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Abstract We study the interaction between an MIMD (Multiplicative Increase Multiplica-
tive Decrease) congestion control algorithm and a Drop Tail buffer. We consider
the problem in the framework of deterministic hybrid models. We first show that
the hybrid model of the interaction between the MIMD congestion control and
bottleneck router always converges to a cyclic behavior that can be of only two
different types. Second, we characterize the minimum buffer size required such
that the bottleneck link is fully utilized. In particular, our analysis indicates that
an MIMD algorithm requires smaller buffer sizes than AIMD in order to fully
utilize the link capacity.
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1. Introduction
Most traffic in the Internet is governed by TCP/IP (Transmission Control

Protocol and Internet Protocol) [Allman et al 1999; Jacobson 1988]. Data
packets of an Internet connection travel from a source node to a destination



240 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

node via a series of routers. Some routers, particularly edge routers, experi-
ence periods of congestion when packets spend a non-negligible time waiting
in the router buffers to be transmitted over the next hop. The TCP protocol
tries to adjust the sending rate of a source to match the available bandwidth
along the path. During the principle Congestion Avoidance phase, standard
TCP uses an AIMD (Additive Increase Multiplicative Decrease) binary feed-
back congestion control scheme. In the absence of congestion signals from
the network, TCP increases the congestion window linearly in time, and upon
the reception of a congestion signal TCP reduces the congestion window by a
multiplicative factor.

It has been shown that the AIMD algorithm underutilizes the resources in
High-Speed networks [Floyd 2003]. Thus, in recent years researchers have
proposed and studied different versions of congestion control for the Internet
such as HS-TCP [Floyd 2003] and Scalable TCP [Kelly 2003]. These algo-
rithms have in common that in the absence of congestion, the sources increase
the congestion window in a much more aggressive fashion than does standard
TCP. We note that Scalable TCP is a particular instance of an MIMD (Multi-
plicative Increase Multiplicative Decrease) congestion control algorithm, and
thus, in the absence of congestion signals, the algorithm increases the conges-
tion window exponentially.

On the other hand, most of the routers in the Internet are of Drop-Tail type.
In basic Drop Tail routers, apart from the router capacity, the buffer size is the
only parameter to tune. In fact, the buffer size is one of the few parameters of
the TCP/IP network that can be managed by network operators. This makes the
choice of the router buffer size a very important problem in the TCP/IP network
design. This choice has recently received considerable attention [Appenzeller
et al 2004; Avrachenkov et al 2002; Dhamdhere et al 2005; Gorinsky et al
2005; Vu-Brugier et al 2007; Avrachenkov et al 2005; Avrachenkov et al 2007].
All these works assume an AIMD congestion control protocol.

In this paper we study the interaction of MIMD congestion control algo-
rithms with Drop-Tail buffers. We consider the problem in the framework of
deterministic hybrid models. Dynamical systems that combine both discrete
and continuous behavior are known as Hybrid Systems. Recently, hybrid mod-
els have been successfully applied to the modeling of communication networks
[Hespanha et al 2001; Bohacek et al 2003]. We show that the hybrid model of
the interaction between the MIMD congestion control and bottleneck router
always converges to a cyclic behavior that can be of only two different types.
Then we characterize the minimum buffer size required such that the bottle-
neck link is fully utilized. In particular, our analysis indicates that an MIMD
algorithm requires smaller buffer sizes than AIMD in order not to waste re-
sources.
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The remainder of the paper is organized as follows. In Section 2 we develop
the hybrid model. In Section 3 we present the main results. Section 4 con-
tains sketches of the various proofs, and Section 5 contains some numerical
experiments.

2. Mathematical Model
Let n long-lived TCP connections share a bottlenecked Internet router with

buffer size B and transmission capacity µ. Denote by λi(t) the instantaneous
sending rate of connection i = 1, ..., n at time t ∈ [0,∞). We consider a fluid
model. Namely, data is represented by a fluid that flows into the buffer with
rate λ(t) =

∑n
i=1 λi(t), and it leaves the buffer with constant rate µ, if there is

a backlog in the buffer. Denote by x(t) the amount of data in the buffer at time
t ∈ [0,∞). Then, the evolution of x is described by the following differential
equation

ẋ(t) =
{

λ(t)− µ, if x(t) > 0, or if x(t) = 0 and λ(t) > µ,
0, if x(t) = 0 and λ(t) ≤ µ.

(1)

If x(t) < B, the sending rate of connection i increases exponentially in time
with rate ri. We assume that ri ≡ r. Thus, if x(t) < B,

λ̇(t) =
n∑

i=1

λ̇i(t) = rλ(t). (2)

When x(t) reaches B, a congestion signal is sent to one or several TCP con-
nections. Upon the reception of the congestion signal at time t, the TCP con-
nection reduces its sending rate by a multiplicative factor β0 ∈ (0, 1), that is,
λi(t + 0) = β0λi(t− 0) = β0λi(t): we assume that all the functions are left-
continuous. For example, in Scalable TCP, ri = 0.01/‘RTT’ and β0 = 0.875
[Kelly 2003], where ‘RTT’ denotes the round-trip-time of the corresponding
TCP connection. We assume that the sending rates of connections at the con-
gestion moment are distributed uniformly and that congestion signals are sent
to {1, ..., ñ} ⊂ {1, ..., n} connections. Then we have

n∑

i=1

λi(t + 0) =
ñ∑

i=1

λi(t + 0) +
n∑

i=ñ+1

λi(t + 0)

= β0

ñ∑

i=1

λi(t− 0) +
n∑

i=ñ+1

λi(t− 0)

= (β0 − 1)
ñ∑

i=1

λi(t− 0) +
n∑

i=1

λi(t− 0)
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=
n∑

i=1

λi(t− 0)

(
(β0 − 1)

∑ñ
i=1 λi(t− 0)∑n
i=1 λi(t− 0)

+ 1

)

≈
n∑

i=1

λi(t− 0)
(

(β0 − 1)
ñ

n
+ 1

)
,

and the total sending rate is reduced on average by the factor

β = 1− (1− β0)
ñ

n
. (3)

Since in the fluid model all variables stand for average values, we can write
that λ(t + 0) = βλ(t − 0), where t is a moment of congestion. We call such
moments ‘jump moments’ (of component λ).

Let us now formulate performance criteria. On one hand, we are interested
in obtaining as large throughput as possible. That is, we are interested to max-
imize the average sending rate

λ̄ = lim
t→∞

1
t

∫ t

0
λ(s)ds.

On the other hand, we are interested to make the delay of data in the buffer
as small as possible. That is, we are also interested in minimizing the average
amount of data in the buffer

x̄ = lim
t→∞

1
t

∫ t

0
x(s)ds.

Clearly, these two objectives are contradictory, and the goal of the current re-
search is to construct the Pareto set for this multicriteria problem. We accept
that all the parameters of the system are fixed, and only the buffer size B is
under control. Clearly, if B is big enough the average sending rate λ̄ is close
to µ, but in this case x̄ can become too big. If we reduce the value of B, the
average amount of data x̄ decreases, but λ̄ also decreases because the (small)
buffer can be empty during long time intervals. Remind that Pareto set is the
collection of all non-dominated solutions to a multiple-objective problem. Its
graphical representation is known as a trade-off curve on the plane (λ̄, x̄).

For the sake of simplicity we put r = 1, µ = 1. In the general case, one
should make change of variables: t̃ = rt, x̃ = (r/µ)x, λ̃ = λ/µ. Clearly, λ̄
and x̄ must be multiplied by µ and by µ/r respectively.

In what follows, we investigate the trajectories of dynamical system (1), (2)
which turn to converge to (stable) cycles. Remember that λ(t+0) = βλ(t−0),
where t is such that x(t− 0) = B, λ(t− 0) > 1, and in principle there can be
several instant jumps meaning that β above should be replaced by βk.
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Figure 11.1. Possible cycles.

Definition 1 A trajectory of (1), (2) on a finite interval t ∈ [0, T ] is called a
cycle if x(0) = B, λ(0) < 1, x(T ) = B, λ(T ) ≥ 1 and λ(0) = βkλ(T ),
where k ≥ 1 is such that βk−1λ(T ) > 1. A cycle is called simple if k = 1
and ∀t ∈ (0, T ) x(t) < B. (One cannot exclude in advance the situation when
a cycle has several different loops resulting from the jumps of λ to several
different points.) Cycles with component x being zero during a positive time
interval are called clipped (Figure 11.1).

Actually, a cycle is a one period of the vector-valued periodic function
(x(t), λ(t)), but it is better to represent it graphically as a phase portrait: x(t)
against λ(t). For clipped cycles, λ̄ and x̄ both increase as B increases. The
trade-off of x̄ versus λ̄ is described in Theorem 3.

As it will be shown in Theorem 2, only a simple cycle can exist which is
clipped/unclipped depending on the values of parameters B and β.

If x(0) = B, λ(0) = λ∞ is the starting point of a cycle then obviously
x(kT + 0) = B, λ(kT + 0) = λ∞ for all integer k ≥ 0.

It will be also shown that for fixed values of B and β, only one (simple)
cycle exists which is stable in the following sense. Suppose x(0) and λ(0) are
arbitrary and let λi be the value of λ(t) immediately after the i-th jump. Then
limi→∞ λi = λ∞. To put it different, any trajectory converges to the cycle
which will be sometimes called ‘limiting cycle’.
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3. Main Results
Theorem 1 Let

B0
4
= ln

β − 1
β lnβ

− β ln β

1− β
− 1. (4)

Then unclipped (clipped) cycle exists iff B ≥ B0 (B < B0). The duration of
the cycle equals T = − lnβ, for all B ≥ 0.

B0 denotes the minimal buffer size such that the queue is never empty, see
Figure 11.1. Thus it is natural to call B0 ‘critical’ buffer size. In the desyn-
chronized case, i.e. ñ = 1, from equation (3) we get β = 1− 0.125

n for the case
of Scalable TCP (β0 = 0.875).

Remark 1 If r 6= 1, µ 6= 1 then the ‘critical’ buffer size will become B̃0 =
(µ/r)B0.

Lemma 1 In the desynchronized case with β = 1 − 1
2n , limn→∞ n2B0 = 1

32

meaning that B0 decreases to zero as 1
n2 .

Theorem 2 Let λk be the value of λ(t) immediately after the k-th jump. Then,
starting from any initial value λ0, limk→∞ λk = λ∞.

(a) If B ≥ B0 then λ∞ = −β ln β
1−β .

(b) If B < B0 then λ∞ = βeθ, where θ is the single non-negative solution
to eθ − 1− θ = B. In this case λ2 = λ3 = . . . = λ∞.

(c) There exist only simple limiting cycles shown in figure 11.1, i.e. instant
series of more than one jump are never realized, and all the values of λ(t)
immediately after a jump coincide with λ∞ for the trajectory starting from
x0 = B, λ0 = λ∞. The limiting cycle is stable.

Remark 2 The meaning of variables can be understood from Fig.11.1: θ is the
time interval corresponding to part c-d, δ is the time interval corresponding to
the part a-b.

Theorem 3 If B ≥ B0 then

λ̄ = 1; x̄ = B +
ln β

2
+

β lnβ

1− β
+ 1.

If B < B0 then

λ̄ =
eθ(β − 1)

ln β
; x̄ = −δeθ(1− β)− 1

2(δ + θ)2

ln β
,

where θ is defined in Theorem 2 and δ is the minimal positive solution to
βeθeδ − βeθ − δ + B = 0.
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Figure 11.2. Tradeoff curve.

Corollary 1 Let B < B0. Then θ, δ, λ̄ and x̄ monotonously increase with B.
If B approaches zero then

x̄ → 0; λ̄ → β − 1
ln β

.

If B approaches B0 then

x̄ → ln
β − 1
β ln β

+
ln β

2
; λ̄ → 1.

Now it is clear that the Pareto set for objectives (x̄, λ̄) is realized for 0 ≤
B ≤ B0: the minimal value of x̄ equals zero and corresponds to B = 0; the
maximal value of λ̄ equals 1 and corresponds to B = B0. If B > B0 then x̄
increases with B and λ̄ = 1 remains the same. Thus, solutions on the vertical
dashed line (Fig.11.2), when B > B0, are obviously dominated.

3.1 Comments on the Results
As the term “scalable” suggests, the cycle duration T for the MIMD scheme

does not depend on the capacity of the link (see Theorem 1). We recall that
the cycle duration for the AIMD scheme does depend on the link capacity [
Avrachenkov et al 2005].
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In the case of a general link capacity µ 6= 1, from equation (4) and Remark 1
we see that the ’critical’ buffer size (4) depends linearly on the value of µ.
In contrast, the expression for B0 in the AIMD case has the factor µ2. This
shows that MIMD not only scales well with the capacity of the link but that
also requires smaller buffer size in high speed networks. In particular, for the
Scalable TCP flavor, when there is only one connection (n = 1 β = β0 =
0.875 and r = 0.01/‘RTT’), from (4) and Remark 1 we get

B̃0 = 0.22µ · ‘RTT’.

The most important rule-of-thumb for dimensioning buffers on the Internet
suggests that the size of the queues should be equal to the bandwidth-delay
product, that is, µ · ‘RTT’ [Villamizar and Song 1994]. Thus, the fluid model
suggests that a single Scalable TCP connection requires a 78% smaller buffer
than what the previous rule-of-thumb indicated. The simulation results of Sec-
tion 4 suggest that in practice the value of B̃0 could even be smaller.

The performance of several synchronized MIMD connections with the same
‘RTT’ are equivalent to a single MIMD connection [Altman et al 2005]. If
the MIMD connections are not synchronized, from Lemma 1 we know that
B0 decreases to zero as 1/n2. As in the AIMD congestion control scheme
(see [Avrachenkov et al 2005]), the multiplexing of non-synchronized MIMD
connections helps to reduce significantly the minimal required buffer space for
the full utilization of the link capacity.

When B → 0, from Corollary 1 we know that λ̄ → µ(β− 1)/ ln(β). When
n = 1 β = β0 = 0.875, and we obtain that λ̄ = 0.94µ, that is, with Scalable
TCP, the minimal guaranteed link utilization will be equal to 94%.

4. Simulation Results
We perform network simulations with the help of NS-2, the widely used

open-source network simulator [Network Simulator]. We consider the follow-
ing benchmark example of a TCP/IP network with a single bottleneck link.
The topology may for instance represent an access network. The capacity of
the bottleneck link is denoted by µ and its propagation delay is denoted by
d. The capacities of N links leading to the bottleneck link are supposed to be
large enough (or the load on each access link is small enough) so that they do
not hinder the traffic. Each of these N links has a propagation delay di. We
assume that in each access link there is one persistent TCP connection.

In the NS simulations we use the following values for the network param-
eters: bottleneck capacity is µ = 100Mbps, bottleneck link propagation delay
d = 1ms, the access link capacity and delay are 100Mbps and 1ms, respec-
tively. The packet size is 500bytes. As examples of AIMD and MIMD conges-
tion control schemes, we consider New Reno [Allman et al 1999] and Scalable
TCP [Kelly 2003] flavors, respectively. The number of access links is equal to
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Figure 11.3. The trade-off curves for AIMD (N = 2, N = 5, N = 20) and MIMD N = 1.

the number of connections. The fact that the delays in the access links are the
same implies that the TCP connections will be synchronized.

In Figure 11.3 we depict the Pareto set for the cases of AIMD with N = 2,
N = 5 and N = 20 connections, and MIMD with just one connection. We
recall that several symmetric synchronized MIMD connections are equivalent
to a single MIMD connection. The qualitative shape of the curves agrees with
what our model predicts (Figure 11.2). In particular, MIMD achieves the full
link utilization with a much smaller buffer size than in the case of AIMD.

We also display the theoretical trade-off curve for the mathematical model
with parameters β = 0.875, ‘RTT’= 4 ms, r = 0.01/‘RTT’= 2.5 ms−1,
µ = 108 b/s. It turns to be close to the curve coming from simulations. Any-
way, when comparing the results obtained from the analytical model and from
simulations we have observed differences. For example, when the buffer size is
zero, the simulated average sending rate is smaller than the one obtained with
the fluid model. Similarly, in the simulated scenario the minimal buffer size
that guarantees full utilization of the link is larger than the one the fluid model
predicts. These differences can be explained by the fact that the aggregated
traffic in the simulations is not as smooth as the fluid model that we have used.
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5. Conclusions
In this paper we have formulated the problem of choosing the buffer size

of routers in the Internet as a multi-criteria optimization problem. A rigorous
mathematical analysis of the interaction between the DropTail buffer and an
MIMD congestion control algorithms have been provided. In agreement with
previous works for AIMD congestion control, our model suggests that as the
number of long-lived MIMD connections sharing the common link increases,
the minimal buffer size required to achieve full link utilization reduces. Fur-
thermore, our model suggests that MIMD congestion control scheme requires
much less buffer space than AIMD. The Pareto set obtained with the help of
our model could allow to dimension the IP router buffer size to accommodate
real time traffic as well as data traffic.

Appendix: Sketch of the Proofs of the Main Statements
Proof of Theorem 1. Clearly, the first jump (or the first instant series of jumps) of the tra-

jectory starting from λ(0) = λ0, x(0) = x0 results in the value λ1 ∈ [β, 1). Assuming the
trajectory is not clipped and has no jumps on [0, t], equations (1),(2) imply

λ(t) = λ0e
t, x(t) = λ0e

t − t + x0 − λ0. (11.A.1)

Equations x0 = x(T ) = B, βλ(T ) = λ0 result in formulae

T = ln
1

β
(the duration of the cycle) ; λ0 =

−β ln β

1− β
.

The minimal value xmin of trajectory (11.A.1) starting from (λ0 = −β ln β
1−β

, x0 = B) corre-
sponds to t∗ = ln 1−β

−β ln β
. Therefore an unclipped cycle exists iff

xmin = x(t∗) = B −B0 ≥ 0.

In what follows, we use denotation λ∞ = −β ln β
1−β

since the initial value λ0 may be arbitrary.
In case B < B0, starting from (λ0 = 1, x0 = 0), the trajectory reaches level x(θ) = B at

moment θ satisfying equation eθ−1− θ = B, and initial values (λ0 = βeθ, x0 = B) generate
the trajectory with xmin < 0 meaning that we have constructed the clipped cycle. Conversely,
if the clipped cycle exists then the above reasoning must lead to xmin < 0 which is equivalent
to B < B0. Note that the duration of the cycle equals T = − ln β for any B ≥ 0.

Proof of Lemma 1. Calculations are straightforward, based on the
L’Hopital’s rule.

Proof of Theorem 2. (a) Consider case B ≥ B0. For an arbitrary λ0 ∈ [β, 1) we define

ϕ(λ0) = βλ0e
T (λ0), (11.A.2)

where T (λ0) is the single positive solution to equation

F (λ0, T ) = λ0e
T − λ0 − T = 0. (11.A.3)

Here T (λ0) is the time interval up to the next jump assuming this part of trajectory is not
clipped. This function T (λ0) is decreasing as well as ϕ(λ0). One can show that T (β) <
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−2 ln β. Indeed, function F (β, ·) has a single minimum and the value F (β,−2 ln β) is already
positive. Therefore ϕ(β) = β2eT (β) < 1 meaning that in fact ϕ : [β, ϕ(β)] → [β, ϕ(β)].
Another important consequence: starting from λ1, instant series of more than one jump are
never realized. (See Item (c).)

In case the trajectory is clipped, component x(t) reaches the value of B earlier, the new
value λ2 ≤ ϕ(λ1) and again λ2 ∈ [β, ϕ(β)]. One can show that the trajectory starting from
(λ2, x0 = B) cannot be clipped.

Since ϕ is decreasing, the double iteration ψ(λ0)
4
= ϕ(ϕ(λ0)) is an increasing function

meaning that the sequence λ2, λ4, λ6, . . . is monotonous and hence converges to λ∞ such that
ψ(λ∞) = λ∞. We intend to prove that ϕ(λ∞) = λ∞. Suppose ϕ(λ∞) = λ′∞ 6= λ∞ and let
T1 and T2 be non-negative solutions to equations

λ∞eT1 − λ∞ − T1 = 0, λ′∞eT2 − λ′∞ − T2 = 0. (11.A.4)

We know that β2λ∞eT1+T2 = λ∞, hence β = e−(T1+T2)/2. Since

λ′∞ = ϕ(λ∞) = βλ∞eT1 = βeT1 T1

eT1 − 1
,

we have from (11.A.4): λ′∞ = T2
eT2−1

= βT1eT1

eT1−1
. Finally, using the formula for β we conclude

that
T1e

T1/2

eT1 − 1
=

T2e
T2/2

eT2 − 1
.

But function g(τ) = τeτ/2

eτ−1
is monotonous, hence T1 = T2 and λ∞ = λ′∞.

Equation ϕ(λ∞) = λ∞ results in formulae

T = ln
1

β
(the duration of the cycle) ; λ∞ =

−β ln β

1− β
,

and no other unclipped cycle exists. Since

dϕ

dλ0
=

βeT (T − eT + 1)

TeT − eT + 1
,

where T is given by (11.A.3), we conclude that at the stable point

dϕ

dλ0

∣∣∣
λ∞

=
β − 1− β ln β

β − 1− ln β
> −1

meaning that
∣∣ dϕ

dλ0

∣∣ < 1 in the neighborhood of λ∞, so that the limiting cycle is stable.
(b) If B < B0 then, maximum after one jump (starting from λ1), the trajectory is clipped,

because otherwise we would have faced a sequence λ1, λ2, . . . resulting in unclipped trajec-
tories and, according to (a), there would have existed an unclipped limiting cycle. Therefore,
λ2 = λ3 = . . . = λ∞, and the value λ∞ = βeθ follows from equation x(θ) = eθ−1−θ = B
describing the trajectory starting from (λ0 = 1, x0 = 0).

(c) The last statement follows from the previous reasoning.
Proof of Theorem 3. According to Theorems 1,2, the trajectories converge to a single cycle

with initial values (λ0 = λ∞, x0 = B). Hence

λ̄ =
1

T

∫ T

0

λ(t)dt, x̄ =
1

T

∫ T

0

x(t)dt.

In case B ≥ B0, the further calculations are straightforward having in mind formulae (11.A.1)
and T = − ln β.
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Case B < B0. Here one has to calculate the integrals along branches a-b, b-c and c-d
(Fig.11.1). Equation for δ comes from condition x(δ) = 0 for trajectory starting from (λ0 =
λ∞ = βeθ , x0 = B). One can show that it has exactly two positive solutions. The further
calculations are routine.

Proof of Corollary 1. The monotonicity of θ follows directly from its equation. δ is the first
moment when coordinate x(t) becomes zero. As B and λ∞ = βeθ increase, the value x(t) at
an arbitrary t corresponding to the part a-b (Fig.11.1) increases with B meaning that δ increases.
The reasoning presented implies that the value of the integral

∫ T

0
x(t)dt increases, and hence x̄

increases. (Remember T = − ln β is constant.) The value of λ̄ increases because θ increases.
If B → 0 then θ → 0 and δ → 0. If B → B0 then

θ → ln

(
− ln β

1− β

)
; δ → T − θ = − ln β − ln

(
− ln β

1− β

)
= − ln

(
−β ln β

1− β

)
.

Calculations of the limits are straightforward.
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