
A unifying onservation law for single-server queuesUrtzi AyestaLAAS-CNRS7, Avenue Colonel Rohe31077, Toulousee-mail: urtzi�laas.frAbstratWe develop a onservation law for a multi-lass GI/GI/1 queue operating under a generalwork-onserving sheduling disipline. For single-lass single-server queues, onservation lawshave been obtained for both non-antiipating and antiipating disiplines with general servietime distributions. For multi-lass single-server queues, onservation laws have been obtained for(i) non-antiipating disiplines with exponential servie time distributions and (ii) non-preemptivenon-antiipating disiplines with general servie time distributions. The unifying onservationlaw we develop generalizes already existing onservation laws. In addition it overs popularnon-antiipating multi-lass time-sharing disiplines suh as Disriminatory Proessor Sharing(DPS) and Generalized Proessor Sharing (GPS) with general servie time distributions. As anappliation we show that the unifying onservation law an be used to ompare the expetedunonditional response time under two sheduling disiplines.1 IntrodutionThe so-alled work-onserving property is fundamental to single-server (multi-lass) systems. Let usonsider a single-server queue with M job lasses. Let Uj(t) be the un�nished work at time t of lass-jjobs, j = 1, . . . , M , and let U(t) =
∑M

j=1 Uj(t) denote the total un�nished work in the system. Theun�nished work in the system, U(t), is a funtion that has vertial jumps at arrival epohs equal in sizeto the orresponding servie requirements of the job and remains onstant when it hits the horizontalaxis. We say that the sheduling disipline is work-onserving if U(t) dereases at rate 1(sec/sec)whenever U(t) > 0. A sample path argument shows that the un�nished work in the system, U(t), isthe same regardless of the work-onserving sheduling disipline being deployed.In this paper we fous on onservation laws for the time average un�nished work. We refer to Greenand Stidham [11℄ and Sigman [23℄ for the derivation and appliation of sample-path onservation laws.Let U j denote the time average un�nished work of lass j, j = 1, . . . , M . The work-onservationproperty implies that the total time average un�nished work,
U =

M
∑

j=1

U j , (1)is a onstant that depends only on the inter-arrival and servie time distributions, and its value isindependent of how the server's apaity is shared among the jobs of the various lasses.The work-onserving property has led to the development of so-alled work-onservation laws.In the ase of a single-lass queue, Kleinrok [16, Setion 4℄ proved that the expeted onditionalresponse time must satisfy an integral equation. Kleinrok's original result was obtained for thesubset of non-antiipating sheduling disiplines. A sheduling disipline is said to be non-antiipatingif the sheduling deision is independent of the atual servie requirements of the jobs. O'Donovan[17℄ generalized this result by deriving a onservation law for the set of sheduling disiplines thatare antiipating, that is, disiplines that may use information on the (remaining) servie time whendeiding whih job will be served. For the multi-lass ase, the work-onserving property allows toobtain a linear relation that the expeted unonditional response times of the various lasses mustsatisfy. Suh a linear relation has been obtained for (i) non-antiipating disiplines with exponential1



servie time distributions [4℄ and (ii) non-preemptive non-antiipating disiplines with general servietime distributions [16, Setion 3.4℄. For more information on work-onservation laws we refer to thetextbooks: Gelenbe and Mitrani [10, Chapter 6℄, Heyman and Sobel [13, Setions 11.4-5℄, Wol� [26,Chapter 10℄ and Baelli and Brémaud [2, Setion 3.2℄.The appliation of work-onservation laws has proven extremely suessful in the design of optimalontrol poliies of queueing systems. For instane it has led to the development of the AhievableRegion approah, see seminal work by Co�man and Mitrani [4℄ and Federgruen and Groenevelt [8℄,Shantikumar and Yao [22℄, Dare, Glazebrook and Niño-Mora [6℄ and Green and Stidham [11℄.In this paper, we derive a onservation law for a multi-lass GI/GI/1 queue with a general work-onserving sheduling disipline and general servie time distributions. Provided the sheduling disi-pline is work-onserving, the sheduling disipline may be antiipating or non-antiipating, preemptiveor non-preemptive. We will further show that already existing onservation laws for multi-lass andsingle-lass queues an be obtained as partiular ases of our work-onservation law. Thus, the on-servation law developed provides a unifying view on the already existing onservation laws for single-server queues. We note that our unifying onservation law overs popular multi-lass disiplines suhas Disriminatory Proessor Sharing (DPS) and Generalized Proessor Sharing (GPS) with generalservie time distributions, a ase whih was not overed by existing onservation laws. It is worthwhileto note that for the ase of a single-server single-lass queue with an antiipating servie disipline, weobtain an alternative (equivalent) expression for the onservation law that O'Donovan [17℄ developed.The remainder of the paper is organized as follows. In Setion 2 we introdue the notation andassumptions. In Setion 3 we develop the unifying onservation law. In Setion 4 we use the newonservation law to ompare the expeted unonditional response time of a non-antiipating disiplinewith that of an antiipating disipline that favors short jobs. In Setion 5 we show that existingonservation laws an be obtained as a partiular ase of our onservation law.2 Notation and AssumptionsThroughout the paper we onsider a GI/GI/1 queue operating under a work-onserving disipline.Thus we have a single server with identially distributed inter-arrivals times and identially distributedservie times. We assume that these random variables are mutually independent. Sine the shedulingdisipline is assumed to be work-onserving, the total un�nished work in the system at time t, U(t),is independent of the disipline being deployed.Let A denote the inter-arrival time distribution and let λ = 1/E[A] be the mean arrival rate of jobs.With probability pj an arrival is a lass-j job (independent of the inter-arrival times and lassi�ationof previous jobs). Let λj = λpj be the mean arrival rate of lass-j jobs. The servie time distributionof lass j is denoted by Fj(·), and let F j(·) = 1− Fj(·) be its omplementary distribution. Let E[Xj]and E[X2
j ], j = 1, . . . , M , denote the �rst and seond moments of the servie time distributions. Theload of lass j is given by ρj = λjE[Xj], and the total load is ρ = λ

∑M
j=1 pjE[Xj ] =

∑M
j=1 ρj . Weassume to be in the stable regime, i.e., ρ < 1. As a diret onsequene of the renewal assumption, thesystem regenerates itself at the beginning of eah busy period. Throughout the paper we assume thatthe servie time distributions of the various lasses have a �nite seond moment, i.e., E[X2

j ] < ∞,
j = 1, . . . , M . This ensures that, under any work-onserving disipline, the expeted un�nished workat both arrival epohs (denoted by V ) and random epohs (denoted by U) is �nite, see [14℄ and [5,Setion II.5.6℄, respetively. In the ontext of single-lass systems, the subsript denoting the lasswill be dropped from all variables.Reall that the total expeted un�nished work at a random epoh , U , is independent of thesheduling disipline, hene we have that U = U

FCFS , where U
FCFS denotes the expeted un�nishedwork under the First Come First Serve poliy. In the ase of Poisson arrivals, by the Pollazek-Khinhin formula we get

U = U
FCFS

=

∑M
j=1 λjE[X2

j ]

2(1 − ρ)
. (2)Let Tj(x) be the expeted onditional response time of a lass-j job with servie time x. Inaddition, and bearing in mind the analysis of antiipating disiplines, let Tj(u; x) denote the expetedonditional time that a lass-j job with total servie time x spends in the system in order to obtain

u units of servie, u ≤ x. In partiular Tj(x; x) = Tj(x) denotes the regular expeted onditional2



response time. We note that for the set of disiplines that are non-antiipating, Tj(u; x) = Tj(u),for all u ≤ x. We denote by T j the expeted unonditional response time of lass-j jobs, that is,
T j =

∫

∞

x=0
Tj(x)dFj(x). In the analysis we make the following assumption.Assumption 1 The funtion Tj(u; x), j = 1, . . . , M , u ≤ x, has a ontinuous partial derivative withrespet to x.This assumption does not seem very restritive. For instane, for non-antiipating disiplines wehave Tj(u; x) = Tj(u), and hene ∂Tj(u;x)

∂x
= 0 for all u ≤ x. For SRPT, whih is the most popularantiipating disipline, an expression for T (u; x) was provided in [17℄. Taking the derivative withrespet to x, it is easy to see that a su�ient ondition for T SRPT (u; x) to have a ontinuous derivativewith respet to x is that the servie time distribution is a ontinuous funtion from the right.3 A Unifying Conservation LawIn this setion we state the main result of the paper. In Theorem 1 we develop a onservation lawfor a GI/GI/1 multi-lass system operating under a general sheduling disipline and with generalservie time distributions. In spite of the apparent simpliity of the derivation, our result generalizesalready existing onservation laws and in Setion 5 we will show that previous laws an be obtainedas partiular ases of our unifying law.Before stating our main result, we brie�y mention the most important set of disiplines thatTheorem 1 overs. For single-lass systems, the set of non-antiipating sheduling disiplines inludesamong others FCFS, Proessor-Sharing (PS), Foreground-Bakground (FB)1 and Last Come FirstServed (LCFS). Important examples of antiipating disiplines are the Shortest Remaining ProessingTime (SRPT) [21, 19℄, Shortest Job First and Fair Sojourn Protool (FSP) [9℄. In multi-lass systems,the most popular disiplines are non-antiipating, for example Generalized Proessor Sharing (GPS)[18, 24℄, Disriminatory Proessor Sharing (DPS) [15, 7℄ and Priority Disiplines.Theorem 1 Consider a GI/GI/1 multi-lass queue under a work-onserving sheduling disipline.Provided that Assumption 1 is satis�ed, the expeted onditional response times of the various lassessatisfy

M
∑

j=1

λj

∫

∞

x=0

F j(x)

(

Tj(x) +

∫ x

u=0

∂Tj(u; x)

∂x
du

)

dx = U, (3)where U is the total expeted un�nished work in the system whih depends only on the inter-arrival andservie time distributions. If in addition we assume that lass-j jobs, j = 1, . . . , M , arrive aordingto a Poisson proess, then
U =

∑M
j=1 λjE[X2

j ]

2(1 − ρ)
.Proof. We onsider lass j, j = 1, . . . , M . Let W i

j , i = 1, 2, . . . , be the umulative burden ofthe i-th lass-j job to the un�nished work of the system (shaded region in Figure 1). Formally,
W i

j :=
∫ di

j

t=0 Ri
j(a

i
j + t)dt, where ai

j is the arrival time of the i-th lass-j job, di
j its response timeand Ri

j(t) its remaining servie requirement at time t. In partiular, Ri
j(a

i
j) = x is the total servierequirement of this job and Ri

j(a
i
j + di

j) = 0. Sine ρ < 1, the busy period has a �nite length withprobability 1. Furthermore, sine the superposed arrival proess is a renewal proess, the begin pointsof the busy periods onstitute regeneration points and, as a onsequene, the sequene {Wn
j }∞n=1 is aregenerative proess with �nite yle lengths. Hene, the proess {Wn

j }∞n=1 is stationary and ergodi.Applying the Palm inversion formula [3, 2℄ to the un�nished work of lass j, we obtain U j = λjE[Wj ].This equation an also be obtained by the generalized Little's law (see Brumelle [3℄). Informally, theequation U j = λjE[Wj ] states that the time average of a stohasti proess (U j) is equal to the arrivalrate (λj) times the average ontribution of eah job to the proess (E[Wj ]).We derive now the value of E[Wj ]. Let τ i
j (u; x) denote the amount of time that the i-th lass-jjob, whih has a size equal to x, needs to obtain u ≤ x units of servie. In partiular we note that1Also known as Least Attained Servie (LAS) 3
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Figure 1: Cumulative ontribution over time of the i-th lass-j job with size x on the un�nished work.
τ i
j(x) := τ i

j(x; x) = di
j is equal to the response time of the i-th lass-j job. Note that E[τ i

j(u; x)] =
Tj(u; x). Then

E[Wj ] = E[

∫

∞

x=0

∫ τ i
j (x)

t=0

Ri
j(a

i
j + t)dtdFj(x)]

= E[

∫

∞

x=0

∫ x

u=0

τ i
j(x − u; x)dudFj(x)].This orresponds to integrating the shaded area in Figure 1 either horizontally (�rst equation) orvertially (seond equation). By a simple hange of variables and interhanging the order of theintegrals we obtain

E[Wj ] = E[

∫

∞

x=0

∫ x

u=0

τ i
j(u; x)dudFj(x)]

=

∫

∞

x=0

∫ x

u=0

Tj(u; x)dudFj(x).By Assumption 1 the funtion Tj(u; x) has a ontinuous partial derivative with respet to x, hene bypartial integration we obtain
E[Wj ] = −F j(x)

∫ x

u=0

Tj(u; x)du
∣

∣

∣

∞

x=0
+

∫

∞

x=0

F j(x)

(

Tj(x; x) +

∫ x

u=0

∂Tj(u, x)

∂x
du

)

dx. (4)The seondmoment of the servie time distribution satis�esE[X2
j ] =

∫

∞

x=0
x2dFj(x) =

∫

∞

x=0
2xF j(x)dx.By partial integration we obtain

∫

∞

x=0

x2dFj(x) =

∫

∞

x=0

2xF j(x)dx + lim
x→∞

x2F j(x).Sine the servie time distribution has a �nite seond moment we get that limx→∞ x2F j(x) = 0. Let
B(y) be the expeted length of the busy period initiated by a job of size y. Note that B(·) refers tothe regular busy period in the GI/GI/1 (and not the sub-busy period of a partiular lass). Then itfollows that

Tj(u; x) ≤ Tj(x; x) ≤ B(x + V ),where V is the expeted total un�nished work in the system at an arrival epoh. Let L be a onstantsuh that E[min(A, L)] >
∑M

j=1 pjE[Xj ], that is, we trunate the inter-arrival times suh that thesystem is still stable. Using [12, Theorem III.3.1℄ and Wald's Lemma it is easy to show that
E[B(y)] ≤

y + L
E[min(A,L)]

E[A] − ρ
.Together with the fat that limx→∞ x2F j(x) = 0 we obtain

lim
x→∞

F j(x)

∫ x

u=0

Tj(u; x)du ≤ lim
x→∞

F j(x)
x2 + (V + L)x
E[min(A,L)]

E[A] − ρ
= 0. (5)4



Thus, equation (4) beomes
E[Wj ] =

∫

∞

x=0

F j(x)

(

Tj(x) +

∫ x

u=0

∂Tj(u; x)

∂x
du

)

dx.Reall that U j = λjE[Wj ], j = 1, . . . , M . Now the result follows after summing over all the lassesand invoking the work-onservation property (1). When the arrival proesses of the various lassesare Poisson, the time average total un�nished work is given by equation (2). �In the ontext of a multi-lass queue, the most important disiplines are non-antiipating. In thefollowing orollary we speialize Theorem 1 to this set of disiplines.Corollary 1 In addition to the onditions of Theorem 1, assume that the sheduling disipline isnon-antiipating. Then
M
∑

j=1

λj

∫

∞

x=0

F j(x)Tj(x)dx = U. (6)where U is the expeted un�nished work in the system whih depends only on the inter-arrival andservie time distributions. If the arrival proesses of the various lasses are Poisson, then U =
P

M
j=1

λjE[X2

j ]

2(1−ρ) .Proof. The proof follows readily from Theorem 1 after noting that for a non-antiipating disiplinewe have Tj(u; x) = Tj(u) and hene ∂Tj(u;x)
∂x

= 0, for all 0 ≤ u ≤ x. �We note that Corollary 1 overs important multi-lass disiplines suh as DPS and GPS. Forinstane, Corollary 1 was used in [1℄ to study the asymptotis of the expeted onditional responsetime in a DPS queue when the servie time grows to in�nite.4 Performane of Antiipating DisiplinesIn this setion we show that the onservation law derived in Theorem 1 may be useful in evaluatingthe e�et that deploying an antiipating servie time disipline has on the expeted unonditionalresponse time.Proposition 1 Consider a single-lass queue with exponentially distributed servie times. Let π1 bea work-onserving non-antiipating disipline and let π2 be a work-onserving antiipating disiplinesuh that for all 0 ≤ u ≤ x
∂T π2(u, x)

∂x
≥ 0. (7)Then

T
π1

≥ T
π2

,where T
π1 and T

π2 denote the expeted unonditional response time obtained under π1 and π2 respe-tively.Proof. Sine π1 is non-antiipating and noting that the exponential assumptions implies that
F (x)dx = E[X ]dF (x), from Corollary 1 we get

U = λ

∫

∞

x=0

F (x)T π1(x)dx = λE[X ]

∫

∞

x=0

T π1(x)dF (x)

= ρT
π1

.In the ase of π2, the onservation law (3) an be written as
U = ρT

π2

+ λ

∫

∞

x=0

F (x)

∫ x

u=0

∂T π2(u; x)

∂x
dudx.

5



Taking the di�erene we obtain
ρ

(

T
π1

− T
π2

)

= λ

∫

∞

x=0

F (x)

∫ x

u=0

∂T π2(u; x)

∂x
dudx.The �nal result follows as a diret onsequene of inequality (7). �Proposition 1 shows that ∂T π2 (u,x)

∂x
≥ 0 for all 0 ≤ u ≤ x is a su�ient ondition for an antiipatingdisipline π2 to have a smaller expeted unonditional response time ompared to any non-antiipatingdisipline, i.e., disipline π2 disriminates against large jobs. The set of sheduling disiplines thatsatisfy equation (7) is large. Using O'Donovan's expression [17℄ it is easy to verify that relation (7) isindeed satis�ed for SRPT. We expet that poliies suh as FSP, Shortest-Job-First (preemptive andnon-preemptive) and SMART [25℄ will also satisfy (7) sine they all disriminate against large jobs.In future work we plan to investigate whether a preise evaluation of the term ∂T (u,x)

∂x
allows oneto obtain preise bounds on the expeted unonditional response time of antiipating disiplines.5 Relation with previously obtained Conservation LawsThe derivations of existing onservation laws for the single-lass and multi-lass systems were obtainedby di�erent approahes. In this setion we show that these onservation laws an all be obtained asa partiular ase of the unifying onservation law as stated in Theorem 1.5.1 Single-lass queue5.1.1 Non-antiipating disiplineIt is straightforward to derive a work-onservation law for a single-lass, non-antiipating shedulingdisipline. Setting M = 1 in Corollary 1 we obtain

U = λ

∫

∞

x=0

F (x)T (x)dx,whih is preisely the onservation law for the single-lass system as stated in [17℄,[16, Setion 4.9℄and [2, Setion 2.3℄.5.1.2 Antiipating disiplineIn this setion we show how the onservation law for a general antiipating sheduling disiplineobtained by O'Donovan [17, equation (9)℄ an be retrieved from the unifying onservation law. Setting
M = 1 in Theorem 1 we obtain

U = λ

∫

∞

x=0

F (x)

(

T (x) +

∫ x

u=0

∂T (u; x)

∂x
du

)

dx

= λ

∫

∞

x=0

F (x)
d

dx

(
∫ x

u=0

T (u; x)du

)

dx

= λ

∫

∞

x=0

∫ x

u=0

T (u; x)dudF (x),where the last inequality is obtained by partial integration and (5). Making the hange of variable
u = x − r, and integrating by parts the inner integral we get

U = λ

∫

∞

x=0

∫ x

r=0

(−r∂rT (x − r; x)) dF (x),where the notation ∂r denotes a di�erential with respet to the variable r. Now by interhanging theorder of the integrals we obtain
U = λ

∫

∞

r=0

r

∫

∞

x=r

(−∂rT (x − r; x)) dF (x),whih is preisely the onservation law as stated in O'Donovan [17, equation (9)℄. Note that due tothe de�nition of T (x − r; x), we have −∂rT (x − r; x) ≥ 0.6



5.1.3 Non-preemptive antiipating disiplineBaelli and Brémaud [2, p. 163℄ develop a onservation law for the subset of antiipating shedulingdisiplines that are non-preemptive (for example non-preemptive Shortest Job First). In this ase theexpeted onditional sojourn time an be expressed as T (u; x) = u + V (x), for all 0 ≤ u ≤ x, where
V (x) denotes the expeted waiting time in the queue for a job of size x ≥ 0, i.e., the elapsed timebetween the arrival time and the time at whih the job starts to be served. Setting M = 1 in (3) andsubstituting the expression for T (u; x), we get

U = λ

∫

∞

x=0

F (x)

(

x + V (x) +

∫ x

u=0

dV (x)

dx
du

)

dx

=
1

2
λE[X2] +

∫

∞

x=0

F (x)
d(xV (x))

dx
dx

=
1

2
λE[X2] +

∫

∞

x=0

xV (x)dF (x),where the last equality is obtained by partial integration. This expression is the same as the onser-vation law stated in [2, p. 163℄.5.2 Multi-lass queue5.2.1 Non-antiipating disipline and exponential servie time distributionsA onservation law for non-antiipating disiplines with exponential servie times was obtained in [4℄(see also [10, Setion 6.2℄). From the assumption of exponential servie time distributions, it followsthat for j = 1, . . . , M ,
F j(x)dx = E[Xj ]dFj(x). (8)Plugging (8) into (6) we get

U =

M
∑

j=1

λjE[Xj]

∫

∞

x=0

Tj(x)dFj(x) =

M
∑

j=1

ρjT j ,whih is preisely the onservation law as stated in [4℄ and [10, Setion 6.2℄.5.2.2 Non-preemptive non-antiipating disipline and general servie time distributionsFinally, let us onsider a non-preemptive non-antiipating sheduling disipline with general servietime distributions. Suh a poliy spei�es whih lass to serve whenever a job leaves the system. Forexample, the server may visit the lasses in some order: �xed, random or following a priority rule.The poliy is non-antiipating if this deision is made based only on the past history and urrentstate of the system. Within one lass, the job that will be served an be determined with a non-preemptive non-antiipating poliy like FCFS or Random Order of Servie. Under a non-preemptivenon-antiipating sheduling disipline the expeted onditional response time for a lass-j job of size
x satis�es Tj(x) = x + V j , for all x ≥ 0, where V j denotes the expeted waiting time in the queue fora lass-j job (whih is independent of x), i.e., the elapsed time between the arrival time and the timeat whih the job starts to obtain servie. Substituting this into (6) we obtain

U =
M
∑

j=1

λj

∫

∞

x=0

Tj(x)F j(x)dx =
1

2

M
∑

j=1

λjE[X2
j ] +

M
∑

j=1

λjV j

∫

∞

x=0

F j(x)dx

=
1

2

M
∑

j=1

λjE[X2
j ] +

M
∑

j=1

ρjV j,whih is equivalent to the onservation law as stated in [20℄ and [16, Setion 3.4℄.
7



AknowledgmentsThe author is thankful to S. Aalto, K.E. Avrahenkov, S.C. Borst, R. Núñez-Queija, M. Nuyens andespeially to I.M. Verloop for reading and providing valuable omments on the preliminary versions ofthe paper. The author is also thankful to A. Sapozhnikov and A.P. Zwart who pointed out referene[12℄ and to the anonymous referee.Referenes[1℄ K.E. Avrahenkov, U. Ayesta, P. Brown, and R. Núñez-Queija. Disriminatory proessor sharingrevisited. In Proeedings of IEEE INFOCOM, 2005.[2℄ F. Baelli and P. Brémaud. Elements of Queuing Theory: Palm Martingale Calulus and Stohas-ti Reurrenes. Springer, 2003.[3℄ S.L. Brumelle. On the relation between ustomer and time average in queues. Journal of AppliedProbability, 2:508�520, 1971.[4℄ E.G. Co�man and I. Mitrani. A haraterization of waiting time performane realizable bysingle-server queues. Operations Researh, 3(28):810�821, 1980.[5℄ J.W. Cohen. The single server queue. North-Holland, 1982.[6℄ M. Dare, K. Glazebrook, and J. Niño-Mora. The ahievable region approah to the optimalontrol of stohasti systems. Journal of the Royal Statistial Soiety. Series B, Methodologial,61(4):747�791, 1996.[7℄ G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a proessor among many job lasses. Journalof the ACM, 27(3):519�532, 1980.[8℄ A. Federgruen and H. Groenevelt. Charaterization and optimization of ahievable performanein general queueing systems. Operations Researh, 36:733�741, 1988.[9℄ E. Friedman and S. Henderson. Fairness and e�ieny in proessor sharing protools to minimizesojourn times. Proeedings of ACM SIGMETRICS, pages 229�337, 2003.[10℄ E. Gelenbe and I. Mitrani. Analysis and Synthesis of Computer Systems. London: AademiPress, 1980.[11℄ T.C. Green and S. Stidham. Sample-path onservation laws, with appliation to sheduling queuesand �uid systems. Queueing Systems, 36:175�199, 2000.[12℄ A. Gut. Stopped random walks: limit theorems and appliations. Springer-Verlag, 1988.[13℄ D.P. Heyman and M.J. Sobel. Stohasti Models in operations researh, Volume I: StohastiProesses and operating harateristis. MGraw-Hill, 1982.[14℄ J.Kiefer and J.Wolfowitz. On the theory of queues with many servers. Transations of theAmerian Mathematial Soiety, 78(1):1�18, 1955.[15℄ L. Kleinrok. Time-shared systems: A theoretial treatment. Journal of the ACM, 14(2):242�261,1967.[16℄ L. Kleinrok. Queueing Systems, vol. 2. John Wiley and Sons, 1976.[17℄ T.M. O'Donovan. Distribution of attained servie and residual servie in general queueing sys-tems. Operations Researh, 22:570�575, 1974.[18℄ A.K. Parekh and R.G. Gallager. A generalized proessor sharing approah to �ow ontrol inintegrated servies networks: the single-node ase. IEEE/ACM Transations on Networking,1(3):344�357, 1993. 8



[19℄ L.E. Shrage. The queue M/G/1 with feedbak to lower priority queues. Management Siene,13:466�471, 1967.[20℄ L.E. Shrage. An alternative proof of a onservation law for the queue G/G/1. OperationsResearh, 18:185�187, 1970.[21℄ L.E. Shrage and L.W. Miller. The queue M/G/1 with the shortest remaining proessing timedisipline. Operations Researh, 14:670�684, 1966.[22℄ J. Shanthikumar and D. Yao. Multilass queueing systems: Polymatroidal struture and optimalsheduling ontrol. Operations Researh, 40(2):293�299, 1992.[23℄ K. Sigman. A note on a sample-path rate onservation law and its relationship with H=λ G.Advanes in Applied Probability, 23:662�665, 1991.[24℄ M.J.G. van Uitert. Generalized Proessor Sharing Queues. PhD thesis, Eindhoven University ofTehnology, 2003.[25℄ A. Wierman, M. Harhol-Balter, and T. Osogami. Nearly insensitive bounds on SMART shedul-ing. In Proeedings of ACM SIGMETRICS, 2005.[26℄ R.W. Wol�. Stohasti Modeling and the theory of Queues. Prentie-Hall, 1989.

9


