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Batch Arrival Processor-Sharing with
Application to Multi-Level

Processor-Sharing Scheduling
K. Avrachenkov, U. Ayesta∗ , P. Brown

Abstract

We analyze a Processor-Sharing queue with Batch arrivals. Our analysis is based on the
integral equation derived by Kleinrock, Muntz and Rodemich. Using the contraction mapping
principle, we demonstrate the existence and uniqueness of a solution to the integral equation.
Then we provide asymptotical analysis as well as tight bounds for the expected response time
conditioned on the service time. In particular, the asymptotics for large service times depends
only on the first moment of the service time distribution and on the first two moments of the
batch size distribution. That is, similarly to the Processor-Sharing with single arrivals, in the
Processor-Sharing queue with batch arrivals the expected conditional response time is finite even
when the service time distribution has infinite second moment. Finally, we show how the present
results can be applied to the Multi-Level Processor-Sharing scheduling.

Keywords.MX/G/1, Processor-Sharing, Batch arrivals, Work conservation, Multi-level Processor-
Sharing.

I. I NTRODUCTION AND MOTIVATION

The Processor-Sharing queue with batch arrivals (BPS) has not been fully characterized
yet. Kleinrock et al. [1], [2] showed that the derivative of the expected response time
conditioned on the service time satisfies an integral equation. Furthermore, they obtained
an analytic solution for service time distributions of the typeF (x) = q(x)e−µx where
q(x) is a polynomial. Bansal [3], using Kleinrock’s integral equation, obtained the Laplace
transform of the expected conditional response time for hyperexponential distributions and
more generally for distributions with rational Laplace Transforms. Rege and Sengupta [4]
found the distribution of the expected conditional response time for a tagged customer,
given the service times of all customer in the system. More recently, Feng and Misra [5]
provided bounds for the expected conditional response time. Their bounds depend on the
second moment of the service time distribution.

One of the main motivations to study the BPS queue is its application to size-based
scheduling. Size-based scheduling has recently received a fairly big attention in connection
with the differentiation of Short and Long flows in the Internet [6], [7], [8], [5], [9].
Kleinrock et al. [1], [10], [2] introduced a quite general set of size-based scheduling termed
as Multi-Level Processor-Sharing (MLPS). In MLPS, jobs are served with a discipline that
will depend on their attained amount of service. That is, based on their attained service,
jobs are classified into different classes. Jobs within the same class are served either with
First-Come-First-Serve (FCFS), Processor-Sharing (PS) or Foreground Background (FB)1
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policy. The classes themselves are served according to the FB policy, that is, the class that
contains jobs with smallest attained service is served first. It turns out, that when PS is
used to serve jobs in any of the classes, the expected conditional response time in this
class can be expressed as a function of the expected conditional response in an BPS queue.

The organization of the paper is as follows: First we prove the existence and uniqueness
of a solution to Kleinrock’s integral equation. Second we show that under natural condi-
tions, the expected conditional response time has an asymptote and we give an analytical
expression for the slope and the bias of the asymptote. In particular, this asymptote provides
a tight upper bound for the expected conditional response time for large jobs. Yet another
upper bound is obtained for small jobs. Combining these two bounds we obtain a very
good characterization of the expected conditional response time for all service times. In
particular these bounds are insensitive to the service time distribution and depend only on
the distribution through the first moment. Finally, as an example of the application of these
results, we show that in the case of MLPS schedulers, the expected conditional response
time has an asymptote with the same slope as in a PS queue. This result indicates that with
an MLPS discipline, very large jobs perceive the same service rate they would perceive in
a PS queue.

II. A NALYSIS OF THE BATCH ARRIVAL PROCESSOR-SHARING QUEUE

A. Model and Notation

Let us denoteTBPS(x) the expected conditional response time for a job with service
time x in an BPS queue. LetT ′

BPS(x) be its derivative. We assume the batch inter-arrival
time is exponentially distributed with mean arrival rate equal toλ. Kleinrock et al. [1],
[2] showed thatT ′

BPS(x) is a solution of the following integral equation

T ′
BPS(x) = λE[N ]

∫ ∞

0

T ′
BPS(y)F (x + y)dy

+λE[N ]

∫ x

0

T ′
BPS(y)F (x− y)dy

+bF (x) + 1, (1)

whereλ is the batch arrival rate,E[N ] is the average batch size,b is the average number of
jobs that arrive in addition to the tagged job, i.e.,b+1 = E[N2]/E[N ] andF (x) = 1−F (x)
is the complementary distribution of the service time. The load in the BPS system is given
by ρ = λE[N ]E[X].

B. Fixed Point Approach to the Kleinrock’s integral equation

In Theorem 1 we show that there exists a unique solution to the integral equation (1).
Theorem 1:Let the service time distribution have a finite mean, the batch size distri-

bution have a finite second moment andρ < 1. Then there exists a unique solution of the
integral equation (1).

Proof: We consider the fixed point iterations

T ′
k+1(x) = λE[N ]

∫ ∞

0

T ′
k(y)F (x + y)dy

+λE[N ]

∫ x

0

T ′
k(y)F (x− y)dy (2)

+bF (x) + 1, k = 0, 1, ...
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on the complete functional space of continuous bounded non-negative functionsC[0,∞)
with the supremum metric. Let‖T ′‖ = supx{T ′(x)} < ∞. Define the linear integral
operatorA[β(x)] as follows:

A[β(x)] = λE[N ]

∫ ∞

0

β(y)F (x + y)dy

+λE[N ]

∫ x

0

β(y)F (x− y)dy + bF (x) + 1.

Clearly the operatorA[β(x)] maps the spaceC[0,∞) into itself.
If we show that the linear integral operatorA[β(x)] is a contraction, then the integral

equation (3) has a unique solution inC[0,∞). Let us denote asd the distance in the metric
spaceC[0,∞), that is, d(β1, β2) = supx |β1(x) − β2(x)|. We show now that the linear
operatorA[β(x)] is indeed a contraction mapping onC[0,∞).

d(A[β1],A[β2]) = sup
x
{|A[β1]−A[β2]|}

≤ λE[N ] sup
x
{|β1 − β2|}

sup
x

(∫ ∞

0

F (x + y)dy+

∫ x

0

F (x− y)dy

)

= λE[N ]d(β1, β2)E[X]

= ρd(β1, β2).

Thus, the mapping is a contraction ifρ < 1.
Theorem 1 implies that we can apply the Fixed Point Iterations (2) for the solution of

the integral equation (1). A numerical example will be provided in Section III.
Corollary 1: Let the service time distribution have a finite mean, the batch size distri-

bution have a finite second moment andρ < 1. Then, the average number of jobs in the
BPS queue is finite.

Proof: Because of PASTA, the distribution at arrival epochs of batches is equal to
the stationary distribution. Hence, when a batch arrives to the system, it finds on average
E[QBPS] jobs in the queue, whereQBPS has the time average distribution of the number
of jobs in the queue. Clearly,T ′

k(0) is equal to the derivative of the rate at which a job
gets served upon arrival to the system. In a BPS system, this value is equal to the total
number of jobs present in the queue upon arrival, thus,

T ′
BPS(0) = E[QBPS] + b + 1.

Since from Theorem 1T ′
BPS(0) is finite, and by hypothesisb is finite, it follows that the

average number of jobs in the queue is finite.
Note that by Little’s law, Corollary 1 is equivalent to stating that the expected uncon-

ditional response time is finite. In Theorem 4 we provide an upper bound of the expected
unconditional response time.

For the ensuing analysis, it will be convenient to remove the constant component of the
solution of equation (1), hence we note that the solution of the integral equation (1) is
equivalent to the solution of the following integral equation

δT ′(x) = λE[N ]

∫ ∞

0

δT ′(y)F (x + y)dy

+λE[N ]

∫ x

0

δT ′(y)F (x− y)dy (3)

+bF (x),
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where
δT ′(x) := T ′

BPS(x)− 1

1− ρ
. (4)

C. Asymptotic Analysis

It is known that in a queue, under any work conserving discipline, the total unfinished
work in the system does not depend on the particular scheduling policy being used. This fact
has been widely exploited since it poses a constraint on the average conditional response
time T (x) of the system among the set on non-anticipative scheduling disciplines, i.e., the
set of disciplines that do not take advantage of the service time of the jobs when deciding
which job(s) will be served.

Lemma 1: [11], [12] In an ergodic queue, under any work conserving and service-time
independent scheduling discipline, the expected conditional response time satisfies

λ

∫ ∞

0

T (x)F (x)dx = U, (5)

whereλ is the job arrival rate andU is the time-average unfinished work in the system.
The interest of Lemma 1 lies in the fact that if the expected conditional response time is

known for a particular scheduling discipline, then one can compute the average unfinished
work in the systemU . Since this quantity is independent of the scheduling discipline, the
expected conditional time for any other scheduling discipline must satisfy equation (5).

Let U
B

be the expected unfinished work in the case of Poisson batch arrival queue. In
order to apply Lemma 1 to the Poisson batch arrival system, we note that the job arrival
rate isλE[N ], thus

λE[N ]

∫ ∞

0

T (x)F (x)dx = U
B
. (6)

The expected unfinished workU
B

in a Poisson batch arrival queue can be easily
computed [13], [14].The basic step is to consider a FCFS discipline and to define the
random variableY =

∑N
i Xi, whereN is the size of the batch andXi is the size of the

i-th job. Then the expected unfinished work can be computed directly by the Pollaczek-
Khinchin formula. The expressions given in [13], [14] become more transparent if they
are expressed as a function ofb, namely,

U
B

= U
Batch−FCFS

=
λE[Y 2]

2(1− λE[Y ])
=

λE[N ]E[X2]

2(1− ρ)
+

bE[X]ρ

2(1− ρ)
. (7)

Let us illustrate Lemma 1 with one particular example.
Example 1:Let us consider a BPS queue with exponentially distributed service time.

This is the only distribution for which there exists an analytical expression for the expected
conditional response time. LetTBPSexp(x) be the expected conditional response time in a
BPS queue with exponential service time distribution. Then it is known that [1], [2], [4]

TBPSexp =
x

1− ρ
+

b(2− ρ)E[X]

2(1− ρ)2
(1− e

−(1−ρ)
E[X]

x). (8)
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Then, calculating equation (6) we obtain

λE[N ]

∫ ∞

0

TBPSexp(x)F (x)dx =
λE[N ]E[X2]

2(1− ρ)
+ λE[N ]

b(2− ρ)E[X]

2(1− ρ)2
E[X]

−λE[N ]
b(2− ρ)E[X]

2(1− ρ)2

∫ ∞

0

e
−(2−ρ)

E[X]
xdx

=
λE[N ]E[X2]

2(1− ρ)
+

b(2− ρ)ρE[X]

2(1− ρ)2
ρ− b(2− ρ)ρ

2(1− ρ)2

E[X]

(2− ρ)

=
λE[N ]E[X2]

2(1− ρ)
+

bρE[X](2− ρ− 1)

2(1− ρ)2
= U

B
.

In the following Lemma, we take advantage of equation (6) to obtain a result that is
crucial for the ensuing analysis.

Lemma 2:Let δT (x) = TBPS(x) − x
1−ρ

, and let the service time distribution have a
finite mean, the batch size distribution have a finite second moment andρ < 1. Then it
holds that

λE[N ]

∫ ∞

0

δT (x)F (x)dx =
bE[X]ρ

2(1− ρ)
. (9)

Proof: Let X be a random variable with complementary distribution functionF (x).
The second moment ofX is allowed to be infinite. We consider the truncated random
variableXt at t, that isXt = min{X, t}. The complementary distribution of the truncated
random variable is

F t(x) =

{
F (x), x ≤ t,
0, otherwise.

The mean of the truncated random variable is given by

E[Xt] =

∫ ∞

0

F t(y)dy =

∫ t

0

F (y)dy.

We note that the second moment of the truncated random variable is always finite for finite
t,

E[X2
t ] =

∫ t

0

2yF (y)dy < ∞.

Let T t
BPS(x) be the expected conditional response time in a BPS queue in the case

when jobs are distributed according to the random variableXt and ρt = λE[N ]E[Xt].
Then from equation (7) and Lemma 1 we have

λE[N ]E[X2
t ]

2(1− ρt)
+

ρE[Xt]b

2(1− ρt)
= λE[N ]

∫ ∞

0

T t
BPS(x)Ft(x)dx

= λE[N ]

∫ ∞

0

(
x

1− ρt

+ δTt(x)

)
Ft(x)dx

=
λE[N ]E[X2

t ]

2(1− ρt)
+ λE[N ]

∫ ∞

0

δTt(x)Ft(x)dx.

Consequently, we have thatλE[N ]
∫∞
0

δTt(x)Ft(x)dx = ρE[Xt]b
2(1−ρt)

. Taking the limit when
t →∞ and invoking the monotone convergence theorem we get

λE[N ]

∫ ∞

0

δT (x)F (x)dx =
bE[X]ρ

2(1− ρ)
.
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Let us now prove another Lemma.
Lemma 3:Let the service time distribution have a finite mean, the batch size distribution

have a finite second moment andρ < 1. Then,δT (x) = TBPS(x)− x
1−ρ

is increasing with
respect tox.

Proof: Let us show thatδT ′(x) = T ′
BPS(x)− 1

1−ρ
≥ 0.

inf
x≥0
{δT ′(x)} = inf

x≥0
{λE[N ]

∫ ∞

0

δT ′(y)F (x + y)dy + λE[N ]

∫ x

0

δT ′(y)F (x− y)dy + bF (x)}

≥ λE[N ] inf
y≥0
{δT ′(y)}

(∫ ∞

0

F (x + y)dy +

∫ x

0

F (x− y)dy

)

= λE[N ] inf
y≥0
{δT ′(y)}E[X]

= ρ inf{δT ′(x).}
HenceδT ′(x) ≥ 0 and in particularT ′

BPS(x)− 1
1−ρ

≥ 0.
A direct consequence of Lemma 3 is thatδT (x) ≥ 0 ∀x ≥ 0. Next we obtain an upper
bound for the expected conditional response time.

Lemma 4:Let the service time distribution have a finite mean, the batch size distribution
have a finite second moment andρ < 1. An upper bound for the expected conditional
response time is given by

TBPS(z) ≤ z

1− ρ
+

b (ρE[X] + 2E[Xz](1− ρ))

2(1− ρ)(1− ρz)
.

Proof: Let us consider the first term on the right hand-side of equation (3). First,
integrating by parts we note that

λE[N ]

∫ ∞

0

δT ′(y)F (x + y)dy = λE[N ]
(
δT (y)F (x + y)

) |y=∞
y=0

+λE[N ]

∫ ∞

0

δT (y)dF (x + y)dy. (10)

We evaluate the first term on the right hand side. Integrating by parts we get∫ ∞

0

xdF (x) =

∫ ∞

0

F (x)dx + lim
x→∞

xF (x),

thus, if the service time requirement has a finite mean,limx→∞ xF (x) = 0. Now we
show there exists someL < ∞ such thatTBPS(x) ≤ Lx for all x ≥ 0. Let us estimate
supx≥0{T ′

BPS(x)}.

sup
x≥0
{T ′

BPS(x)} = sup
x≥0
{λE[N ]

∫ ∞

0

T ′
BPS(y)F (x + y)dy

+λE[N ]

∫ x

0

T ′
BPS(y)F (x− y)dy + bF (x) + 1}

≤ λE[N ] sup
x≥0
{T ′

BPS(x)}
(∫ ∞

0

F (x + y)dy +

∫ x

0

F (x− y)dy

)
+ b + 1

= λE[N ] sup
x≥0
{T ′

BPS(x)}
∫ ∞

0

F (z)dz + b + 1

= λE[N ] sup
x≥0
{T ′

BPS(x)}E[X] + b + 1 = ρ sup
x≥0
{T ′

BPS(x)}+ b + 1,
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and hencesup{T ′
BPS(x)} ≤ b+1

1−ρ
. Noting thatlimx→0 TBPS(x) = 0 in a Processor-Sharing

system and integrating between0 andx we obtain an upper bound

TBPS(x) ≤ 1 + b

1− ρ
x, (11)

and hence,

lim
x→∞

TBPS(x)F (x) ≤ lim
x→∞

1 + b

1− ρ
xF (x) = 0.

Therefore equation (10) becomes

λE[N ]

∫ ∞

0

δT ′(y)F (x + y)dy = λE[N ]

∫ ∞

0

δT (y)dF (x + y).

Using the integral equation (3) and the fact thatδT (z) =
∫ z

0
δT ′(x)dx, we can write

∫ z

0

δT ′(x)dx = λE[N ]

∫ z

0

∫ ∞

0

δT ′(y)F (x + y)dydx

+λE[N ]

∫ z

0

∫ x

0

δT ′(y)F (x− y)dydx + b

∫ z

0

F (x)dx

= λE[N ]

∫ z

x=0

∫ ∞

y=0

δT (y)dF (x + y)dx

+λE[N ]

∫ z

0

δT ′(y)

∫ z

y

F (x− y)dxdy + bE[Xz]

= λE[N ]

∫ ∞

y=0

δT (y)

∫ z

x=0

dF (x + y)dy

+λE[N ]

∫ z

0

δT ′(y)

∫ z−y

0

F (h)dhdy + bE[Xz]

= λE[N ]

∫ ∞

0

δT (y)
(
F (y)− F (y + z)

)
dy

+λE[N ]

∫ z

0

δT ′(y)

∫ z−y

0

F (h)dhdy + bE[Xz]

Next by Lemma 3 it follows that

≤ λE[N ]

∫ ∞

0

δT (y)F (y)dy

+λE[N ]E[Xz]

∫ z

0

δT ′(y)dy + bE[Xz]

Consequently we get that

(1− λE[N ]E[Xz])δT (z) ≤ λE[N ]

∫ ∞

0

δT (y)F (y)dy + bE[Xz].

Substituting the result obtained in Lemma 2 and taking into account thatρz < 1, we get

δT (z) =

∫ z

0

δT ′(x)dx ≤ b (ρE[X] + 2E[Xz](1− ρ))

2(1− ρ)(1− ρz)
.

Thus, we obtain an upper bound forTBPS(z)

TBPS(z) =
z

1− ρ
+ δT (z)

≤ z

1− ρ
+

b (ρE[X] + 2E[Xz](1− ρ))

2(1− ρ)(1− ρz)
.
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In the next Theorem we state the main result of this paper. Namely we show that
TBPS(x) has an asymptote. This result will be useful afterwards to provide tight upper
bounds on the expected conditional and unconditional response times.

Theorem 2:Let the service time distribution have a finite mean, the batch size distribu-
tion have a finite second moment andρ < 1. The conditional response time for the BPS
queue has an asymptote with slope1/(1− ρ) and bias

lim
x→∞

(
TBPS(x)− x

1− ρ

)
=

bE[X](2− ρ)

2(1− ρ)2
.

Proof: Let us show that there exists an asymptote. From Lemma 4 we know that
TBPS(x) − x

1−ρ
is upper bounded and from Lemma 3 thatTBPS(x) − x

1−ρ
is increasing

with respect tox. Consequentlylimx→∞ TBPS(x)− x
1−ρ

exists. This justifies the following
calculation of the asymptote bias. Proceeding in a similar way as in the proof of Lemma 4,
we can write

lim
x→∞

(
TBPS(x)− x

1− ρ

)
=

∫ ∞

0

δT ′(x)dx =

= λE[N ]

∫ ∞

0

∫ ∞

0

δT ′(y)F (x + y)dydx

+λE[N ]

∫ ∞

0

∫ x

0

δT ′(y)F (x− y)dydx + b

∫ ∞

0

F (x)dx

= λE[N ]

∫ ∞

x=0

∫ ∞

y=0

δT (y)dF (x + y)dx

+λE[N ]

∫ ∞

0

δT ′(y)

∫ ∞

y

F (x− y)dxdy + bE[X]

= λE[N ]

∫ ∞

y=0

δT (y)

∫ ∞

x=0

dF (x + y)dy

+λE[N ]

∫ ∞

0

δT ′(y)

∫ ∞

0

F (h)dhdy + bE[X]

= λE[N ]

∫ ∞

0

δT (y)F (y)dy

+λE[N ]E[X]

∫ ∞

0

δT ′(y)dy + bE[X]

=
bE[X]ρ

2(1− ρ)
+ λE[N ]E[X]

∫ ∞

0

δT ′(y)dy + bE[X].

Solving the equation for
∫∞
0

δT ′(y)dy, we obtain

lim
x→∞

(
TBPS(x)− x

1− ρ

)
=

bE[X](2− ρ)

2(1− ρ)2
.

Interestingly, we observe that the value of the bias is insensitive with respect to the
service time distribution, that is, it depends on the distribution only through the first
moment.

Corollary 2: Let the service time distribution have a finite mean, the batch size distri-
bution have a finite second moment andρ < 1, then the slowdown for large service times
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in a BPS queue satisfies

lim
x→∞

TBPS(x)

x
=

1

1− ρ
.

Proof: The result is a direct consequence of Theorem 2.

Corollary 2 shows that in a BPS queue, very large jobs obtain service at the same rate
they would in the equivalent PS queue, that islimx→∞

TBPS(x)
x

= limx→∞
TPS(x)

x
.

D. Bounds

In this section, we use the results obtained in the preceding section to obtain tight upper
bounds for the expected conditional response time as well as for the expected unconditional
response time. We start by providing upper and lower bounds for the expected conditional
response time.

Theorem 3:Lower and upper bounds for the expected conditional response time in the
BPS queue are given by:

x

1− ρ
≤ TBPS(x) ≤ min

{
b + 1

1− ρ
x,

x

1− ρ
+

bE[X](2− ρ)

2(1− ρ)2

}
.

The bounds on the right hand part of the inequality intersect at the pointx∗ = E[X](2−ρ)
2(1−ρ)

.
Proof: SinceT ′

BPS(x) − 1
1−ρ

≥ 0, TBPS(x) approaches the asymptotic from below.
Hence for large service times we obtain a bound that is asymptotically tight. Thus, from
Lemma 2 we have:

TBPS(z) ≤ z

1− ρ
+

bE[X](2− ρ)

2(1− ρ)2
. (12)

Clearly, the upper bound (12) is not appropriate for small service times, since we know
that TBPS(0) = 0. For small service times we consider the upper bound obtained in
equation (11).

Equating the bounds (12) and (11), we find the intersection point

x

1− ρ
+

bE[X](2− ρ)

2(1− ρ)2
=

1 + b

1− ρ
x =⇒ x∗ =

E[X](2− ρ)

2(1− ρ)
. (13)

Thus, we have

TBPS(x) ≤ min

{
b + 1

1− ρ
x,

x

1− ρ
+

bE[X](2− ρ)

2(1− ρ)2

}
.

The lower bound is a direct consequence of the inequalityT ′
BPS(x)− 1

1−ρ
≥ 0.

In Section III we provide numerical examples that indicate that the upper bound of
Theorem 3 characterizes quite closely the expected conditional response time for large
jobs in the BPS queue. In the next theorem, we use the upper bound of the expected
conditional response time to provide an upper bound on the unconditional response time.

Theorem 4:Lower and upper bounds for the expected unconditional response time in
a BPS queue are given by:

E[X]

1− ρ
≤ E[TBPS] ≤ E[X]

1− ρ
+

b

1− ρ
E[Xx∗ ].

wherex∗ is the same as in Theorem 3.
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Proof: The lower bound is straightforward from the lower bound in Theorem 3. Now
we calculate the upper bound.

E[TBPS] =

∫ ∞

0

TBPS(x)dF (x)

≤
∫ ∞

0

x

1− ρ
dF (x) +

∫ x∗

0

bx

1− ρ
dF (x)

+

∫ ∞

x∗

bE[X](2− ρ)

2(1− ρ)2
dF (x)

=
E[X]

1− ρ
+

b

1− ρ
E[Xx∗ ]− b

1− ρ

E[X](2− ρ)

2(1− ρ)
F (x∗)

+
bE[X](2− ρ)

2(1− ρ)2
F (x∗)

=
E[X]

1− ρ
+

b

1− ρ
E[Xx∗ ].

Interestingly, we note that the upper and lower bound get tight as the value ofb decreases.
Furthermore, the next corollary shows that whenb → 0 (the zero value ofb corresponds
to the deterministic batch size) both upper and lower bound coincide.

Corollary 3: Let the batch size distribution be deterministic. Then for allx ≥ 0,

TBPS(x) =
x

1− ρ
,

and

E[TBPS] =
E[X]

1− ρ
,

whereρ = λE[N ]E[X].
Proof: The result follows directly from Theorems 3 and 4 after noting that the lower

and upper bounds become tight asb → 0.
The values of the expected conditional and unconditional response time provided in

Corollary 3 indicate that a BPS queue with deterministic batch sizes is equivalent to an
ordinary PS. Indeed, a BPS queue with batch arrival rateλ, deterministic batch sizeE[N ]
and service time distributionF (x), can be related to a PS queue with job arrival rateλ
and service time distributionF (x/E[N ]). We note that in both queues the load will be
ρ = λE[N ]E[X].

III. N UMERICAL EXAMPLES

In this section we provide some numerical examples of the results of the preceding sec-
tions. In order to compute numericallyTBPS(x) (or its derivative) for a general distribution
we perform the Fixed Point Iterations (2). Indeed, we have shown in Theorem 1 that the
Fixed Point Iterations (2) will converge to the solution of equation (1).

First of all, we consider the case of exponentially distributed service time and we
demonstrate a high speed of convergence of the Fixed Point Iterations. Taking the derivative
of the expected conditional response time for the exponential distribution case, see equation
(8), we obtain

dTBPSexp(x)

dx
=

1

1− ρ
+

b(2− ρ)

2(1− ρ)
e
−(1−ρ)

E[X]
x. (14)
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In Figure 1 we depict equation (14) and the Fixed Point Iterations (1st, 6th and 11th)
of equation (2). We takeE[N ] = 2, b = 5, E[X] = 20 and ρ = 0.7. By Theorem 1
the rate of convergence of the iterations is in the worst case geometric with parameterρ.
Hence, unless for the highly loaded case, it is expected that the Fixed Point Iterations will
converge very rapidly to the analytic solution.
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Fig. 1. Convergence ofT ′BPS(x) for exponential distribution: Analytical formula (14) and Fixed Point Iterations of
equation (2)

In Figure 2 we plot the value ofTBPS(x) obtained by Fixed Point Iterations for the case
of Pareto distribution with infinite variance (1 < α < 2). We also plot the upper bound
for the conditional response time of Theorem 3. The Pareto distribution isF (x) = 1− kα

xα

and the parameters arek = 10, α = 1.5, E[N ] = 3, b = 10 and ρ = {0.3, 0.7}. We
observe that the upper bound of Theorem 3 provides a good qualitative characterization
of the expected conditional response time.
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Fig. 2. TBPS for Pareto distribution: Fixed Point iterations and upper bound of Theorem 3

The ratio between the service time and the expected conditional response time (R(x) =
x/T (x)) is commonly considered as a good measure of the average service rate obtained
by a job. We study now the effect of the batch size distribution onR(x). To that extent, we
consider a batch size distribution withE[N ] = 2 and we vary the value ofb. In Figure 3
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we compare the average service rates of a BPS for different values ofb. We note that the
load is the same regardless the value ofb. The service time distribution is Pareto with
k = 10, α = 1.5 and the loadρ = 0.7.
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Fig. 3. Average service rate comparison in BPS and PS queues

As a consequence of Lemma 3, it follows thatRBPS(x) ≤ RPS(x), for all x ≥ 0. Thus,
the fact that jobs arrive grouped has a negative effect on the job’s perceived performance.
From Figure 3 we conclude that the performance degrades as the variability of the batch
size distribution increases.

We consider now the upper bound for the unconditional expected response time obtained
in Theorem 4. In the case of a general distribution, we can calculate the tightness of the
upper bound of Theorem 4. In Figure 4, we consider a Pareto distribution, and we plot for
different loads the relative error between the upper bound provided in Theorem 4 and the
numerical calculation of the expected unconditional response time obtained by the Fixed
Point Iterations. As in the previous numerical example with Pareto distribution, we take
k = 10, α = 1.5, E[N ] = 3. We consider different values forb.
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Fig. 4. Expected unconditional response time for Pareto service time distribution: Relative error of the upper bound of
Theorem 4

The tightness of the upper bound provided in Theorem 4 depends on the characteristics
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of the service time distribution. We conclude that Theorem 4 provides a quite tight upper
bound for light to medium loads. We emphasize that the bounds provided in Theorems 3
and 4 are useful to characterize in a simple way and with good accuracy the performance
of the BPS queue.

We end this section with a conjecture. In view of Figures 1 and 2 we claim that:
Conjecture 1 In a BPS queue, the derivative of the expected conditional response time

is decreasing, and thus the expected conditional response time is a concave function.

IV. A PPLICATION TO MULTI -LEVEL PROCESSOR-SHARING

One of the classical results of queuing theory says that when information on the service
time of jobs is available to the server, theShortest Remaining Processing Time(SRPT)
scheduling discipline is optimal with respect to the expected unconditional response time
of the system [15]. In some scenarios, this information is not available to the scheduler, for
example, in the context of computer networks the file size is not known in the core of the
network. Hence, scheduling disciplines that only take advantage of the attained service of
jobs have drawn significant attention recently. The performance of size-based scheduling
depends on the characteristics of the distribution function. For instance, it is known that
when the distribution of the service time has a decreasing hazard rateµ(x) = dF (x)/F (x),
the FB scheduling discipline minimizes the expected unconditional response time among
all non-anticipative disciplines [16], [17]. The set of non-anticipative disciplines is made
up by those disciplines that do not take advantage of the total service time of jobs. In few
words, we can describe FB as the scheduler who gives full service to the job who has
obtained the least amount of service. Thus, it is also referred to as Least Attained Service
(LAS).

It is clear that choosing an appropriate scheduling policy may significantly improve the
performance of the system. In the current TCP/IP architecture of the Internet the length of
a flow is not known in advance. This, coupled with the fact that no job obtains preferential
treatment, have led researchers to propose PS as a good mathematical abstraction for the
bandwidth allocation that the network provides [18], [19].

It has been widely reported that whereas most of the connections are made up of few
packets, most of the data is carried by some few large connections [20]. This type of
distributions (Pareto, hyperexponential) have decreasing hazard rate. Therefore, from the
theoretic point of view, it seems that giving priority to short flows might improve the
overall performance of the system [21].

Even though the apparent desirable properties of FB, its deployment does not seem to
be a simple task. Hence, researchers have recently analyzed and proposed different size-
based scheduling disciplines that aim to improve the performance that the current network
architecture provides [6], [7], [5], [8], [9]. In the next section, we describe these schedulers
as particular examples of the set of MLPS disciplines introduced by Kleinrock [1, Section
4.7] and we show how the results presented for the BPS queue can be applied. The main
objective of this section is to evaluate how giving preference to small service times affects
the expected conditional response time of large service times.

A. Multi-Level Processor-Sharing Scheduling

The framework of MLPS allows us to define a very large class of scheduling disciplines.
We assume that jobs arrive to the system according to a Poisson process of rateλ. Let F (·)
denote the required service time distribution. The mean required service time is denoted
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by E[X]. We consider the queue is in stable regime, i.e.,ρ = λE[X] < 1. Let ai be a set
of numbers such that

0 = a0 < a1 < . . . < aN < aN+1 = ∞.

We considerN +1 scheduling disciplines, whereπi is the discipline which is used to serve
jobs whose attained serviceτ belongs toi-th level, that isai−1 < τ ≤ ai. We permitπi

to be either FB or PS. Intervals are served according to a FB discipline with respect to
each other, that is, at any instant of time, the processor will give full service to the jobs
belonging to the lowest nonempty level. For example, let us consider a two level MLPS
scheduler with threshold ata1, jobs with attained service smaller thana1 are served with
PS and jobs that have attained more service thana1 with FB. If there are in the system
jobs who have attained less service thana1, those jobs receive full service and they will
be served according to a PS discipline. When there are no such jobs, the MLPS scheduler
will give full service to those jobs who have attained more service thana1, in this case
following a FB scheduler. As soon as there is a new arrival, the server will interrupt serving
jobs with attained service greater thana1 and start serving the new arrival.

Let x be some value belonging to thei-th interval, i.e.ai−1 < x ≤ ai and letT (x)
be the expected conditional response time in the MLPS queue.T (x) is made up of two
components. The first one corresponds to the difference between the arrival time and the
time at which the jobs starts getting served at thei-th interval. The second component
is the amount of time spent in thei-th level itself. An important characteristic of MLPS
disciplines is that neither of these two components are affected by the scheduling discipline
utilized in intervalsj < i. This is a direct consequence of the fact that the length of the
busy-period (of the firstj intervals in this case) being independent of the scheduling
discipline.

Therefore, in a sample path sense, the time epochs at which the server switches among
classes are independent of the disciplinesπi, i = {1, . . . , N + 1}. In particular, for all
x > aN , the expected conditional response timeT (x) will depend only on the discipline
deployed at the(N + 1)-st interval.

B. Truncated and Residual random variables

Let us introduce the notation that will be used in the next section. Given a random
variableX that takes values in[0,∞), we consider the truncated random variablesXt =
min{t,X} with distribution function

Ft(x) =

{
F (x), x ≤ t,
1, otherwise.

We consider as well the residual random variablesXt,∞ = max{X − t, 0} with distri-
bution function given byFt,∞(x) = F (x+t)−F (t)

F (t)
∀x ≥ 0. The mean of the residual random

variable is given by

E[Xt,∞] =

∫ ∞

0

F (x + t)

F (x)
dx =

E[X]− E[X0,t]

F (t)
.

We use the notationE[T S
t ] andE[T S

t,∞] to denote the average waiting time in a queue
S ∈ {PS, FB, BPS} with truncated and residual random variable respectively.
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C. Asymptotic Analysis

From now on, we concentrate on MLPS disciplines such thatπN+1 = PS. We explain
first the link between an MLPS discipline and BPS systems. Consider the busy period of
the system composed of all intervals but the(N + 1)-st one. During such a busy period,
each time a job getsaN units of service, it stops being served and joins the(N + 1)-st
interval. Hence, at the end of the busy period, there is a batch of jobs that have arrived to
the (N + 1)-st interval. Then, the MLPS discipline serves the(N + 1)-st interval until a
new job arrives to the queue (or the queue drains completely). Because of the memoryless
property of Poisson arrivals, this inter-arrival time is exponentially distributed. Upon the
new arrival, the MLPS discipline preempts serving the(N +1)-st interval and starts serving
the new arrival. Therefore, if we consider the virtual time axis obtained by removing the
periods in which the(N + 1)-st interval is preempted, it turns out that the(N + 1)-st
interval is equivalent to a Batch Processor-Sharing queue with exponentially distributed
batch inter-arrival distribution. The required service time distribution of jobs getting to the
(N + 1)-st is FaN ,∞(x), for all x ≥ 0.

Kleinrock showed that the parametersE[N ] andb of the batch size distribution are given
by

E[N ] =
1− F (aN)

1− ρaN

, (15)

and

b = 2λ(1− F (aN))
W aN

+ aN

1− ρaN

,

whereW aN
=

λE[X2
aN

]

2(1−ρaN
)
. We note thatW aN

is always finite, and hence so isb.
Let T (x) denote the expected conditional response time in an MLPS queue withπN+1 =

PS for a job that requiresx units of service. Following the arguments in Section IV-A, for
all x > aN , T (x) is independent ofπi, for all i < N + 1. Kleinrock [1, Equation (4.39)]
showed that for allx > aN

T (x) =
aN + W aN

1− ρaN

+
TBPS(x− aN)

1− ρaN

. (16)

The first term on the right hand side accounts for the expected elapse time between the
arrival epoch and the time at which the job is served for the first time at the(N + 1)-st
level. This time can be interpreted as the expected length of the busy period (without the
(N + 1)-st interval) that a job with a service time requirement larger thanaN originates
upon arrival. The second term accounts for the time spent in the(N + 1)-st interval.
TBPS(x − aN) is equal to the elapsed time in the virtual time and the term1/(1 − ρaN

)
accounts for the preempted periods of the(N +1)-st that were taken out when constructing
the virtual time.

There is an undesirable property of FB. In the case of distributions with infinite second
moment, there is no asymptote and the expected conditional response time for large jobs
deviates from PS [9]. For example, in the case of Pareto distribution with infinite second
moment, the asymptotics of FB has the following form [9]

TFB(x) =
1

1− ρ
x +

λkα

(1− ρ)2(2− α)
x2−α + o(x2−α).

There is no asymptote in this case, even though the limitlimx→∞
TFB(x)

x
exists. This implies

that the performance of FB deviates increasingly from PS performance with the increase
of the service time.
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In the next proposition, we show the expected conditional response time in an MLPS
queue withπN+1 = PS has an asymptote with slope1/(1− ρ) even in the case when the
service time distribution has an infinite second moment.

Proposition 1: Consider an MLPS queue withπN+1 = PS. Let the service time distri-
bution have a finite mean, letρ < 1, then the response time of the queue has an asymptote
with slope1/(1− ρ) and bias

lim
x→∞

(
T (x)− x

1− ρ

)
=

W aN

1− ρaN

+
aN(ρaN

− ρ)

(1− ρ)(1− ρaN
)

+
bE[XaN ,∞](2− (ρ + ρaN

))

2(1− ρ)2
,

whereρaN
= λE[XaN

].
Proof: From Theorem 2 and equation (16) it follows that asx →∞

T (x) =
aN + W aN

1− ρaN

+
1

1− ρaN

x− aN

1− ρaN ,∞
+

1

1− ρaN

bE[XaN ,∞](2− ρaN ,∞)

2(1− ρaN ,∞)2
+ o(1),

whereρaN ,∞ = λE[N ]E[XaN ,∞]. In view of equation (15) we have

1

1− ρaN ,∞
=

1

1− λ F (aN )
1−ρaN

E[X]−E[XaN
]

F (aN )

=
1− ρaN

1− ρ
,

and similarly2− ρaN ,∞ =
2−(ρ+ρaN

)

1−ρaN
.

Then asx →∞ we obtain

T (x) =
a + W aN

1− ρaN

+
x− aN

1− ρ
+

bE[XaN ,∞](2− ρaN ,∞)

2(1− ρaN ,∞)(1− ρ)
+ o(1)

=
x

1− ρ
+

W aN

1− ρaN

+
aN(ρaN

− ρ)

(1− ρ)(1− ρaN
)

+
bE[XaN ,∞](2− (ρ + ρaN

))

2(1− ρ)2
+ o(1).

We conclude with the comparison of the slowdown of an MLPS discipline withπN+1 =
PS and the egalitarian PS discipline.

Corollary 4: Consider an MLPS discipline such thatπN+1 = PS. Let ρ < 1, then the
asymptotic slowdown in the MLPS and PS queues are the same, that is,

lim
x→∞

T (x)

x
= lim

x→∞
TPS(x)

x
=

1

1− ρ
.

Proof: The result is a direct consequence of Proposition 1.

This result shows that the performance that very large jobs obtain is equivalent under
both MLPS and PS disciplines.
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