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he31077, Toulousee-mail: urtzi�laas.frAbstra
tWe develop a 
onservation law for a multi-
lass GI/GI/1 queue operating under a generalwork-
onserving s
heduling dis
ipline. For single-
lass single-server queues, 
onservation lawshave been obtained for both non-anti
ipating and anti
ipating dis
iplines with general servi
etime distributions. For multi-
lass single-server queues, 
onservation laws have been obtained for(i) non-anti
ipating dis
iplines with exponential servi
e time distributions and (ii) non-preemptivenon-anti
ipating dis
iplines with general servi
e time distributions. The unifying 
onservationlaw we develop generalizes already existing 
onservation laws. In addition it 
overs popularnon-anti
ipating multi-
lass time-sharing dis
iplines su
h as Dis
riminatory Pro
essor Sharing(DPS) and Generalized Pro
essor Sharing (GPS) with general servi
e time distributions. As anappli
ation we show that the unifying 
onservation law 
an be used to 
ompare the expe
tedun
onditional response time under two s
heduling dis
iplines.1 Introdu
tionThe so-
alled work-
onserving property is fundamental to single-server (multi-
lass) systems. Let us
onsider a single-server queue with M job 
lasses. Let Uj(t) be the un�nished work at time t of 
lass-jjobs, j = 1, . . . , M , and let U(t) =
∑M

j=1 Uj(t) denote the total un�nished work in the system. Theun�nished work in the system, U(t), is a fun
tion that has verti
al jumps at arrival epo
hs equal in sizeto the 
orresponding servi
e requirements of the job and remains 
onstant when it hits the horizontalaxis. We say that the s
heduling dis
ipline is work-
onserving if U(t) de
reases at rate 1(sec/sec)whenever U(t) > 0. A sample path argument shows that the un�nished work in the system, U(t), isthe same regardless of the work-
onserving s
heduling dis
ipline being deployed.In this paper we fo
us on 
onservation laws for the time average un�nished work. We refer to Greenand Stidham [11℄ and Sigman [23℄ for the derivation and appli
ation of sample-path 
onservation laws.Let U j denote the time average un�nished work of 
lass j, j = 1, . . . , M . The work-
onservationproperty implies that the total time average un�nished work,
U =

M
∑

j=1

U j , (1)is a 
onstant that depends only on the inter-arrival and servi
e time distributions, and its value isindependent of how the server's 
apa
ity is shared among the jobs of the various 
lasses.The work-
onserving property has led to the development of so-
alled work-
onservation laws.In the 
ase of a single-
lass queue, Kleinro
k [16, Se
tion 4℄ proved that the expe
ted 
onditionalresponse time must satisfy an integral equation. Kleinro
k's original result was obtained for thesubset of non-anti
ipating s
heduling dis
iplines. A s
heduling dis
ipline is said to be non-anti
ipatingif the s
heduling de
ision is independent of the a
tual servi
e requirements of the jobs. O'Donovan[17℄ generalized this result by deriving a 
onservation law for the set of s
heduling dis
iplines thatare anti
ipating, that is, dis
iplines that may use information on the (remaining) servi
e time whende
iding whi
h job will be served. For the multi-
lass 
ase, the work-
onserving property allows toobtain a linear relation that the expe
ted un
onditional response times of the various 
lasses mustsatisfy. Su
h a linear relation has been obtained for (i) non-anti
ipating dis
iplines with exponential1



servi
e time distributions [4℄ and (ii) non-preemptive non-anti
ipating dis
iplines with general servi
etime distributions [16, Se
tion 3.4℄. For more information on work-
onservation laws we refer to thetextbooks: Gelenbe and Mitrani [10, Chapter 6℄, Heyman and Sobel [13, Se
tions 11.4-5℄, Wol� [26,Chapter 10℄ and Ba

elli and Brémaud [2, Se
tion 3.2℄.The appli
ation of work-
onservation laws has proven extremely su

essful in the design of optimal
ontrol poli
ies of queueing systems. For instan
e it has led to the development of the A
hievableRegion approa
h, see seminal work by Co�man and Mitrani [4℄ and Federgruen and Groenevelt [8℄,Shantikumar and Yao [22℄, Da
re, Glazebrook and Niño-Mora [6℄ and Green and Stidham [11℄.In this paper, we derive a 
onservation law for a multi-
lass GI/GI/1 queue with a general work-
onserving s
heduling dis
ipline and general servi
e time distributions. Provided the s
heduling dis
i-pline is work-
onserving, the s
heduling dis
ipline may be anti
ipating or non-anti
ipating, preemptiveor non-preemptive. We will further show that already existing 
onservation laws for multi-
lass andsingle-
lass queues 
an be obtained as parti
ular 
ases of our work-
onservation law. Thus, the 
on-servation law developed provides a unifying view on the already existing 
onservation laws for single-server queues. We note that our unifying 
onservation law 
overs popular multi-
lass dis
iplines su
has Dis
riminatory Pro
essor Sharing (DPS) and Generalized Pro
essor Sharing (GPS) with generalservi
e time distributions, a 
ase whi
h was not 
overed by existing 
onservation laws. It is worthwhileto note that for the 
ase of a single-server single-
lass queue with an anti
ipating servi
e dis
ipline, weobtain an alternative (equivalent) expression for the 
onservation law that O'Donovan [17℄ developed.The remainder of the paper is organized as follows. In Se
tion 2 we introdu
e the notation andassumptions. In Se
tion 3 we develop the unifying 
onservation law. In Se
tion 4 we use the new
onservation law to 
ompare the expe
ted un
onditional response time of a non-anti
ipating dis
iplinewith that of an anti
ipating dis
ipline that favors short jobs. In Se
tion 5 we show that existing
onservation laws 
an be obtained as a parti
ular 
ase of our 
onservation law.2 Notation and AssumptionsThroughout the paper we 
onsider a GI/GI/1 queue operating under a work-
onserving dis
ipline.Thus we have a single server with identi
ally distributed inter-arrivals times and identi
ally distributedservi
e times. We assume that these random variables are mutually independent. Sin
e the s
hedulingdis
ipline is assumed to be work-
onserving, the total un�nished work in the system at time t, U(t),is independent of the dis
ipline being deployed.Let A denote the inter-arrival time distribution and let λ = 1/E[A] be the mean arrival rate of jobs.With probability pj an arrival is a 
lass-j job (independent of the inter-arrival times and 
lassi�
ationof previous jobs). Let λj = λpj be the mean arrival rate of 
lass-j jobs. The servi
e time distributionof 
lass j is denoted by Fj(·), and let F j(·) = 1− Fj(·) be its 
omplementary distribution. Let E[Xj]and E[X2
j ], j = 1, . . . , M , denote the �rst and se
ond moments of the servi
e time distributions. Theload of 
lass j is given by ρj = λjE[Xj], and the total load is ρ = λ

∑M
j=1 pjE[Xj ] =

∑M
j=1 ρj . Weassume to be in the stable regime, i.e., ρ < 1. As a dire
t 
onsequen
e of the renewal assumption, thesystem regenerates itself at the beginning of ea
h busy period. Throughout the paper we assume thatthe servi
e time distributions of the various 
lasses have a �nite se
ond moment, i.e., E[X2

j ] < ∞,
j = 1, . . . , M . This ensures that, under any work-
onserving dis
ipline, the expe
ted un�nished workat both arrival epo
hs (denoted by V ) and random epo
hs (denoted by U) is �nite, see [14℄ and [5,Se
tion II.5.6℄, respe
tively. In the 
ontext of single-
lass systems, the subs
ript denoting the 
lasswill be dropped from all variables.Re
all that the total expe
ted un�nished work at a random epo
h , U , is independent of thes
heduling dis
ipline, hen
e we have that U = U

FCFS , where U
FCFS denotes the expe
ted un�nishedwork under the First Come First Serve poli
y. In the 
ase of Poisson arrivals, by the Polla
zek-Khin
hin formula we get

U = U
FCFS

=

∑M
j=1 λjE[X2

j ]

2(1 − ρ)
. (2)Let Tj(x) be the expe
ted 
onditional response time of a 
lass-j job with servi
e time x. Inaddition, and bearing in mind the analysis of anti
ipating dis
iplines, let Tj(u; x) denote the expe
ted
onditional time that a 
lass-j job with total servi
e time x spends in the system in order to obtain

u units of servi
e, u ≤ x. In parti
ular Tj(x; x) = Tj(x) denotes the regular expe
ted 
onditional2



response time. We note that for the set of dis
iplines that are non-anti
ipating, Tj(u; x) = Tj(u),for all u ≤ x. We denote by T j the expe
ted un
onditional response time of 
lass-j jobs, that is,
T j =

∫

∞

x=0
Tj(x)dFj(x). In the analysis we make the following assumption.Assumption 1 The fun
tion Tj(u; x), j = 1, . . . , M , u ≤ x, has a 
ontinuous partial derivative withrespe
t to x.This assumption does not seem very restri
tive. For instan
e, for non-anti
ipating dis
iplines wehave Tj(u; x) = Tj(u), and hen
e ∂Tj(u;x)

∂x
= 0 for all u ≤ x. For SRPT, whi
h is the most popularanti
ipating dis
ipline, an expression for T (u; x) was provided in [17℄. Taking the derivative withrespe
t to x, it is easy to see that a su�
ient 
ondition for T SRPT (u; x) to have a 
ontinuous derivativewith respe
t to x is that the servi
e time distribution is a 
ontinuous fun
tion from the right.3 A Unifying Conservation LawIn this se
tion we state the main result of the paper. In Theorem 1 we develop a 
onservation lawfor a GI/GI/1 multi-
lass system operating under a general s
heduling dis
ipline and with generalservi
e time distributions. In spite of the apparent simpli
ity of the derivation, our result generalizesalready existing 
onservation laws and in Se
tion 5 we will show that previous laws 
an be obtainedas parti
ular 
ases of our unifying law.Before stating our main result, we brie�y mention the most important set of dis
iplines thatTheorem 1 
overs. For single-
lass systems, the set of non-anti
ipating s
heduling dis
iplines in
ludesamong others FCFS, Pro
essor-Sharing (PS), Foreground-Ba
kground (FB)1 and Last Come FirstServed (LCFS). Important examples of anti
ipating dis
iplines are the Shortest Remaining Pro
essingTime (SRPT) [21, 19℄, Shortest Job First and Fair Sojourn Proto
ol (FSP) [9℄. In multi-
lass systems,the most popular dis
iplines are non-anti
ipating, for example Generalized Pro
essor Sharing (GPS)[18, 24℄, Dis
riminatory Pro
essor Sharing (DPS) [15, 7℄ and Priority Dis
iplines.Theorem 1 Consider a GI/GI/1 multi-
lass queue under a work-
onserving s
heduling dis
ipline.Provided that Assumption 1 is satis�ed, the expe
ted 
onditional response times of the various 
lassessatisfy

M
∑

j=1

λj

∫

∞

x=0

F j(x)

(

Tj(x) +

∫ x

u=0

∂Tj(u; x)

∂x
du

)

dx = U, (3)where U is the total expe
ted un�nished work in the system whi
h depends only on the inter-arrival andservi
e time distributions. If in addition we assume that 
lass-j jobs, j = 1, . . . , M , arrive a

ordingto a Poisson pro
ess, then
U =

∑M
j=1 λjE[X2

j ]

2(1 − ρ)
.Proof. We 
onsider 
lass j, j = 1, . . . , M . Let W i

j , i = 1, 2, . . . , be the 
umulative burden ofthe i-th 
lass-j job to the un�nished work of the system (shaded region in Figure 1). Formally,
W i

j :=
∫ di

j

t=0 Ri
j(a

i
j + t)dt, where ai

j is the arrival time of the i-th 
lass-j job, di
j its response timeand Ri

j(t) its remaining servi
e requirement at time t. In parti
ular, Ri
j(a

i
j) = x is the total servi
erequirement of this job and Ri

j(a
i
j + di

j) = 0. Sin
e ρ < 1, the busy period has a �nite length withprobability 1. Furthermore, sin
e the superposed arrival pro
ess is a renewal pro
ess, the begin pointsof the busy periods 
onstitute regeneration points and, as a 
onsequen
e, the sequen
e {Wn
j }∞n=1 is aregenerative pro
ess with �nite 
y
le lengths. Hen
e, the pro
ess {Wn

j }∞n=1 is stationary and ergodi
.Applying the Palm inversion formula [3, 2℄ to the un�nished work of 
lass j, we obtain U j = λjE[Wj ].This equation 
an also be obtained by the generalized Little's law (see Brumelle [3℄). Informally, theequation U j = λjE[Wj ] states that the time average of a sto
hasti
 pro
ess (U j) is equal to the arrivalrate (λj) times the average 
ontribution of ea
h job to the pro
ess (E[Wj ]).We derive now the value of E[Wj ]. Let τ i
j (u; x) denote the amount of time that the i-th 
lass-jjob, whi
h has a size equal to x, needs to obtain u ≤ x units of servi
e. In parti
ular we note that1Also known as Least Attained Servi
e (LAS) 3
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Figure 1: Cumulative 
ontribution over time of the i-th 
lass-j job with size x on the un�nished work.
τ i
j(x) := τ i

j(x; x) = di
j is equal to the response time of the i-th 
lass-j job. Note that E[τ i

j(u; x)] =
Tj(u; x). Then

E[Wj ] = E[

∫

∞

x=0

∫ τ i
j (x)

t=0

Ri
j(a

i
j + t)dtdFj(x)]

= E[

∫

∞

x=0

∫ x

u=0

τ i
j(x − u; x)dudFj(x)].This 
orresponds to integrating the shaded area in Figure 1 either horizontally (�rst equation) orverti
ally (se
ond equation). By a simple 
hange of variables and inter
hanging the order of theintegrals we obtain

E[Wj ] = E[

∫

∞

x=0

∫ x

u=0

τ i
j(u; x)dudFj(x)]

=

∫

∞

x=0

∫ x

u=0

Tj(u; x)dudFj(x).By Assumption 1 the fun
tion Tj(u; x) has a 
ontinuous partial derivative with respe
t to x, hen
e bypartial integration we obtain
E[Wj ] = −F j(x)

∫ x

u=0

Tj(u; x)du
∣

∣

∣

∞

x=0
+

∫

∞

x=0

F j(x)

(

Tj(x; x) +

∫ x

u=0

∂Tj(u, x)

∂x
du

)

dx. (4)The se
ondmoment of the servi
e time distribution satis�esE[X2
j ] =

∫

∞

x=0
x2dFj(x) =

∫

∞

x=0
2xF j(x)dx.By partial integration we obtain

∫

∞

x=0

x2dFj(x) =

∫

∞

x=0

2xF j(x)dx + lim
x→∞

x2F j(x).Sin
e the servi
e time distribution has a �nite se
ond moment we get that limx→∞ x2F j(x) = 0. Let
B(y) be the expe
ted length of the busy period initiated by a job of size y. Note that B(·) refers tothe regular busy period in the GI/GI/1 (and not the sub-busy period of a parti
ular 
lass). Then itfollows that

Tj(u; x) ≤ Tj(x; x) ≤ B(x + V ),where V is the expe
ted total un�nished work in the system at an arrival epo
h. Let L be a 
onstantsu
h that E[min(A, L)] >
∑M

j=1 pjE[Xj ], that is, we trun
ate the inter-arrival times su
h that thesystem is still stable. Using [12, Theorem III.3.1℄ and Wald's Lemma it is easy to show that
E[B(y)] ≤

y + L
E[min(A,L)]

E[A] − ρ
.Together with the fa
t that limx→∞ x2F j(x) = 0 we obtain

lim
x→∞

F j(x)

∫ x

u=0

Tj(u; x)du ≤ lim
x→∞

F j(x)
x2 + (V + L)x
E[min(A,L)]

E[A] − ρ
= 0. (5)4



Thus, equation (4) be
omes
E[Wj ] =

∫

∞

x=0

F j(x)

(

Tj(x) +

∫ x

u=0

∂Tj(u; x)

∂x
du

)

dx.Re
all that U j = λjE[Wj ], j = 1, . . . , M . Now the result follows after summing over all the 
lassesand invoking the work-
onservation property (1). When the arrival pro
esses of the various 
lassesare Poisson, the time average total un�nished work is given by equation (2). �In the 
ontext of a multi-
lass queue, the most important dis
iplines are non-anti
ipating. In thefollowing 
orollary we spe
ialize Theorem 1 to this set of dis
iplines.Corollary 1 In addition to the 
onditions of Theorem 1, assume that the s
heduling dis
ipline isnon-anti
ipating. Then
M
∑

j=1

λj

∫

∞

x=0

F j(x)Tj(x)dx = U. (6)where U is the expe
ted un�nished work in the system whi
h depends only on the inter-arrival andservi
e time distributions. If the arrival pro
esses of the various 
lasses are Poisson, then U =
P

M
j=1

λjE[X2

j ]

2(1−ρ) .Proof. The proof follows readily from Theorem 1 after noting that for a non-anti
ipating dis
iplinewe have Tj(u; x) = Tj(u) and hen
e ∂Tj(u;x)
∂x

= 0, for all 0 ≤ u ≤ x. �We note that Corollary 1 
overs important multi-
lass dis
iplines su
h as DPS and GPS. Forinstan
e, Corollary 1 was used in [1℄ to study the asymptoti
s of the expe
ted 
onditional responsetime in a DPS queue when the servi
e time grows to in�nite.4 Performan
e of Anti
ipating Dis
iplinesIn this se
tion we show that the 
onservation law derived in Theorem 1 may be useful in evaluatingthe e�e
t that deploying an anti
ipating servi
e time dis
ipline has on the expe
ted un
onditionalresponse time.Proposition 1 Consider a single-
lass queue with exponentially distributed servi
e times. Let π1 bea work-
onserving non-anti
ipating dis
ipline and let π2 be a work-
onserving anti
ipating dis
iplinesu
h that for all 0 ≤ u ≤ x
∂T π2(u, x)

∂x
≥ 0. (7)Then

T
π1

≥ T
π2

,where T
π1 and T

π2 denote the expe
ted un
onditional response time obtained under π1 and π2 respe
-tively.Proof. Sin
e π1 is non-anti
ipating and noting that the exponential assumptions implies that
F (x)dx = E[X ]dF (x), from Corollary 1 we get

U = λ

∫

∞

x=0

F (x)T π1(x)dx = λE[X ]

∫

∞

x=0

T π1(x)dF (x)

= ρT
π1

.In the 
ase of π2, the 
onservation law (3) 
an be written as
U = ρT

π2

+ λ

∫

∞

x=0

F (x)

∫ x

u=0

∂T π2(u; x)

∂x
dudx.

5



Taking the di�eren
e we obtain
ρ

(

T
π1

− T
π2

)

= λ

∫

∞

x=0

F (x)

∫ x

u=0

∂T π2(u; x)

∂x
dudx.The �nal result follows as a dire
t 
onsequen
e of inequality (7). �Proposition 1 shows that ∂T π2 (u,x)

∂x
≥ 0 for all 0 ≤ u ≤ x is a su�
ient 
ondition for an anti
ipatingdis
ipline π2 to have a smaller expe
ted un
onditional response time 
ompared to any non-anti
ipatingdis
ipline, i.e., dis
ipline π2 dis
riminates against large jobs. The set of s
heduling dis
iplines thatsatisfy equation (7) is large. Using O'Donovan's expression [17℄ it is easy to verify that relation (7) isindeed satis�ed for SRPT. We expe
t that poli
ies su
h as FSP, Shortest-Job-First (preemptive andnon-preemptive) and SMART [25℄ will also satisfy (7) sin
e they all dis
riminate against large jobs.In future work we plan to investigate whether a pre
ise evaluation of the term ∂T (u,x)

∂x
allows oneto obtain pre
ise bounds on the expe
ted un
onditional response time of anti
ipating dis
iplines.5 Relation with previously obtained Conservation LawsThe derivations of existing 
onservation laws for the single-
lass and multi-
lass systems were obtainedby di�erent approa
hes. In this se
tion we show that these 
onservation laws 
an all be obtained asa parti
ular 
ase of the unifying 
onservation law as stated in Theorem 1.5.1 Single-
lass queue5.1.1 Non-anti
ipating dis
iplineIt is straightforward to derive a work-
onservation law for a single-
lass, non-anti
ipating s
hedulingdis
ipline. Setting M = 1 in Corollary 1 we obtain

U = λ

∫

∞

x=0

F (x)T (x)dx,whi
h is pre
isely the 
onservation law for the single-
lass system as stated in [17℄,[16, Se
tion 4.9℄and [2, Se
tion 2.3℄.5.1.2 Anti
ipating dis
iplineIn this se
tion we show how the 
onservation law for a general anti
ipating s
heduling dis
iplineobtained by O'Donovan [17, equation (9)℄ 
an be retrieved from the unifying 
onservation law. Setting
M = 1 in Theorem 1 we obtain

U = λ

∫

∞

x=0

F (x)

(

T (x) +

∫ x

u=0

∂T (u; x)

∂x
du

)

dx

= λ

∫

∞

x=0

F (x)
d

dx

(
∫ x

u=0

T (u; x)du

)

dx

= λ

∫

∞

x=0

∫ x

u=0

T (u; x)dudF (x),where the last inequality is obtained by partial integration and (5). Making the 
hange of variable
u = x − r, and integrating by parts the inner integral we get

U = λ

∫

∞

x=0

∫ x

r=0

(−r∂rT (x − r; x)) dF (x),where the notation ∂r denotes a di�erential with respe
t to the variable r. Now by inter
hanging theorder of the integrals we obtain
U = λ

∫

∞

r=0

r

∫

∞

x=r

(−∂rT (x − r; x)) dF (x),whi
h is pre
isely the 
onservation law as stated in O'Donovan [17, equation (9)℄. Note that due tothe de�nition of T (x − r; x), we have −∂rT (x − r; x) ≥ 0.6



5.1.3 Non-preemptive anti
ipating dis
iplineBa

elli and Brémaud [2, p. 163℄ develop a 
onservation law for the subset of anti
ipating s
hedulingdis
iplines that are non-preemptive (for example non-preemptive Shortest Job First). In this 
ase theexpe
ted 
onditional sojourn time 
an be expressed as T (u; x) = u + V (x), for all 0 ≤ u ≤ x, where
V (x) denotes the expe
ted waiting time in the queue for a job of size x ≥ 0, i.e., the elapsed timebetween the arrival time and the time at whi
h the job starts to be served. Setting M = 1 in (3) andsubstituting the expression for T (u; x), we get

U = λ

∫

∞

x=0

F (x)

(

x + V (x) +

∫ x

u=0

dV (x)

dx
du

)

dx

=
1

2
λE[X2] +

∫

∞

x=0

F (x)
d(xV (x))

dx
dx

=
1

2
λE[X2] +

∫

∞

x=0

xV (x)dF (x),where the last equality is obtained by partial integration. This expression is the same as the 
onser-vation law stated in [2, p. 163℄.5.2 Multi-
lass queue5.2.1 Non-anti
ipating dis
ipline and exponential servi
e time distributionsA 
onservation law for non-anti
ipating dis
iplines with exponential servi
e times was obtained in [4℄(see also [10, Se
tion 6.2℄). From the assumption of exponential servi
e time distributions, it followsthat for j = 1, . . . , M ,
F j(x)dx = E[Xj ]dFj(x). (8)Plugging (8) into (6) we get

U =

M
∑

j=1

λjE[Xj]

∫

∞

x=0

Tj(x)dFj(x) =

M
∑

j=1

ρjT j ,whi
h is pre
isely the 
onservation law as stated in [4℄ and [10, Se
tion 6.2℄.5.2.2 Non-preemptive non-anti
ipating dis
ipline and general servi
e time distributionsFinally, let us 
onsider a non-preemptive non-anti
ipating s
heduling dis
ipline with general servi
etime distributions. Su
h a poli
y spe
i�es whi
h 
lass to serve whenever a job leaves the system. Forexample, the server may visit the 
lasses in some order: �xed, random or following a priority rule.The poli
y is non-anti
ipating if this de
ision is made based only on the past history and 
urrentstate of the system. Within one 
lass, the job that will be served 
an be determined with a non-preemptive non-anti
ipating poli
y like FCFS or Random Order of Servi
e. Under a non-preemptivenon-anti
ipating s
heduling dis
ipline the expe
ted 
onditional response time for a 
lass-j job of size
x satis�es Tj(x) = x + V j , for all x ≥ 0, where V j denotes the expe
ted waiting time in the queue fora 
lass-j job (whi
h is independent of x), i.e., the elapsed time between the arrival time and the timeat whi
h the job starts to obtain servi
e. Substituting this into (6) we obtain

U =
M
∑

j=1

λj

∫

∞

x=0

Tj(x)F j(x)dx =
1

2

M
∑

j=1

λjE[X2
j ] +

M
∑

j=1

λjV j

∫

∞

x=0

F j(x)dx

=
1

2

M
∑

j=1

λjE[X2
j ] +

M
∑

j=1

ρjV j,whi
h is equivalent to the 
onservation law as stated in [20℄ and [16, Se
tion 3.4℄.
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