~p)] =

∑K
k=1

λ̂k
pk
ck

2
∑K
k=1

λ̂k
pk

E[Bk]

K∑
k=1

λ̂kE[B2
k], (38)

as ρ ↑ 1. Using this expression, we obtain the following monotonicity result in the heavy-traffic regime:
The holding cost decreases “stochastically” as more preference is given to customers with a large value
of ci

E[Bi] . This can be seen as an extension of the cµ-rule for the heavy-traffic setting [10].

Proposition 6.1. Consider two policies with weights (p1, . . . , pK) and (q1, . . . , qK), respectively. Let
ck ≥ 0, k = 1, . . . ,K. Without loss of generality we assume that the classes are ordered such that
c1

E[B1]
≥ c2

E[B2]
≥ . . . ≥ cK

E[BK ] . If pk
pk+1

≤ qk
qk+1

, for all k = 1, . . . ,K − 1, then

lim
ρ↑1

(1− ρ)

K∑
k=1

ckNk(~p) ≥st lim
ρ↑1

(1− ρ)

K∑
k=1

ckNk(~q),

where ≥st denotes the usual stochastic ordering, i.e., X ≥st Y if and only if P(X ≥ z) ≥ P(Y ≥ z)
for all z.

Proof: We have that (1− ρ)
∑K
k=1 ckNk(~p) converges in distribution to an exponentially distributed

random variable with mean as stated in (38). Since exponentially distributed random variables are
stochastically ordered according to their means, it only remains to check that∑K

k=1
ckλ̂k
pk∑K

k=1
λ̂k
pk

E[Bk]
≥

∑K
k=1

ckλ̂k
qk∑K

k=1
λ̂k
qk
E[Bk]

.

This holds since

(

K∑
k=1

ckλ̂k
pk

)(

K∑
k=1

λ̂k
qk

E[Bk]) =
∑

k,i:k 6=i

λ̂kλ̂i(
1

pkqi
ckE[Bi] +

1

piqk
ciE[Bk]) +

K∑
k=1

λ̂2k
1

pkqk
ckE[Bk]

≥
∑

k,i:k 6=i

λ̂kλ̂i(
1

piqk
ckE[Bi] +

1

pkqi
ciE[Bk]) +

K∑
k=1

λ̂2k
1

pkqk
ckE[Bk] = (

K∑
k=1

ckλ̂k
qk

)(

K∑
k=1

λ̂k
pk

E[Bk]).

Here we used that ciE[Bk]( 1
piqk
− 1
pkqi

) ≥ ckE[Bi](
1

piqk
− 1
pkqi

), which follows from the fact that pi
pk
≤ qi

qk
and ci

E[Bi] ≥
ck

E[Bk] , for i ≤ k. �
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6.2 Moments of the waiting time

In this section we will give the optimal values for the weights that minimize the m-th moment of the
limit of the scaled waiting time of a tagged class-k customer, Ŵk. From Proposition 5.2 we know that

Ŵk
d
= X · Zk, (39)

where X and Zk are exponentially distributed independent random variables with E(Zk) = 1/pk and
E(X) = 1/ν(~p). Now taking the expression in (39) and using that X and Zk are independent random
variables we observe that the m-th moment of Ŵk is given by

E[Ŵm
k ] = E[XmZmk ] = E[Xm]E[Zmk ] =

m!

ν(~p)m
m!

pmk
= (m!)2

1

pmk

 ∑K
k=1 λ̂kE[B2

k]

2
∑K
k=1

λ̂k
pk

E[Bk]

m

.

Hence the m-th moment of the waiting time for an arbitrary customer is given by

E[Ŵm] =

K∑
k=1

λ̂k

λ̂
E[Ŵm

k ] = (m!)2

(
K∑
k=1

λ̂k

λ̂pmk

) ∑K
k=1 λ̂kE[B2

k]

2
∑K
k=1

λ̂k
pk

E[Bk]

m

. (40)

In what follows we will write Ŵ (~p) instead of Ŵ to emphasize the dependence on the weights ~p.

Note that E[Ŵ (~p)] = 1
λ

∑K
k=1 E[N̂k(~p)]. Hence, by applying Little’s law to the result obtained in

Proposition 6.1, we obtain the following corollary, which means that the mean waiting time decreases
as more preference is given to customers with a small value of E[Bi], i = 1, . . . ,K.

Corollary 6.2. Without loss of generality we assume that the classes are ordered such that E[B1] ≤ . . . ≤ E[BK ].
If

pj
pj+1

≤ qj
qj+1

, for all j = 1, . . . ,K − 1, then E[Ŵ (~p)] ≥ E[Ŵ (~q)].

Remark 4. The monotonicity result for the waiting time holds in the heavy-traffic setting. In the
case of two classes, K=2, Corollary 6.2 is true for any stable system, i.e., for any value of ρ, not
necessarily close to one. This can be seen as follows. The expression for the mean waiting time for
K=2 is the following:

E[W (~p)] =

2∑
i=1

λi
λ
E[Wi]

=
λ1E[B2

1 ] + λ2E[B2
2 ]

2λ

λ1(1− ρp1) + λ2(1− ρp2)

(1− ρ1 − p2ρ2)(1− ρ2 − p1ρ1)− p1p2ρ1ρ2
, (41)

where the expression of E[Wi], i = 1, 2, was obtained in [14], Equation (38). Without loss of generality
we assume that p1 + p2 = 1. Then, taking the derivative of (41) with respect to p1 we obtain the
monotonicity result as stated in Corollary 6.2 .
Moreover, we have written a code to calculate the mean waiting time as given in [14] for any value of
K, i.e., for any number of classes of customers. We choose the weights such that

pj
pj+1

= 1
r ,∀j. In the

figures we chose exponentially distributed service requirements, however, the monotonicity observed
holds for any service requirement distribution (with the same first moment). The results obtained are
shown in Figure 1 and Figure 2, for K=3 and K=4, respectively, for different values of the load. It
can be seen for these examples that as more priority is given to customers with small mean service
requirement (i.e., as 1

r becomes large), the mean waiting time decreases for any value of the load.

In Corollary 6.2 we considered the first moment of the scaled waiting time. In Proposition 6.3 we will
investigate the m-th moment of the scaled waiting time and find the optimal value for the weights,
which is non-trivial.

Proposition 6.3. The m-th moment of the limit of the scaled waiting time, E[Ŵm(~p)], is minimized
in ~p∗ = (p∗1, . . . , p

∗
K), with

p∗k :=
1/E[Bk]1/m−1∑K
i=1 1/E[Bi]1/m−1

, (42)

for each k ∈ {1, . . . ,K}, m = 2, 3, . . ..
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Figure 1: The mean waiting time for three classes of customers in the system, K=3, under DROS for
the loads ρ = 0.2610, ρ = 0.6083 and ρ = 0.99, respectively. The horizontal axis corresponds to
1
r =

pj
pj+1

, j = 1, . . . ,K − 1.

Figure 2: The mean waiting time for four classes of customers in the system, K=4, under DROS for
the loads ρ = 0.2535, ρ = 0.6304 and ρ = 0.9951, respectively. The horizontal axis corresponds to
1
r =

pj
pj+1

, j = 1, . . . ,K − 1.
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Proof : We need to show that E[Ŵm(p∗)] ≤ E[Ŵm(p)]. This holds if and only if

∑K
k=1 λ̂kE[Bk]m/m−1

λ̂(
∑K
k=1 λ̂kE[Bk]m/m−1)m

·
(∑K

j=1 λ̂jE[B2
j ]

2

)m
≤

∑K
k=1

λ̂k
λ̂pmk

(
∑K
k=1

λ̂k
pk

E[Bk])m
·
(∑K

k=1 λ̂kE[B2
k]

2

)m
,

which follows by definition. This is equivalent to

1

(
∑K
k=1 λ̂kE[Bk]m/m−1)m−1

≤

∑K
k=1

λ̂k
pmk

(
∑K
k=1

λ̂k
pk

E[Bk])m

and rewriting it we obtain

(

K∑
k=1

λ̂k
pk

E[Bk])m ≤
K∑
k=1

λ̂k
pmk

(

K∑
k=1

λ̂kE[Bk]m/m−1)m−1. (43)

The latter holds by Hölder’s inequality. �

Remark 5. By Equation (42) we get that the ratio of two optimal weights is the following:

p∗k
p∗j

=

(
E[Bj ]

E[Bk]

)1/(m−1)

. (44)

In general, the optimal choice for the weights is non trivial. However, note that when m → 1 we
deduce that under the optimal weights (for the m-th moment) a class-k customer has strict priority
over a class-j customer if E[Bk] < E[Bj ]. This is exactly the result that the cµ-rule states. In addition,
when m→∞, from (44) we see that the ratio of the optimal weights converges to 1. This implies that
as m gets larger, it becomes optimal (for the m-th moment) to treat all classes equal.

7 Numerical results

In this section we present numerical experiments related to the results obtained in this paper. We
consider a system under the discipline DROS with two classes of customers (K = 2) and assume
exponentially distributed service requirements. For each experiment in the order of 105 busy periods
are simulated. A busy period refers to the period of time between two consecutive time epochs in
which the system is empty, and every busy period is a regenerative point of the stochastic process.
In Section 7.1 we present the numerical results corresponding to the distribution of the number of
customers in the queue, in Sections 7.2 we focus on the moments of the queue length and waiting time
and in Section 7.3 we investigate the optimal weights.

7.1 State-space collapse for the queue lengths

In this section we simulate the distribution of the joint queue length vector. As parameters we chose
λ1 = 2.15, λ2 = 2.85,E[B1] = 1/4 and E[B2] = 1/6, so that ρ = 0.9994. In Figure 3 we plot the
joint queue length probabilities (obtained by simulation) for the weights p1 = 0.7, p2 = 0.3. The
horizontal and vertical axis correspond to N1 and N2, respectively. As a consequence of the state-
space collapse stated in Proposition 4.1, in heavy traffic the probabilities will lie on a straight line

with slope
N̂2

N̂1

=
p1

λ̂1

λ̂2
p2
≈ 3.1, starting from the origin. This result coincides with the slope of the

figure obtained.

7.2 Moments of waiting time and queue length

In Figure 4 we plot (1−ρ)E[N ] (using Little’s Law and Equation (41)) and (1−ρ)2E[N2] (obtained by
simulation) for different values of the load ρ. When doing so, we keep the mean service requirements
fixed, E[B1] = 1/4 and E[B2] = 1/6, and take λ2 = 1.5λ1. Moreover, we calculate the first and
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Figure 3: Joint queue length probability. The darkness of the points specifies the probability of being
into a particular state. The darker the point is, the higher the probability of being in that state.

Figure 4: First and second moment of the scaled queue length obtained for different values of the
load ρ. The dots in both pictures are calculated by using (14) giving as a result E[N̂ ] = 0.9589 and
E[N̂2] = 1.9510.
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Figure 5: First and second moment of the scaled waiting time obtained for different values of the load
ρ. The dots in both pictures are calculated by using Equation (40) giving as a result E[Ŵ ] = 0.1906
and E[Ŵ 2] = 0.1713.

second moment of the limit of the scaled queue length, i.e., E[limρ↑1(1− ρ)mNm] = E[N̂m],m = 1, 2,

using (14), giving as a result the values indicated with a dot in Figure 4, which are E[N̂ ] = 0.9589
and E[N̂2] = 1.9510. As it can be seen in Figure 4, in both cases, as the load gets close to one
the functions E[(1 − ρ)mNm],m = 1, 2, converge to the values indicated with the dot. This would
imply that an interchange of the limit and expectation holds for the random variable (1− ρ)Nk, i.e.,
limρ↑1 E[(1− ρ)mNm

k ] = E[limρ↑1(1− ρ)mNm
k ],m = 1, 2.

We note that if the limits are indeed interchangeable, together with the convergence in distribution of
the scaled queue lengths this would imply the uniform integrability of the scaled queue length (see [4,
Theorem 3.5]), as assumed in Assumption 1.

In Figure 5 we plot (1−ρ)E[W ] (using Equation (41)) and (1−ρ)2E[W 2] (obtained by simulation) for
different values of the load ρ. The simulation setting is the same as the one used for the queue length.
We calculate the value of Equation (40) for the cases m = 1 and m = 2 giving as a result the values
indicated with a dot in Figure 5, which are E[Ŵ ] = 0.1906 and E[Ŵ 2] = 0.1713. In both cases, as
the load gets close to one the functions converge to the value obtained in Equation (40), which would
imply again that an interchange of the limit and expectation holds for the random variable (1−ρ)Wk,
i.e., limρ↑1 E[(1 − ρ)mWm

k ] = E[limρ↑1(1 − ρ)mWm
k ],m = 1, 2. In fact, for the first moment, taking

the limit as ρ ↑ 1 in Equation (41) it is easy to see that it indeed converges to the heavy-traffic limit
as characterized by Equation (40) when K = 2.

7.3 Optimal values for the weights

In Proposition 6.3 we presented the optimal choices for the weights p∗ in order to minimize the
moments of the scaled waiting time Ŵ . In this section we numerically evaluate the validity of the
optimal weights outside the heavy-traffic regime. We set E[B1] = 0.2439 and E[B2] = 0.1667 and
plot (1− ρ)2E[W 2(p1, 1− p1)] for three different values of the load, ρ = 0.7, ρ = 0.8 and ρ = 0.9, see
Figure 6. The value of p∗1 is in this particular case equal to p∗1 = 0.4059 (see (42)). It can be seen
that the weight p∗1 = 0.4059 is a good approximation for the minimizer of (1 − ρ)2E[W 2(p1, 1 − p1)]
for load equal to ρ = 0.9. As the load decreases the approximation becomes worse, but it is still close
to the minimum of the function. We also plot E[limρ↑1(1 − ρ)2W 2(p1, 1 − p1)] = E[Ŵ 2(p1, 1 − p1)],
which is seen to be a good approximation for (1− ρ)2E[W 2(p1, 1− p1)] as the load gets close to 1.
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Figure 6: The second moment E[(1− ρ)2W 2] for different values of the weights (p1, p2) = (p1, 1− p1).
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Appendix A: Proof of Lemma 3.3

The total workload at departure epochs can be represented as

V dep =

K∑
k=1

Qk∑
h=1

Bk,h,

with Bk,h the service requirement of the h-th class-k customer. Note that the service requirements of

all class-k customers are i.i.d., and Bk,h
d
= Bk for all h.
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For ε′ > 0 we have

P
(
(1− ρ)Qk ≥M

)
= P

(
Qk ≥

M

(1− ρ)

)

≤ P
( Qk∑
h=1

Bk,h ≥
bM/(1−ρ)c∑

h=1

Bk,h

)

≤ P
(

(1− ρ)

K∑
k=1

Qk∑
h=1

Bk,h ≥M
(1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h

)

= P
(

(1− ρ)V dep

M
− E[Bk] ≥ (1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h − E[Bk]

)

= P
(

(1− ρ)V dep

M
− E[Bk] ≥ (1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h − E[Bk],
(1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h − E[Bk] > −ε
)

+P
(

(1− ρ)V dep

M
− E[Bk] ≥ (1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h − E[Bk]

∣∣∣∣ (1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h − E(Bk) ≤ −ε
)

·P
(

(1− ρ)

M

bM/(1−ρ)c∑
h=1

Bk,h − E[Bk] ≤ −ε
)

≤ P
(

(1− ρ)V dep

M
− E[Bk] > −ε

)
+ ε̃

= P
(

(1− ρ)V dep ≥M(E[Bk]− ε)
)

+ ε̃

< ε+ ε̃ = ε
′
, for ρ close enough to 1 and M large enough. (45)

In the fifth step we used that (1−ρ)
M

∑bM/(1−ρ)c
h=1 Bk,h converges in distribution to E[Bk] as ρ ↑ 1, hence

P
(

(1−ρ)
M

∑bM/(1−ρ)c
h=1 Bk,h − E[Bk] ≤ −ε

)
≤ ε, for ρ close enough to 1. In the last step we used the

fact that the workload, independently of the work-conserving scheduling discipline being used, is tight
in heavy traffic, see Kingman [15], that is ∀ε ∃M ′ such that P((1− ρ)V dep ≥M ′) < ε. From (45) we
conclude that (1− ρ)(Q1, Q2, . . . , QK) is tight.

Appendix B: Proof of Lemma 3.6

The proof of Lemma 3.6 is based on the proof of Lemma 3 in [20]. We have

K∑
i=1

λ̂i
pi
Fi(~s) =

K∑
i=1

λ̂i
pi
pi(−si + E[Bi]

K∑
k=1

λ̂ksk)

= −
K∑
i=1

λ̂isi +

K∑
i=1

λ̂iE[Bi]

K∑
k=1

λ̂ksk

= −
K∑
i=1

λ̂isi +

K∑
k=1

λ̂ksk

= 0.

This implies that for all ~s ∈ Hc, the vector ~F (~s) is parallel to the hyperplane Hc. Since ~F is C1, for

each state ~s ≥ ~0 there exists a unique flow ~f(u) = (f1(u), . . . , fK(u)), parametrized by u ≥ 0, such
that

~f(0) = ~s and
∂fi(u)

∂u
= Fi(~f(u)), for all i and u ≥ 0. (46)
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Since ~F (~s) is parallel to Hc for all ~s ∈ Hc, when started in Hc, the flow ~f(u) will stay in Hc. Another

important property of this flow ~f(u) is that

∂r̂(~f(u))

du
=

K∑
i=1

∂fi(u)

∂u
· ∂r̂(~s)
∂si

∣∣∣∣
~s=~f(u)

= 0,

which follows from the chain rule, Lemma 3.5, and Equation (46). Hence, along each flow ~f(u), which

lies in Hc, the function r̂(~f(u)) is constant. We will now show that each flow in Hc converges to a
certain point c · ~s∗ ≥ 0 as u→∞.
From (10) we get that (46) can be written as ~f(0) = ~s and ~f ′(u)T = A~f(u)T with

A =


p1(−1 + E[B1]λ̂1) p1E[B1]λ̂2 · · · p1E[B1]λ̂K

p2E[B2]λ̂1 p2(−1 + E[B2]λ̂2) · · · p2E[B2]λ̂K
...

...
. . .

...

pKE[BK ]λ̂1 pKE[BK ]λ̂2 · · · pK(−1 + E[BK ]λ̂K)

 . (47)

In Lemma 7.1 below it is proved that one eigenvalue of A is 0 with eigenvector ~s∗ ≥ ~0, ~s∗ ∈ H1, and
all the other eigenvalues have a strictly negative real part. Hence, the solution of ~f ′(u)T = A~f(u)T

with ~f(0) ∈ Hc can be written as ~f(u) = c · ~s∗ + ~g(u), where limu→∞ ~g(u) = ~0 and ~s∗ ≥ ~0. This
implies that all the flows in the hyperplane Hc converge to one common point c · ~s∗ ≥ ~0.
Since the continuous function r̂(~s) is constant along each flow, and all flows in the hyperplane Hc

converge to c · ~s∗ ∈ Hc, we obtain that the function r̂(~s) is constant on Hc.
The following technical lemma is used in the proof of Lemma 3.6.

Lemma 7.1. Consider the matrix A as defined in (47). One eigenvalue of A is 0 (with multiplicity
1), and all the other eigenvalues have a strictly negative real part. In addition, there exists a vector

~η = (η1, . . . , ηK) ≥ ~0 with
∑K
j=1 ηj = 1 such that ~s∗ = (s∗1, . . . , s

∗
K) with s∗j :=

pj

λ̂j
ηj is an eigenvector

of A corresponding to the eigenvalue 0, and ~s∗ ∈ H1.

Proof: Define D as the diagonal matrix diag[d1, d2, . . . , dK ] with di = λ̂i
pi

, and let S be the matrix

S = DAD−1 =


p1(−1 + E[B1]λ̂1) p2λ̂1E[B1] · · · pK λ̂1E[B1]

p1λ̂2E[B2] p2(−1 + E[B2]λ̂2) · · · pK λ̂2E[B2]
...

...
. . .

...

p1λ̂KE[BK ] p2λ̂KE[BK ] · · · pK(−1 + E[BK ]λ̂K)

 . (48)

The matrix A is similar to S and therefore A,S and ST have the same eigenvalues. The sum of
each row of ST is 0 because

∑K
i=1 E[Bi]λ̂i = 1, and the off-diagonal elements in ST are all strictly

positive. This implies that the matrix ST is a generator corresponding to a finite-state continuous-
time irreducible Markov chain. Hence, it has a unique equilibrium distribution ~η, i.e., ~ηST = ~0 and∑K
k=1 ηk = 1. In particular, 0 is an eigenvalue of the matrix ST , with multiplicity 1 and corresponding

to the left eigenvector ~η, and, cf.(Proposition 6.2,[1]), the real parts of all other eigenvalues are strictly
negative. Since the eigenvalues of A and ST coincide, the same holds for the matrix A. The eigenvector

of A corresponding to the eigenvalue 0 is given by ~s∗
T

= D−1~ηT , since A~s∗
T

= D−1DAD−1~ηT =
D−1S~ηT = ~0T .

�
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Appendix C: Proof of Lemma 5.4

Taking (u, z1, . . . , zK) = ((1− ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK ) in (27) we get

W 1
l

(
(1− ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK

)
=

K∑
i=1

(
(1− ρ)λi + λpi

∂

∂zi
r(z1, . . . , zK)

∣∣∣
zi=e−(1−ρ)si

)
·

B∗i
(
λ−

K∑
k=1

λke−(1−ρ)sk
)
−B∗i

(
(1− ρ)u+ λ−

K∑
k=1

λke−(1−ρ)sk
)

(1− ρ)u
.

By applying l’Hopital’s rule we get the expression below:

lim
ρ↑1

W 1
l

(
(1− ρ)u, e−(1−ρ)s1 , . . . , e−(1−ρ)sK

)
= − 1

u

K∑
i=1

(
λ̂i · 0 + λ̂pi

∂

∂si
r̂(s1, . . . , sK)

(
B∗
′

i (0)

(
−

K∑
k=1

λ̂ksk

)
−B∗

′

i (0)

(
−u−

K∑
k=1

λ̂ksk

)))

= λ̂

K∑
i=1

E[Bi]pi
λ̂i
pi

d

dv
r̂∗(v)

∣∣∣
v=

K∑
k=1

λ̂k
pk
sk

= λ̂
d

dv
r̂∗(v)

∣∣∣
v=

∑K
k=1

λ̂k
pk
sk
,

with r̂(~s) as defined in (6) and r̂∗(~s) as defined in the proof of Lemma 4.3. The result now follows from

Equation (18), together with the fact that the latter is equal to ν(~p)

ν(~p)+
K∑
k=1

sk
λ̂k
pk

(since (N̂1, . . . , N̂K)
d
=

X · (λ1
p1
, . . . ,

λK
pK

), with X exponentially distributed with mean 1/ν(~p)).

Appendix D: Solution of the ODE (35)

The solution of (35) is given by the sum of the solution of the homogeneous case, T̂Hl (u, y), and a

particular solution, T̂Pl (u, y). The homogeneous solution is given by:

T̂Hl (u, y) = C(u)e
pl
u y, (49)

where C(u) is an arbitrary function of u. In order to find the particular solution we rewrite (35) as

∂T̂Pl (u, y)

∂y

∣∣∣
y=

K∑
k=1

sk
λ̂k
pk

− pl
u
T̂Pl (u, y) = −pl

u

ν(~p)

ν(~p) + y
. (50)

Let us solve the new equation using the integrating factor technique. In order to do so, we define the

function µ(y) = e−
pl
u y and multiply (50) by it. The derivative of µ(y) satisfies dµ(y)

dy = −µ(y)plu .
Then, our equation becomes

−µ(y)
pl
u

ν(~p)

ν(~p) + y
= µ(y)

∂T̂Pl (u, y)

∂y

∣∣∣
y=

K∑
k=1

sk
λ̂k
pk

− µ(y)
pl
u
T̂Pl (u, y)

= µ(y)
∂T̂Pl (u, y)

∂y

∣∣∣
y=

K∑
k=1

sk
λ̂k
pk

+ T̂Pl (u, y)
dµ(y)

dy

=
∂

∂y
(µ(y)T̂Pl (u, y)),

which can be solved by integration. Integrating each side with respect to y gives us a particular
solution for (35), which is,

T̂Pl (u, y) = −pl
u

e
pl
u y

∫ y

0

e−
pl
u x

ν(~p)

ν(~p) + x
dx,
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which is identically written as

T̂Pl (u, y) =
pl
u

e
pl
u y

∫ ∞
y

e−
pl
u x

ν(~p)

ν(~p) + x
dx. (51)

In conclusion, the general solution of the ODE (35) is given by

T̂l(u, y) = T̂Hl (u, y) + T̂Pk (u, y) = C(u)e
pl
u y +

pl
u

e
pl
u y

∫ ∞
y

e−
pl
u x

ν(~p)

ν(~p) + x
dx. (52)

We will now show that the constant C(u) is equal to zero. First, note that T̂Hl (u, y)→∞ as y →∞.

Second, since T̂l(0, y) = ν(~p)
ν(~p)+y (from Equation (24) and Lemma 5.3) it is immediate that T̂l(u, y)

converges to 0 when y =
K∑
k=1

sk
λ̂k
pk
→ ∞. Moreover, if we take the particular solution (51), applying

l’Hopital’s rule for y →∞ we obtain that it also converges to zero, namely:

lim
y→∞

T̂l(u, y) = lim
y→∞

ν(~p)pl
u

∫∞
y

e−
pl
u x 1

ν(~p)+xdx

e−
pl
u y

= lim
y→∞

ν(~p)pl
u

−e−
pl
u y 1

ν(~p)+y

−pl
u e−

pl
u y

= lim
y→∞

ν(~p)

ν(~p) + y
= 0.

Then, the necessary condition for C(u)e
pl
u y to converge to zero as y →∞ is C(u) = 0. As a conse-

quence, we conclude that the solution of (35) is

T̂l(u, y) =
pl
u

e
pl
u y

∫ ∞
y

e−
pl
u x

ν(~p)

ν(~p) + x
dx.

25


