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Abstract— Multilevel Processor-Sharing (MLPS)
scheduling disciplines permit to model a wide variety of
non-anticipating scheduling disciplines. Such disciplines
have recently attracted attention in the context of the
Internet as an appropriate flow-level model for the
bandwidth sharing obtained when priority is given to
short TCP connections. In this paper, we compare the
mean delay in an M/G/1 queue among MLPS disciplines
under the assumption that the service time distribution
belongs to class Decreasing Hazard Rate (DHR). We are
able to prove that, given an MLPS discipline, the mean
delay is reduced whenever a level is added by splitting
an existing one in several cases. The exceptions concern
splitting the upper levels with PS internal discipline.
Our numerical examples, however, indicate that the
level splitting be advantageous even in these cases.
Furthermore, we characterize the effect on the mean
delay of changing internal disciplines within levels. By
numerical means we demonstrate that the mean delay
of an MLPS discipline can get close to the minimum
optimal delay with just a few levels. As the number of
levels increases in an MLPS discipline, the MLPS queue
mimics closer and closer the behavior of a Foreground-
Background queue, which is known to minimize the mean
delay among all disciplines. Thus, our result provides a
constructive way to demonstrate the optimality of FB.

I. INTRODUCTION

Multilevel Processor-Sharing (MLPS) scheduling dis-
ciplines introduced by L. Kleinrock in the early 1970’s
[1] permit to model a wide variety of non-anticipating
scheduling disciplines. A discipline is non-anticipating
when the scheduler does not know the remaining service
time of jobs. Such disciplines have recently attracted
attention in the context of the Internet as an appropriate
flow-level model for the bandwidth sharing obtained
when priority is given to short TCP connections [2], [3],
[4], [5].

An MLPS scheduling discipline π is defined by a finite
set of level thresholds a1 < · · · < aN defining N + 1

levels, N ≥ 0. A job belongs to level n if its attained
service is at least an−1 but less than an, where a0 = 0
and aN+1 = ∞. Between these levels, a strict priority
discipline is applied with the lowest level having the
highest priority. Thus, those jobs with attained service
less than a1 are served first. Within each level n, an
internal discipline Dπ

n is applied. The internal disciplines
may vary in the set {FB, PS, FCFS}, where FB refers to
the Foreground-Background discipline, which gives pri-
ority to the job with the least attained service, PS to the
Processor-Sharing discipline, which shares the service
capacity evenly among all jobs, and FCFS to the ordinary
First-Come-First-Served discipline. The FB discipline is
also known as LAS (Least-Attained-Service).

Yashkov [6] has proven that, for M/G/1 queues, FB
minimizes the mean delay, i.e., the mean sojourn time,
among work-conserving and non-anticipating disciplines
whenever the service time distribution is of type DHR
(Decreasing Hazard Rate). Righter and Shanthikumar [7]
proved that FB minimizes the queue length in the sto-
chastic sense.

The PS discipline has been proposed as an appropriate
model for the bandwidth sharing among (non-prioritized)
TCP flows in a bottleneck router [8], [9], [10], [11].
According to a similar reasoning, PS is a relevant in-
ternal discipline for the MLPS disciplines that model
the bandwidth sharing among prioritized TCP flows [2],
[4]. On the other hand, flow sizes in the Internet have
been modelled, e.g., by Pareto and hyperexponential
distributions [12], [13] satisfying the DHR condition.

Even though the apparent desirable properties of FB,
its deployment does not seem to be a simple task. For
example, the deployment of FB would require to classify
jobs into an infinite number of classes. On the contrary,
an MLPS discipline with N thresholds would require
just to maintain N + 1 classes.

Regarding the mean delay in M/G/1 queues, the
following results have been derived for the MLPS



disciplines whose internal disciplines vary in the set
{FB, PS} (with FCFS excluded). Aalto et al. [15] proved
that such MLPS disciplines with just two levels are better
than PS with respect to the mean delay whenever the
hazard rate of the service time distribution is decreasing,
and vice versa if the hazard rate is increasing and
bounded. In [16], similar results were found when com-
paring an MLPS discipline with any number of levels
to the PS discipline. All in all, such MLPS disciplines
look like a reasonable compromise between PS and FB,
having a smaller overall mean delay than PS and a fairer
conditional mean delay than FB.

From the previous analysis an important question
remained widely open: Given any two MLPS disciplines,
which one is better in the mean delay sense? Our main
result states that given an MLPS discipline, the mean
delay is reduced (under the DHR condition) if a level is
added by splitting an existing one unless it is an upper
level and the internal discipline is PS. Furthermore, we
show that given an MLPS discipline, the mean delay
is reduced (under the DHR condition) if an internal
discipline is changed from FCFS to PS (or from PS
to FB). These two results define a natural partial order
among the MLPS disciplines. On the other hand, as the
number of levels grows to infinity, the MLPS discipline
mimics the behavior of the FB discipline. Thus, our
results provide a constructive way to demonstrate the
optimality of FB.

By numerical means we quantify the reduction on the
mean delay after the addition of levels. We show that
the mean delay of an MLPS discipline can get close to
the minimum feasible delay (FB) with just a few levels.
Our numerical examples indicate that the level splitting
be advantageous even if the splitted level is an upper one
provided with the PS internal discipline.

The rest of the paper is organized as follows. In
Section II, after the introduction of the notation used,
we present our new results related to the mean delay
comparison among MLPS disciplines. The results are
proved in Sections III and IV. In Section III we analyze
the effect of changing an internal discipline, and in
Section IV we consider the effect of splitting a level
for an MLPS discipline. Illustrative numerical examples
are given in Section V. Section VI concludes the paper.

II. NEW RESULTS

In this section we present the notation used and the
new results of the paper. Some of the results are valid for
each sample path, while the others are related to mean

values only. The main new results are given in Theorems
1, 2 and 3 at the end of this section.

A. MLPS disciplines

We denote by MLPS the family of MLPS disciplines
π for which Dπ

n ∈ {FB, PS, FCFS} for all n, and by
MLPS∗ the family of MLPS disciplines π for which
Dπ

n ∈ {FB, PS} for all n. Furthermore, we denote by
(N + 1)FCFS the family of MLPS disciplines π with
N + 1 levels for which Dπ

n = FCFS for all n. Thus,
for example, 1FCFS refers to the FCFS discipline alone,
2FCFS to the FCFS+FCFS disciplines, 3FCFS to the
FCFS+FCFS+FCFS disciplines etc. All these disciplines
belong to the class Π of work-conserving and non-
anticipating disciplines, which do not idle when there
are jobs waiting and neither use they any information
about the remaining service times of jobs.

We note that any number of contiguous FB levels can
always be considered as a single (but larger) FB level.
So there is no need to split an FB level.

Among the disciplines {FB, PS, FCFS}, we define
the following order relation:

FB ≺ PS ≺ FCFS.

In addition, we denote D � D′ if and only if D = D′

or D ≺ D′.

B. Sample path results

Consider a single server queueing system starting
empty at time t = 0 and obeying a scheduling discipline
π. We assume that the jobs arrive one at a time.

Let Ai denote the arrival time of job i, Si its service
time, and Xπ

i (t) its attained service at time t. Let A(t)
denote the set of jobs arrived until time t,

A(t) = {i : Ai ≤ t},
and A(t) = |A(t)|. Let N π(t) denote the set of jobs in
the system at time t,

N π(t) = {i ∈ A(t) : Xπ
i (t) < Si},

and Nπ(t) = |N π(t)|. Furthermore, for all x ≥ 0, let
N π

x (t) denote the set of those jobs in the system whose
attained service is less than x,

N π
x (t) = {i ∈ A(t) : Xπ

i (t) < (Si ∧ x)},
where (Si ∧ x) = min{Si, x}, and Nπ

x (t) = |N π
x (t)|.

Let Uπ
x (t) denote the unfinished truncated work with

truncation threshold x at time t,

Uπ
x (t) =

∑
i∈Nπ

x (t)

((Si ∧ x) − Xπ
i (t)). (1)



An alternative expression is as follows:

Uπ
x (t) =

A(t)∑
i=1

(Si ∧ x) −
∫ t

0
σπ

x (u) du, (2)

where σπ
x(t) refers to the total rate at which the jobs with

attained service less than x are served at time t. The
limiting value Uπ∞(t) is the ordinary unfinished work,
which is the same for all work conserving disciplines.

Proposition 1: Let π ∈ MLPS with thresholds
{a1, . . . , aN} and π′ ∈ MLPS with thresholds
{a′1, . . . , a′N ′}. Assume that there exist n ∈ {1, . . . , N +
1} and n′ ∈ {1, . . . , N ′ + 1} such that an−1 = a′n′−1

and an = a′n′ .
(i) If Dπ

n = Dπ′
n′ , then Uπ

x (t) = Uπ′
x (t) for all an−1 ≤

x ≤ an and t ≥ 0.
(ii) If Dπ

n � Dπ′
n′ , then Uπ

x (t) ≤ Uπ′
x (t) for all an−1 ≤

x ≤ an and t ≥ 0.
This is a fundamental locality result for MLPS disci-

plines saying that the unfinished truncated work within
a level depends only on the internal discipline of that
level (but not on the other internal disciplines). In [15,
Prop. 8], the result was proved for class MLPS∗. The
generalization to all MLPS disciplines is proved below
in Section III.

Proposition 2: Let π, π′ ∈ MLPS with the same
thresholds {a1, . . . , aN} such that Dπ

n � Dπ′
n for all

n ∈ {1, . . . , N +1}. Then Uπ
x (t) ≤ Uπ′

x (t) for all x ≥ 0
and t ≥ 0.

Proof: This is an immediate consequence of the
locality result presented in Proposition 1.

This is the first step in ordering the MLPS disciplines.
It allows us to compare different MLPS disciplines with
the same thresholds.

C. Mean value results

Consider an M/G/1 queue obeying a scheduling dis-
cipline π ∈ Π. Let λ denote the arrival rate and S
the service time of a job. We assume that E[S] < ∞
and ρ = λE[S] < 1. Furthermore, we assume that the
service time distribution is continuous with the corre-
sponding density function denoted by f(x). Let F (x) =∫ x
0 f(y) dy and F (x) = 1 − F (x). The corresponding

hazard rate function is denoted by h(x) = f(x)/F (x).
Let Uπ

x denote the unfinished truncated work with
truncation threshold x and T π(y) the delay of a job with
service time y. By [1, Eq. (4.60)],

U
π
x = λ

∫ x

0
T

π(y)F (y) dy, (3)

where U
π
x = E[Uπ

x ] and T
π(y) = E[T π(y)].

Taking the derivative, and integrating with respect to
the density distribution we obtain that mean delay can
be expressed as:

T
π =

∫ ∞

0
T

π(x)f(x) dx =
1
λ

∫ ∞

0
(Uπ

x)′h(x) dx. (4)

where T
π = E[T π] and (Uπ

x)′ = ∂
∂xU

π
x .

The following result was proven in [15, Prop. 1].
Proposition 3: Let π, π′ ∈ Π. If U

π
x ≤ U

π′

x for all
x ≥ 0 and the hazard rate h(x) is decreasing, then

T
π ≤ T

π′
.

Hence, Proposition 3 allows to compare the mean
delay performance of different scheduling disciplines by
comparing their respective unfinished truncated work.

Proposition 4: Let N ≥ 1, n ∈ {1, . . . , N}, π ∈
MLPS with thresholds {a1, . . . , aN}, and π′ ∈ MLPS
with thresholds {a1, . . . , an−1, an+1, . . . , aN} such that
Dπ′

n = Dπ
n = Dπ

n+1 = FCFS and

Dπ′
m =

{
Dπ

m, m = 1, . . . , n − 1,
Dπ

m+1, m = n + 1, . . . , N.

Then, U
π
x ≤ U

π′

x for all x ≥ 0.
This new result shows that, with respect to the mean

unfinished truncated work, it is beneficial to split one
level with FCFS as an internal discipline to two con-
tiguous levels with the FCFS discipline applied at both
levels. The proof is given in Subsection IV-C.

Proposition 5: Let N ≥ 1, π ∈ MLPS with thresh-
olds {a1, . . . , aN}, and π′ ∈ MLPS with thresholds
{a2, . . . , aN} such that Dπ′

1 = Dπ
1 = Dπ

2 = PS and

Dπ′
m = Dπ

m+1 for m = 2, . . . , N.

Then, U
π
x ≤ U

π′

x for all x ≥ 0.
This is a counterpart of the previous result concerning

a level with PS as an internal discipline instead of FCFS.
The proof is given in Subsection IV-D. Unfortunately, we
were not able to prove the result when the splitted level
is an upper one (n > 1).

The following three theorems contain the main results
of the present paper. They define a partial order among
the MLPS disciplines (under the DHR condition) that
allows to conclude whether an MLPS discipline is better
or worse than another MLPS discipline with respect to
the mean delay in certain cases.

Theorem 1: Let π, π′ ∈ MLPS with the same thresh-
olds {a1, . . . , aN} such that Dπ

n � Dπ′
n for all n ∈

{1, . . . , N + 1}. If the hazard rate h(x) is decreasing,
then T

π ≤ T
π′

.



Proof: Due to Proposition 3, this new result is an
immediate consequence of Proposition 2.

Theorem 2: Let N ≥ 1, n ∈ {1, . . . , N}, π ∈
MLPS with thresholds {a1, . . . , aN}, and π′ ∈ MLPS
with thresholds {a1, . . . , an−1, an+1, . . . , aN} such that
Dπ′

n = Dπ
n = Dπ

n+1 = FCFS and

Dπ′
m =

{
Dπ

m, m = 1, . . . , n − 1,
Dπ

m+1, m = n + 1, . . . , N.

If the hazard rate h(x) is decreasing, then T
π ≤ T

π′
.

Proof: Due to Proposition 3, this new result is an
immediate consequence of Proposition 4.

Theorem 3: Let N ≥ 1, π ∈ MLPS with thresh-
olds {a1, . . . , aN}, and π′ ∈ MLPS with thresholds
{a2, . . . , aN} such that Dπ′

1 = Dπ
1 = Dπ

2 = PS and

Dπ′
m = Dπ

m+1 for m = 2, . . . , N.

If the hazard rate h(x) is decreasing, then T
π ≤ T

π′
.

Proof: Due to Proposition 3, this new result is an
immediate consequence of Proposition 5.

Consider, for example, disciplines π and π′ defined
as follows: π has three thresholds (10, 20, and 30) and
applies PS as an internal discipline at all the four levels,
while π′ has only two thresholds (10 and 20) and applies
FCFS as an internal discipline at all the three levels.
By Theorem 2, π′ is worse than π′′ which has three
thresholds (10, 20, and 30) and applies FCFS as an
internal discipline at all the four levels. On the other
hand, π′′ is worse than π by Theorem 1. Thus, π′ is
worse than π with respect to the mean delay.

Finally we note that all the mean delay inequalities
in Theorems 1, 2 and 3 would be reversed if we had
assumed that the hazard rate h(x) is increasing and
bounded (instead of being decreasing). This can be
readily seen since in this case the mean delay inequality
in Proposition 3 is reversed as shown in [15, Prop. 2].

III. CHANGING INTERNAL DISCIPLINES

In this section we prove the sample path result pre-
sented in Proposition 1. We consider a single server
queueing system starting empty at time t = 0 and assume
that the jobs arrive one at a time.

Proposition 1 is a generalization of [15, Prop. 8(i)].
Regarding part (i) of Proposition 1, the proof presented
in [15, Prop. 8(i)] is clearly valid as such for all MLPS
disciplines. For part (ii) of Proposition 1, we need only
consider the case of Dπ

n = PS and Dπ′
n′ = FCFS.

Proposition 6: Let π ∈ MLPS with thresholds
{a1, . . . , aN} and π′ ∈ MLPS with thresholds

{a′1, . . . , a′N ′}. Assume that there exist n ∈ {1, . . . , N +
1} and n′ ∈ {1, . . . , N ′ + 1} such that an−1 = a′n′−1,
an = a′n′ , Dπ

n = PS, and Dπ′
n′ = FCFS. Then Uπ

x (t) ≤
Uπ′

x (t) for all an−1 ≤ x ≤ an and t ≥ 0.
Proof: Let an−1 ≤ x ≤ an. We prove the claim by

induction with respect to the arrival epochs Ak.
1◦ During the interval [0, A1) both systems are empty.

Thus the claim is trivially true for all t < A1.
2◦ Let k ∈ {1, 2, . . .}, and assume that the claim is

true for all t < Ak. We will show that it is also true in
the interval [Ak, Ak+1).

We divide the interval [Ak, Ak+1) into three consec-
utive periods I1, I2, and I3, with the following starting
(b) and ending (e) points:

Ib
1 = Ak, Ie

1 = sup{Ib
1 < t ≤ Ak+1 | Nπ

an−1
(t) > 0},

Ib
2 = Ie

1, Ie
2 = sup{Ib

2 < t ≤ Ak+1 | Nπ
an

(t) > 0},
Ib
3 = Ie

2, Ie
3 = Ak+1.

During the interval I1 both systems give service only to
those customers whose attained service is less than an−1.
During interval the I2 there are no longer such customers
in either system, and both systems give service to those
customers whose attained service is at least an−1 but
less than an. Finally, in the interval I3, there are not
any longer jobs with attained service less than an in
either system. Note that I1 is always of positive length,
whereas I2 and I3 may vanish. The three intervals I1 –
I3 are considered in 2.1◦ – 2.3◦, respectively.

2.1◦ Consider the interval I1. Since x ≥ an−1 and,
during this interval, strict priority is given (in both
systems) to those customers with attained service time
less than an−1, we have, for all t ∈ I1,

Uπ
x (t) = Uπ

x ((Ak)−) + (Sk ∧ x) − t + Ak

≤ Uπ′
x ((Ak)−) + (Sk ∧ x) − t + Ak

= Uπ′
x (t),

where the inequality is due to the induction assumption.
This is enough if the interval I1 ends at time Ak+1 when
a new customer arrives. Otherwise we have to consider
the interval I2, too.

2.2◦ Consider the interval I2. During this interval,
strict priority is given (in both systems) to those cus-
tomers with attained service time at least an−1 but less
than an. Let t ∈ I2 and denote M(t) = N π

an
(t)∪N π′

an
(t).

Thus, M(t) comprises of the customers that are priority
customers, at least, in one of the systems at time t. Since
an−1 and an are level thresholds for both π and π′, we
have, for all i ∈ M(t),

an−1 ≤ Xπ
i (t) ≤ an, an−1 ≤ Xπ′

i (t) ≤ an.



Now,

Uπ
x (t) =

∑
i∈M(t)

(Si ∧ x) −
∑

i∈M(t)

(Xπ
i (t) ∧ x), (5)

Uπ′
x (t) =

∑
i∈M(t)

(Si ∧ x) −
∑

i∈M(t)

(Xπ′
i (t) ∧ x).(6)

Note that the first sum is the same for both disciplines.
For x = an, we get

Uπ
an

(t) =
∑

i∈M(t)

(Si ∧ an) −
∑

i∈M(t)

(Xπ
i (t) ∧ an)

=
∑

i∈M(t)

(Si ∧ an) −
∑

i∈M(t)

Xπ
i (t),

Uπ′
an

(t) =
∑

i∈M(t)

(Si ∧ an) −
∑

i∈M(t)

(Xπ′
i (t) ∧ an)

=
∑

i∈M(t)

(Si ∧ an) −
∑

i∈M(t)

Xπ′
i (t).

Since an is a level threshold for both disciplines, the
unfinished truncated work with truncation threshold an

is the same in both systems. Thus,∑
i∈M(t)

Xπ
i (t) =

∑
i∈M(t)

Xπ′
i (t). (7)

Let then I(t) denote the index of the customer who is
served in the π′ system at time t. Because of the internal
FCFS discipline of the π′ system, we observe that, for
all i ∈ M(t) such that i < I(t),

Xπ
i (t) < (Si ∧ an) = Xπ′

i (t), (8)

and, for all i ∈ M(t) such that i > I(t),

Xπ
i (t) ≥ an−1 = Xπ′

i (t). (9)

Furthermore, due to the internal PS discipline in the π
system, we have, for all i ∈ N π

an
(t) and j ∈ M(t) such

that i < j,
Xπ

i (t) ≥ Xπ
j (t). (10)

The next step is to utilize Lemma 1 presented in
Appendix A. Consider customers i ∈ M(t). Let N =
|M(t)|, and re-index these customers in their arrival
order from 1 to N . Let r(i) denote the new index of
customer i. Furthermore, let ar(i) = Xπ

i (t) and br(i) =
Xπ′

i (t) for all i ∈ M(t). In addition, let

m =

{
r(I(t)), if Xπ

I(t)(t) < Xπ′
I(t)(t),

r(I(t)) − 1, if Xπ
I(t)(t) ≥ Xπ′

I(t)(t).

With the results given above in (7), (8), (9), and (10), it
is easy to check that all the assumptions of Lemma 1 are

valid with these choices. Now, by applying Lemma 1, we
conclude that∑

i∈M(t)

(Xπ
i (t) ∧ x) ≥

∑
i∈M(t)

(Xπ′
i (t) ∧ x).

Thus, by (5) and (6), we have Uπ
x (t) ≤ Uπ′

x (t) for any
t ∈ I2. This is enough if the interval I2 ends at time
Ak+1 when a new job arrives. Otherwise we have to
consider the final interval I3, too.

2.3◦ Consider finally the interval I3, in which there
are not any more customers with attained service less
than an in either system. Since x ≤ an, we deduce that,
for all t ∈ I3,

Uπ
x (t) = Uπ′

x (t) = 0.

This completes the proof.

IV. SPLITTING LEVELS

In this section we consider the effect of splitting
levels. We start with some preliminaries, and then present
the proofs of Propositions 4 and 5 in Subsections IV-
C and IV-D, respectively.

A. Preliminary results

The first preliminary result is valid for all sample
paths. Thus, we consider a single server queueing system
starting empty at time t = 0 and assume that the
jobs arrive one at a time. Let Uπ

x (t; S ∧ b) denote the
unfinished truncated work with truncation threshold x at
time t in a modified system where the original service
times S1, S2, . . . are replaced by their truncated versions
S1 ∧ b, S2 ∧ b, . . ..

Proposition 7: Let N ≥ 1, n ∈ {1, . . . , N}, π ∈
MLPS with thresholds {a1, . . . , aN}, and π′ ∈ MLPS
with thresholds {a1, . . . , an−1} such that

Dπ′
m = Dπ

m for m = 1, . . . , n.

Then, Uπ
x (t) = Uπ

x (t; S ∧ an) = Uπ′
x (t; S ∧ an) for all

x ≤ an and t ≥ 0.
Proof: Let x ≤ an and t ≥ 0. Since the three

systems follow the same rules as regards the jobs with
attained service time less than an (which is a level
threshold in the original system and the service time
truncation threshold in the other systems), we surely
have N π

x (t) = N π
x (t; S ∧ an) = N π′

x (t; S ∧ an), and
Xπ

i (t) = Xπ
i (t; S ∧ an) = Xπ′

i (t; S ∧ an) for all
i ∈ N π

x (t). The claim follows now from (1).
The second preliminary result concerns the mean un-

finished truncated work in the system with non-truncated
service times S1, S2, . . .. Thus, we consider here an



M/G/1 queue with ρ < 1. Recall that T
π(x) refers to

the conditional mean delay of a job with service time x.
Proposition 8: Let π, π′ ∈ Π and a < b. Assume that

(i) U
π
a ≤ U

π′

a , U
π
b ≤ U

π′

b , and
(ii) T

π(x)−T
π′

(x) is non-decreasing for all a < x ≤ b.

Then U
π
x ≤ U

π′

x for all a ≤ x ≤ b.
Proof: Assume that there is a < x < b such that

U
π
x > U

π′

x . Consider now what happens if T
π(x) ≤

T
π′

(x). Due to (ii), this would imply that T
π(y) ≤

T
π′

(y) for all a < y < x. Then, by (3),

U
π
x = U

π
a + λ

∫ x

a
T

π(y)F (y) dy

≤ U
π′

a + λ

∫ x

a
T

π′
(y)F (y) dy

= U
π′

x ,

which is impossible. Thus, we conclude that T
π(x) >

T
π′

(x). Due to (ii), T
π(y) > T

π′
(y) for all x < y < b.

Then, by (3),

U
π
b = U

π
x + λ

∫ b

x
T

π(y)F (y) dy

> U
π′

x + λ

∫ b

x
T

π′
(y)F (y) dy

= U
π′

b ,

which is impossible. Thus, we conclude that U
π
x ≤ U

π′

x

for all a ≤ x ≤ b.
Hence, Proposition 8 allows to compare the mean

unfinished truncated work of different scheduling dis-
ciplines by comparing their respective conditional mean
delay within an interval.

B. Conditional mean delay for MLPS disciplines

In this subsection we recall the properties of the
conditional mean delay for MLPS disciplines in an
M/G/1 queue found, e.g., in [1].

Let x ≥ 0, and replace, for a while, the service times
S by their truncated versions S ∧ x = min{S, x}. It is
easy to see that

E[S∧x] =
∫ x

0
F (z) dz, E[(S∧x)2] = 2

∫ x

0
zF (z) dz.

Furthermore, let ρx = λE[(S ∧ x)] denote the truncated
load. Clearly, ρx ≤ ρ < 1 for all x.

The mean workload (i.e., unfinished work) for a work
conserving M/G/1 queue with truncated service times is,
by the Pollaczek-Khinchin formula,

W x =
λE[(S ∧ x)2]

2(1 − ρx)
.

Of course, when x → ∞, we get the ordinary Pollaczek-
Khinchin formula,

W∞ =
λE[S2]
2(1 − ρ)

.

It is worth to mention that the unfinished work Wx

for an M/G/1 queue with truncated service times (S∧x)
differs, in general, from the unfinished truncated work
Uπ

x for an M/G/1 queue with original service times S.
The former one is the same for all work-conserving
disciplines, while the latter one depends on the discipline
π used. Only for the FB discipline, Wx = UFB

x .
Let us then return to the original service times S.

We consider the conditional mean delay for MLPS
disciplines within an FCFS level. If there is just one
level, then, for all x ≥ 0,

T
FCFS(x) = W∞ + x. (11)

If π is an MLPS discipline with FCFS applied at level
n, then, for all an−1 < x ≤ an,

T
π(x) =

W an
+ x

1 − ρan−1

. (12)

C. Splitting an FCFS level

In this subsection we present the proof of Proposi-
tion 4. Thus, we consider here an M/G/1 queue with
ρ < 1. Let us recall the proposition, and then prove it.

Proposition 4: Let N ≥ 1, n ∈ {1, . . . , N}, π ∈
MLPS with thresholds {a1, . . . , aN}, and π′ ∈ MLPS
with thresholds {a1, . . . , an−1, an+1, . . . , aN} such that
Dπ′

n = Dπ
n = Dπ

n+1 = FCFS and

Dπ′
m =

{
Dπ

m, m = 1, . . . , n − 1,
Dπ

m+1, m = n + 1, . . . , N.

Then, U
π
x ≤ U

π′

x for all x ≥ 0.
Proof: By Proposition 1(i), we have U

π
x = U

π′

x

for all x ≤ an−1 and x ≥ an+1. Thus, it is sufficient
to consider the interval an−1 < x < an+1. By (12), we
have

T
π(x) =




W an
+ x

1 − ρan−1

, an−1 < x ≤ an,

W an+1 + x

1 − ρan

, an < x ≤ an+1,

and

T
π′

(x) =
W an+1 + x

1 − ρan−1

, an−1 < x ≤ an+1.



It is easy to verify that the difference T
π(x)−T

π′
(x)

is non-decreasing for all an−1 < x ≤ an+1. Assume first
that an−1 < x ≤ an. Now

T
π(x) − T

π′
(x) =

W an
− W an+1

1 − ρan−1

,

which is a negative constant. Assume then that an <
x ≤ an+1. Then

T
π(x) − T

π′
(x) =

(W an+1 + x)(ρan
− ρan−1)

(1 − ρan
)(1 − ρan−1)

,

which is positive and linearly increasing. Thus, by Propo-
sition 8, we conclude that the claim is true.

D. Splitting a PS level

In this subsection we present the proof of Proposi-
tion 4. Thus, we consider here an M/G/1 queue with
ρ < 1. Let us recall the proposition, and then prove it.

Proposition 5: Let N ≥ 1, π ∈ MLPS with thresh-
olds {a1, . . . , aN}, and π′ ∈ MLPS with thresholds
{a2, . . . , aN} such that Dπ′

1 = Dπ
1 = Dπ

2 = PS and

Dπ′
m = Dπ

m+1 for m = 2, . . . , N.

Then, U
π
x ≤ U

π′

x for all x ≥ 0.
Proof: 1◦ For N = 1 so that π ∈ 2PS with

threshold a1 and π′ = PS, this has been proved in [15,
Prop. 4].

2◦ Assume then that N ≥ 2. By Proposition 1(i), we
have U

π
x = U

π′

x for all x ≥ a2. Thus, it is sufficient to
consider the interval 0 ≤ x < a2.

Let x ≤ a2. Recall from Subsection IV-A that U
π
x(S∧

b) denotes the mean unfinished truncated work in a
system where the original service times S1, S2, . . . are
replaced by their truncated versions S1∧b, S2∧b, . . .. In
addition, let π′′ ∈ 2PS with threshold a1 and π′′′ = PS.
By Proposition 7 and 1◦, we get

U
π
x = U

π′′

x (S ∧ a2) ≤ U
π′′′

x (S ∧ a2) = U
π′

x ,

which concludes the proof.
In the preliminary version of this paper [17], we claim

that the result presented above in Proposition 5 would be
true for any level, not only for the lowest one (n = 1).
The claim is essentially based on [17, Prop. 12], which
we recall below (as a conjecture).

Conjecture 1: Let π ∈ 2PS with threshold a and
π′ ∈ 2PS with threshold a′ such that a ≤ a′. Then, for
all x > a′,

(T π)′(x) ≤ (T π′
)′(x).

However, the proof of this result presented in [17] has
a flaw that we have not been able to fix yet. The flaw,

originally observed by one of the Infocom reviewers,
is related to [17, Eq. (27)], whose left-hand-side is not
simply β(z). This is due to the fact that (with notation
used in [17])

(gx)′(a) = β(x − a) − α′′(x − a)
1 − ρa

and not (gx)′(a) = β(x − a) as erroneously claimed in
[17]. As a consequence of the flaw, the logic behind the
proof is broken. Thus, splitting a PS level that is not the
lowest one is still an open problem.

V. NUMERICAL EXAMPLES

In this section we present illustrative numerical exam-
ples concerning various MLPS disciplines in the context
of M/G/1 queues with hyperexponential and Pareto ser-
vice time distributions, which belong to the class DHR.
In addition, we consider the IHR case with a uniform
distribution.

Hyperexponential service times: In the first example
we have used a hyperexponential service time distribu-
tion with tail distribution function

F (x) = pe−µ1x + (1 − p)e−µ2x, x > 0,

which belongs to the class DHR. For the parameters we
chose µ1 = 1.0, µ2 = 0.1, and p = 0.8, which results in
the mean service time of E[S] = 2.8. The arrival rate is
λ = 0.3, implying load ρ = 0.84 and mean unfinished
work U∞ = 39.0.

In Figure 1, we have depicted the mean unfinished
truncated work U

π
x as a function of the truncation

threshold x for MLPS disciplines FCFS, 2FCFS(5),
3FCFS(5, 10), PS, and FB. As claimed in Proposition 4,
the mean unfinished truncated work is decreasing uni-
formly when the number of levels is increased from one
(FCFS) to two (2FCFS(5)), to three (3FCFS(5, 10)),
and to infinity (FB).

In Figure 2, we have depicted the mean delay T
π

as a function of the level threshold a for discipline
2FCFS(a). As claimed in Theorem 2, the mean delay
for any 2FCFS(a) discipline is less than that of FCFS. It
is also interesting to observe that, for a quite wide range
of thresholds a, the two-level disciplines 2FCFS(a) give
even lower mean delay than PS. In fact, the optimal two-
level discipline is almost as good as FB. Thus, if the
first threshold is chosen optimally, the gain that could
be obtained by adding more levels is negligible.
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Fig. 1. Hyperexponential service times: Mean unfinished truncated
work U

π
x as a function of the truncation threshold x for disciplines

FCFS, 2FCFS(5), 3FCFS(5, 10), PS, and FB.
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Fig. 2. Hyperexponential service times: Mean delay T
π

as a function
of the level threshold a for discipline 2FCFS(a). The three horizontal
lines correspond to the mean delay of disciplines FCFS, PS and FB.

Pareto service times: The following examples are
based on the Pareto service time distribution with tail
distribution function

F (x) =
(

1
1 + cx

)α

, x > 0,

for which the hazard rate is decreasing. We vary parame-
ters c and α while keeping the mean service time fixed
E[S] = 30.0.

First we consider the case c = 1/36 and α = 2.2.
The arrival rate is λ = 0.03, implying load ρ = 0.9.
In Figure 3, we have depicted the mean delay T

π

as a function of the level threshold a for disciplines
2FCFS(a) and 3FCFS(min{a, a∗}, max{a, a∗}). The
threshold value a∗ used for the three-level disciplines
is chosen to be the optimal one among the two-level
disciplines 2FCFS(a). Note that again the optimal two-
level discipline 2FCFS(a∗) gives even lower mean delay
than PS. Having a third level gives some additional gain.

In the following example, we have a heavy tailed
distribution with parameters c = 1/24 and α = 1.8. In
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Fig. 3. Pareto service times: Mean delay T
π

as a func-
tion of the level threshold a for disciplines 2FCFS(a) and
3FCFS(min{a, a∗}, max{a, a∗}) with α = 2.2. The three hori-
zontal lines correspond to the mean delay of disciplines FCFS, PS,
and FB.

this case E[S2] = ∞ so that the mean delay of the FCFS
discipline is unbounded. The arrival rate is λ = 0.03,
implying load ρ = 0.9. In Figure 4, we have depicted the
mean delay T

π
as a function of the level threshold a for

disciplines 2PS(a) and 3PS(min{a, a∗}, max{a, a∗}).
The threshold value a∗ used for the three-level disci-
plines is chosen to be the optimal one among the two-
level disciplines 2PS(a).
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Fig. 4. Pareto service times: Mean delay T
π

as a func-
tion of the level threshold a for disciplines 2PS(a) and
3PS(min{a, a∗}, max{a, a∗}) with α = 1.8. The two horizontal
lines correspond to the mean delay of disciplines PS and FB.

Next we take an even heavier tailed distribution with
parameters c = 1/6 and α = 1.2. Thus, again E[S2] =
∞. The arrival rate is now λ = 0.02, implying load ρ =
0.6. In Figure 5, we have again depicted the mean delay
T

π
as a function of the level threshold a for disciplines

2PS(a) and 3PS(min{a, a∗}, max{a, a∗}). In this case,
the performance of two-level or three-level policies is
rather insensitive with respect to the chosen thresholds.

In the final Pareto example we have used parameters
c = 1/45 and α = 2.5 with E[S2] < ∞. The arrival
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Fig. 5. Pareto service times: Mean delay T
π

as a func-
tion of the level threshold a for disciplines 2PS(a) and
3PS(min{a, a∗}, max{a, a∗}) with α = 1.2. The two horizontal
lines correspond to the mean delay of disciplines PS and FB.

rate is λ = 0.03, implying load ρ = 0.9. In Figure 6, we
have depicted the mean delay T

π
as a function of the

level threshold a for disciplines 2FCFS(a) and 2PS(a).
As claimed in Theorem 1, the mean delay for any
2PS(a) discipline is less than that of the corresponding
2FCFS(a) discipline. The shapes of the two curves
are similar and the optimal level thresholds are not
far away from each other. In addition, we observe that
by choosing the level threshold optimally the 2FCFS
discipline gives a remarkable gain compared to the FCFS
discipline, performing even better than PS. The optimal
2PS discipline is almost as good as FB.
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Fig. 6. Pareto service times: Mean delay T
π

as a function of the level
threshold a for disciplines 2FCFS(a) and 2PS(a) with α = 2.5. The
three horizontal lines correspond to the mean delay of disciplines
FCFS, PS, and FB.

In conclusion, a small number of levels seems to give
good results if at least one of the thresholds is reasonably
chosen with respect to the prevailing traffic conditions.
Thus, if these traffic conditions are known, two levels
seem to be enough. On the other hand, if they are only
partially known or they are rapidly changing, it would be

reasonable to use an MLPS policy with a couple of levels
for which the level thresholds are chosen from different
magnitudes, for example, an = an for a suitable constant
a.

Uniform service times: In the final example we apply
a uniform service time distribution with tail distribution
function

F (x) = max{1 − x

P
, 0}, x > 0,

for which the hazard rate is increasing. With parameter
P = 500, we have E[S] = 250. The arrival rate is λ =
1/595, implying load ρ = 0.42.

In Figure 7, we have depicted the mean delay T
π

as a function of the level threshold a for disciplines
2FCFS(a) and 2PS(a). As noted at the end of Section II,
the mean delay for any 2PS(a) discipline is greater than
that of the corresponding 2FCFS(a) discipline. In this
case, FCFS is optimal and FB the worst one [7].
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Fig. 7. Uniform service times: Mean delay T
π

as a function of the
level threshold a for disciplines 2FCFS(a) and 2PS(a). The three
horizontal lines correspond to the mean delay of disciplines FB, PS,
and FCFS.

VI. CONCLUSIONS

This paper compares the mean delay among MLPS
disciplines. The MLPS disciplines form an important
subset within the set of non-anticipating scheduling
disciplines. Previous analysis considered FB and PS as
internal disciplines and showed that such MLPS disci-
plines are better than PS with respect to the mean delay
whenever the hazard rate of the service time distribution
is decreasing. In this paper we allow FCFS as an internal
discipline as well. Under the same DHR condition as
above, we show that given an MLPS discipline, the mean
delay is reduced whenever a level is added by splitting
an existing one unless it is an upper level and the internal
discipline is PS. As the number of levels increases, the



MLPS discipline emulates closer and closer the behavior
of an FB discipline, which is known to be optimal.
We also show that given an MLPS discipline, the mean
delay is reduced (under the DHR condition) if an internal
discipline is changed from FCFS to PS (or from PS to
FB).

By numerical analysis we have evaluated the mean de-
lay of MLPS disciplines in the presence of distributions
of practical interest as Pareto and hyperexponential. Our
results demonstrate that if the level threshold is chosen
appropriately, the mean delay of a two-level MLPS can
be close to that of FB. This result is important in
view of recent work that proposes to provide differential
treatment to flows on the Internet based in just two
classes: mice and elephants. Our numerical examples
indicate that the level splitting be advantageous even if
the splitted level is an upper one provided with the PS
internal discipline. However, proving this is still a open
problem left for further research.

APPENDIX A: TRUNCATION LEMMA

In this appendix we present a lemma that is needed
for the proof of Proposition 6 presented in Section III.

Lemma 1: Assume that there are two sets of real
numbers, (a1, . . . , aN ) and (b1, . . . , bN ), and an index
1 ≤ m ≤ N that satisfy the following conditions:

(a)
∑N

i=1 ai =
∑N

i=1 bi,
(b) ai ≤ bi for all i ∈ {1, . . . , m},
(c) ai ≥ bi for all i ∈ {m + 1, . . . , N},
(d) ai ≥ aj for all i ∈ {1, . . . , m} and j ∈ {i +

1, . . . , N}.

Then, for any x ≥ 0,

N∑
i=1

(ai ∧ x) ≥
N∑

i=1

(bi ∧ x).

Proof: Note first that, for any n ≤ m,

N∑
i=n+1

ai =
N∑

i=1

ai −
n∑

i=1

ai

(a)
=

N∑
i=1

bi −
n∑

i=1

ai

(b)

≥
N∑

i=1

bi −
n∑

i=1

bi

=
N∑

i=n+1

bi. (13)

Denote A = max{am+1, . . . , aN}, and consider sepa-
rately cases x > A and x ≤ A.

1◦ Let x > A and define

p =

{
0 if a1 < x,
max{i ∈ {1, . . . , m} : ai ≥ x}, otherwise.

By the definition above and assumptions (b) and (d),
we deduce that bi ≥ ai ≥ x for all i ∈ {1, . . . , p},
while ai < x for all i ∈ {p + 1, . . . , m}. Furthermore
ai ≤ A < x for all i ∈ {m + 1, . . . , N}. Thus,

N∑
i=1

(ai ∧ x) =
p∑

i=1

x +
N∑

i=p+1

ai

(13)

≥
p∑

i=1

x +
N∑

i=p+1

bi ≥
N∑

i=1

(bi ∧ x).

2◦ Let then x ≤ A. By assumption (d), ai ≥ A ≥ x
for all i ∈ {1, . . . , m}. Thus,

N∑
i=1

(ai ∧ x) =
m∑

i=1

x +
N∑

i=m+1

(ai ∧ x)

(c)

≥
m∑

i=1

x +
N∑

i=m+1

(bi ∧ x) ≥
N∑

i=1

(bi ∧ x).

This completes the proof.
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