
1

Scheduling in a random environment:
stability and asymptotic optimality

U. Ayesta1,2,3, M. Erausquin4, M. Jonckheere5, I.M. Verloop2,6

1CNRS-LAAS, Toulouse, France
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Abstract—We investigate the scheduling of a common resource
between several concurrent users when the feasible transmission
rate of each user varies randomly over time. Time is slotted
and users arrive and depart upon service completion. This
may model for example the flow-level behavior of end-users
in a narrowband HDR wireless channel (CDMA 1xEV-DO). As
performance criteria we consider the stability of the system and
the mean delay experienced by the users. Given the complexity
of the problem we investigate the fluid-scaled system, which
allows to obtain important results and insights for the original
system: (1) We characterize for a large class of scheduling
policies the stability conditions and identify a set of maximum
stable policies, giving in each time slot preference to users being
in their best possible channel condition. We find in particular
that many opportunistic scheduling policies like Score-Based
[8], Proportionally Best [1] or Potential Improvement [4] are
stable under the maximum stability conditions, whereas the
opportunistic scheduler Relative-Best [9] or the cµ-rule are not.
(2) We show that choosing the right tie-breaking rule is crucial
for the performance (e.g. average delay) as perceived by a user.
We prove that a policy is asymptotically optimal if it is maximum
stable and the tie-breaking rule gives priority to the user with
the highest departure probability. We will refer to such tie-
breaking rule as myopic. (3) We derive the growth rates of the
number of users in the system in overload settings under various
policies, which give additional insights on the performance. (4)
We conclude that simple priority-index policies with the myopic
tie-breaking rule, are stable and asymptotically optimal.All our
findings are validated with extensive numerical experiments.

Index Terms—Wireless system, stability, asymptotic fluid op-
timality, opportunistic scheduling, cµ-rule.

I. I NTRODUCTION

Next generation wireless networks are expected to support
a wide variety of data services. Due to fading and interference
effects, for each user, the quality of a downlink channel, and
hence its transmission rate, fluctuates over time. This has
triggered a large amount of work aiming at understanding the
performance of channel-aware scheduling policies. It is bynow
accepted that so-called “opportunistic schedulers” have many
desirable properties (see for example [9]). A policy is called
opportunistic if it takes advantage of the channel fluctuations
by serving a user whose channel condition is in a good state
with respect to its own statistical behavior. With the objective

of minimizing mean users’ delay, there arises a key tradeoff
in the design of scheduling mechanisms between making full
use of the opportunistic gains (hence ensuring a stable system)
and prioritizing users having small residual service sizes.

Broadly speaking, researchers have explored scheduling in
wireless systems both at the packet level and at the flow level.
In packet-level models it is typically assumed that there exists
a finite number of permanent users. The focus of the scheduler
is on the number of packets in the queue of each user. We
refer for example to [33], [2], [32], [17], [3], [25], [29] for
this line of research. In a flow-level model instead, users arrive
randomly to the system and leave after receiving their finite-
sized service demands. This allows to capture the performance
as perceived by the end-users, see for example [8], [21], [9],
[26], [22], [1], [4], [30]. For surveys on flow-level modeling
we refer to [24] and [10]. In [23], hybrid models are studied.

The performance evaluation and optimization of wireless
networks at the flow level has proved to be extremely chal-
lenging. One of the most successful approaches has been the
so-called time-scale separation argument (see [9], [11], [12],
[29], [1], [30]) where it is assumed that at the flow scale the
dynamics of the channel fluctuations can be averaged out. Un-
der this time-scale assumption, it was shown in [11] that any
utility-based scheduling policy is stable in a flow-level model.
The authors of [1] make the same assumption when they
discuss rate-stability for priority-index policies. In the context
of optimal control, in [29], [30] scheduling mechanisms were
introduced and evaluated. In [4] optimal control is studied
without the time-scale separation assumption. The Lagrangian-
relaxation method allowed the authors of [4] to construct the
Potential Improvement (PI) scheduling policy, which is opti-
mal for a relaxed optimization problem. In addition, several
other policies have been proposed and numerically investigated
in the literature, among others the Proportional Fair [14]
discipline, the Score-Based (SB) algorithm [8], the Relative
Best (RB) scheduler [6] and Proportionally Best (PB) [1].

To sum up, without a time-scaling separation argument,
which is a rather strong assumption, the performance of
opportunistic schedulers, regarding stability and performance
perceived by the users, is not well understood. In order to gain
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better insight into the latter issue, in this paper we will study a
flow-level model without the time-scale separation assumption.
More precisely, we assume that users arrive randomly in time
and have a finite amount of data to download. Time is slotted
and the quality of the channel condition of each user varies
per time slot. In every slot at most one user may be served.
We are interested in stability and optimization of the system.

Given the complexity of the problem we investigate the
system under the so-called fluid scaling. Fluid scaling or time-
space scalings, corresponding to “zooming out” the trajecto-
ries, have been used extensively to study stochastic processes
with complex dynamics [16]. The limiting processes are much
simpler to describe while they provide us with crucial insights
on the behavior of the non-scaled version of the process.

First of all, we characterize the maximum stability condi-
tions (the weakest possible conditions on the traffic parameters
such that there exists a scheduling policy that makes the
system stable) and show that the set of policies that are stable
under the maximum stability condition have a very simple
characterization: whenever there are users present that are
currently in their best channel condition, only such users are
served. These policies will be referred to as Best-Rate (BR)
policies. Such a characterization was previously given forrate
stability [1], but stochastic stability was still an open issue.

Second, for a large class of scheduling policies we deter-
mine the exact stability conditions and conclude that many
known opportunistic scheduling policies like SB, PB, or PI
are stable under the maximum stability conditions, whereas
the opportunistic scheduler RB orcµ-rule are not.

Third, we demonstrate the importance of the choice of the
tie-breaking rule. Until now, literature proposed to breakties at
random [6], [8], [9], [1]. We instead propose to give priority
to the user with highest instantaneous departure probability
when there are multiple users in their best channel conditions,
which we refer to as the myopic tie-breaking rule. We prove
that BR policies with this tie-breaking rule are asymptotically
optimal and our numerical experiments further illustrate that
the myopic tie-breaking rule significantly improves the perfor-
mance. This in turn shows that simple priority-index policies
that balance opportunistic gains with size-based information,
will be both maximum stable and asymptotically optimal.

Fourth, our convergence result allows to compare the per-
formance of the various policies in an overload setting. More
precisely, we determine the growth rates of the number of
users in the various classes and find that BR policies with a
myopic tie-breaking rule minimize the total growth rate.

The paper is organized as follows. In SectionsII andIII we
present the model and the scheduling policies. In SectionIV
we derive fluid limits for a large class of policies. This allows
to obtain our stability results as presented in SectionV. In
SectionVI we characterize asymptotically optimal policies,
both in normal regime and in overload, and discuss the
importance of the tie-breaking rule. In SectionVII we perform
numerical experiments to validate our theoretical findings.

II. M ODEL DESCRIPTION

We consider a time-slotted system serving one user in each
time slot. This models for instance a CDMA 1xEV-DO system

as explained in Remark2. There areK classes of users, and
in each time slot the number of class-k users arriving to the
system,Ak, follows an i.i.d. sequence of random variables,
with E(Ak) = λk and E(A2

k) < ∞. For each user the
departure probability varies over time as the quality of the
channel is changing from slot to slot. The quality of the
channel (or state of the channel) for a class-k user is modeled
as an i.i.d. sequence of random variables taking values in the
finite set Nk := {1, 2, . . . , Nk}. For each time slot we let
qk,n denote the probability that a class-k user is in channel
staten ∈ Nk. Associated with channel staten is a departure
probability µk,n. This can be used for instance to model a
system in which the service requirements are geometric (see
Remark2). W.l.o.g. we assume that the channel conditions are
ordered such that0 ≤ µk,1 ≤ µk,2 ≤ · · · ≤ µk,Nk

≤ 1, and
qk,Nk

µk,Nk
6= 0, ∀ k. The channel condition of a class-k user

is independent of the channel conditions of all the other users
and of the channel quality history.

In each time slott, a scheduler/policyf decides which user
is served. Because of the Markov property of the system, we
focus on policies that base decisions on the current number
of users present in the various classes and on their current
channel states. For a given scheduling policyf , let Xf

k (t)
denote the number of class-k users present at time slott and
Xf(t) = (Xf

1 (t), . . . , X
f
K(t)). Since the channel conditions

are i.i.d. and independent of the processXf (·), the processXf

is Markov. Hence, it is sufficient to focus on the Markovian
description in terms of the number of users in eachclass,
Xf(·), instead of the number of users in eachchannel state.

Let us introduce some more notation. We denote by|x| the
l1 norm of a vectorx. The notationx ≤ y is used for the
coordinate-wise ordering:xi ≤ yi, ∀i. Finally, we denote by
u.o.c. the uniform convergence on compact sets.

Performance criteria:Our performance criteria are stability
and long-run average number of users.

Definition 1: A scheduling policyf is stable if the process
Xf is positive recurrent.
Because of the time-varying channel conditions the system
is not work-conserving, and hence it depends strongly on
the employed scheduling policy whether the system can be
made stable. We define themaximum stability conditionsas
the conditions on the traffic inputs such that there exists a
policy that can make the system stable. Amaximum stable
policy is a policy that is stable under the maximum stability
conditions. From the performance point of view it is therefore
of crucial importance to design a scheduler that is maximum
stable.

Besides stability, another important performance measureis

lim sup
T→∞

1

T

K
∑

k=1

T−1
∑

t=0

ckE(X
f
k (t)), (1)

the long-run time-average holding cost, withck > 0 the
holding cost incurred per time slot for having a class-k user in
the system. Whenck = 1, ∀ k, this is equivalent to minimizing
the mean sojourn time (cf. Little’s law).

Remark 1:From a modeling perspective, the key assump-
tion needed for the subsequent fluid-limit analysis is that the
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Fig. 1. Classification of schedulers.

channel state evolution is independent across users. Moreover,
we assume that in each time slot a user’s channel state is i.i.d..
However, we believe that a similar study could be carried out
under a weaker assumption on a users’ channel state process:
stationary ergodicity. In this case, the steady-state probabilities
of the channel process would play the role of theqk,n’s in
the current model description. In particular all the results on
stability and asymptotic optimality that will be obtained later
on would hold in this more general setting. For the sake
of clarity and to avoid technicalities in the proofs we have
restricted our attention to i.i.d. channel states.

Remark 2 (Modeling of a wireless data network): Our
model, even though simple, captures some of the key
properties of wireless communication systems. Time is
slotted, as is the case in the CDMA 1xEV-DO [5] and the
OFDM-based LTE systems [31]. The available transmission
rate of each user fluctuates due to fading effects, and as a
consequence, it varies from one slot to another. We note that
in real systems the number of feasible transmission rates is
finite (see [5]).

One may classify the users into different classes based on
their applications or traffic conditions for example. Let the
service requirement (in bits) of a class-k user be a geometric
random variable denoted byBk, and let E(Bk) denote its
expectation. Let∆ denote the amount of bits transferred
in one slot under the current channel condition. Note that
in practice∆ will vary from slot to slot depending on the
channel condition, and the allocation. The probability that
a user leaves the system is approximatelyP(b ≤ Bk ≤
b + ∆|Bk > b) ≈ ∆/E(Bk), which does not depend on
the attained serviceb (memoryless property of the geometric
distribution). This expression becomes asymptotically exact
as the ratio∆/E(Bk) goes to 0. Hence, this is the case if
the mean service requirement (in bits) of a user is very large
compared to the amount of bits that can be served in one slot.
Let sk,n denote the transmission rate (in bits per second) of
a class-k user when the channel state isn. For the CDMA
1xEV-DO system, the amount of bits transferred in one slot
is ∆ = sk,n · tc. Hence, the departure probability of a class-k
user under channel conditionn can be approximated by

µk,n :=
sk,n · tc
E(Bk)

, (2)

wheretc is the length of the slot (for exampletc = 1.67ms

in the CDMA 1xEV-DO system). In SectionVII we perform
numerical experiments with departure probabilities as obtained
from a practical setting using (2).

III. POLICIES

In this section we introduce scheduling policies that will
be used throughout the paper. Most of these policies are
opportunistic (with the exception of thecµ-rule), meaning that
they take advantage of channel fluctuations by serving a user
whose channel condition is currently in a good state, in some
sense, with respect to its own statistical behavior.

We first introduce priority-index policies, which are very
popular due to their simplicity from an implementation point
of view. A priority-index policy is characterized by an index
function that assigns an index to each user based solely on its
class and its current state.

Definition 2 (Priority-index policy): In every time slot, a
user that has the highest index among all users present is
served.

Priority-index policies might need to be augmented with a
suitable tie-breaking rule. Such a rule refers to the strategy
adopted when there is a tie on the highest index value. A tie
means that there are several users present having the highest
index value, but these users belong todifferentclasses. In the
literature, most of the papers specify to break ties at random
(see for example [8], [6], [1]). We define themyopic tie-
breaking ruleas the rule that among the users with the highest
index, it selects the one with highest value forckµk,Nk

, ∀ k
(the ck’s refer to the holding cost introduced in SectionII .)
One of our main contributions will be that the choice for the
tie-breaking rule is crucial for the performance of the system
and that the myopic tie-breaking rule is close to optimal (this
will be further developed in SectionsVI and SectionVII ).

In [8] the Score-Based (SB) policy is introduced. SB is
a priority-index policy where the index value of a class-k
user in staten is given by

∑n
ñ=1 qk,ñ, and ties are broken

at random. In [4] the Potential Improvement (PI) policy is
introduced. PI is a priority-index policy with as index value
ckµk,n/

∑

ñ>n

qk,ñ(µk,ñ−µk,n), and the tie-breaking rule is the

myopic tie-breaking rule. An important subset of the priority-
index policies are the so-called weight-based policies.

Definition 3 (Weight-based policy): A priority-index pol-
icy with index functionωkµk,n, with ωk a class dependent
weight.
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Examples of weight-based policies are: thecµ-rule (ωk = ck,
with ck the holding cost), Relative Best (RB) [6] (ωk =
1/
∑Nk

n=1 qk,nµk,n), and Proportionally Best (PB) [1] (ωk =
1/µk,Nk

). For all these policies, ties are broken at random.
It will be convenient to define the following two classes of

policies, which play an important role in the results on the
stability analysis and asymptotic optimality.

Definition 4 (Best Rate (BR) policies): The BR policies
are such that whenever there are users present that are currently
in their best channel condition (stateNk) such a user is served.

Definition 5 (Best Rate Priority (BRP) policies): The
BRP policies are BR policies with a myopic tie-breaking rule.

As a consequence of our main results, we will obtain that
the classes of policies BR and BRP have desirable properties:
In SectionV we prove that any BR policy is stable under the
maximum stability conditions and in SectionVI we derive that
BRP policies are asymptotically optimal.

In Figure 1 we have summarized the various (classes of)
policies. Note that SB, PB and PI are BR policies. This
follows since the highest possible index value is 1 for SB
and PB, and∞ for PI, and these indices can only be obtained
whenever a user is in its best possible channel condition. RB
and the traditionalcµ rule (i.e., giving in each time slot strict
preemptive priority to the user having the highestckµk,n)
however do not belong to BR policies since, depending on
the set of parameters, the index value of a class-k user in
staten 6= Nk might be larger than the index value of a class-l
user in stateNl. Remark also that PI is the only BRP policy.

IV. FLUID LIMITS AND CONVERGENCE

In this section we study fluid-scaling limits for a large class
of policies. The fluid scaling consists in studying a sequence
of systems indexed byr, i.e., for a given policyf we let
Xf,r

k (t) denote the number of class-k users at timet when
the initial state equalsXr

k(0) = rxk(0), k = 1, . . . ,K, with
r ∈ N, andXf,r(t) = (Xf,r

1 (t), · · · , Xf,r
K (t)). We are then

interested in the fluid-scaled processesY f,r
k (t) :=

Xf,r
k (⌊rt⌋)

r ,
t ≥ 0, k = 1, . . . ,K, with Y r(0) = x(0). We can write

Y f,r
k (t) = xk(0) +

1

r

⌊rt⌋
∑

s=1

Ak(s)−
1

r

Nk
∑

n=1

Sk,n(T
f,r
k,n(rt)), (3)

whereT f,r
k,n(t) is defined as the cumulative amount of time

that was spent on serving classk in staten during the interval
(0, t] and Sk,n(t) denotes the total number of class-k users
that have been completed while receiving service for a total
duration of timet when being in staten.

In order to derive stability and asymptotic optimality results,
we will be interested in limits of the fluid-scaled process.
In Section IV-A we will characterize a generic description
of weak fluid limits (usually not unique) of Equation (3),
following the same reasoning as in [15]. In SectionIV-B we
focus instead on a special class of policies for which we can
prove convergence in probability towards auniquelimit, which
will be referred to as the strong fluid limit. (In [20] similar is
done but only for a subset of the state space.) We discuss the
differences between weak and strong fluid limits in more detail
in Remark5, after having introduced formally both concepts.

A. Convergence towards weak fluid limits

From (3), we obtain the following result that describes
the generic characterization of weak fluid limits for a given
policy f . The lemma will allow to determine maximum stable
policies (Theorem5.2) and to characterize asymptotically
optimal policies (SectionIV).

Lemma 4.1:For almost all sample pathsω and any se-
quencerk, there exists a subsequencerkl

such that for all
k = 1, 2, . . . ,K, n = 1, 2, . . . , Nk, andt ≥ 0,

lim
l→∞

Y
f,rkl
k (t) = yfk (t), u.o.c., and (4)

lim
l→∞

T
f,rkl
k,n (t)

rkl

= τfk,n(t), u.o.c.,

with (yfk (·), τ
f
k,n(·)) a continuous function. In addition,

yfk (t) = xk(0) + λkt−
Nk
∑

n=1

µk,nτ
f
k,n(t), (5)

yfk (t) ≥ 0, τfk,n(0) = 0,
∑

k,n τ
f
k,n(t) ≤ t, and τfk,n(·) are

non-decreasing and Lipschitz continuous functions.
Proof: The proof follows similarly to that of [13, Propo-

sition 4.12]. DefineAk(t) as the number of class-k users that
arrive in time slott. We note thatAk(1), Ak(2), . . . , are in-
dependent and distributed according toAk, with E(Ak) = λk.
Sinceµk,n is the probability of completing a class-k user when
it receives service while being at staten, by the law of large
numbers, we obtain that, almost surely,

lim
r→∞

1

r

⌊rt⌋
∑

s=1

Ak(s) = λkt, and lim
r→∞

1

r
Sk,n(rt) = µk,nt. (6)

We defineT
f,r

k,n(t) := T f,r
k,n(rt)/r. SinceT f,r

k,n(t) denotes the
cumulative amount of time spent on serving class-k users in
staten in time interval[0, t], we getT

f,r

k,n(rt) − T
f,r

k,n(rs) ≤

t − s, for everyt ≥ s, i.e., T
f,r

k,n(t) is Lipschitz continuous.
By the Arzela-Ascoli theorem [27] we obtain that, for almost
every sample pathw and any subsequencerk, there exists
a subsequencerkl

of rk such thatliml→∞ T
f,rkl
k,n (rt)/r =

τfk,n(t), u.o.c.. Now, using Equations (3) and (6), it follows

that liml→∞ Y
f,rkl
k (t) = yfk (t), with yf (t) as given in (5).

We can now give our definition of weak fluid limits.
Definition 6: We call the processesτf (t) and yf (t) (as

obtained in Lemma4.1) weak fluid limits for policyf .
Note that, in general, these fluid limits can be different
depending on the sample path and the subsequence considered.
A policy is said to have aunique fluid limit if, for all sample
paths and all subsequences, the weak fluid limits coincide.

B. Convergence towards a strong fluid limit

In this subsection we will determine unique fluid limits for a
special class of policies. More precisely, we will prove conver-
gence in probability towards a unique limit. The derivationof
the strong fluid limit will prove to be very useful: It allows to
calculate the exact stability conditions (policy dependent) (see
Theorem5.1 and the numerical SectionVII ). In addition, the
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exact characterization of the strong fluid limit provides crucial
insights into the performance of the system, such as the growth
rates of the number of users over time and monotonicity results
with respect to the tie-breaking rule.

Obtaining exact fluid-limit characterizations will require to
deal with averaging phenomena: it may happen that one class
of users reaches its stationary regime, i.e., is empty in the
fluid scaling, before the other classes do. In this case, the drift
of the other classes needs to be averaged with the stationary
distribution of this class. Hence, a description of the fluidlimit
will involve averaged drifts as will be defined in (8) (we refer
to this as second-vector fields, following [18]).

We focus on the class of policies that induce partially
increasing drift vector fields with uniform limits. In orderto
describe this class of policies we need first to introduce the
drift functions and drift vector fields. For the stochastic process
Xf(t) associated with a policyf , we define the drift function
by δf (x) := (δf1 (x), . . . , δ

f
K(x)), x ∈ N

K , with

δfi (x) := E(Xf
i (1)− xi|X

f (0) = x).

(We will drop the superscriptf when it is clear that we con-
sider a unique policy.) We say that a vector fieldv : NK → R

K

has uniform limits [12] if for any U ⊂ {1, . . .K}, there exists
a functionvU : N|U| → R

K (constant whenU = ∅) such that

lim
R→∞

sup
x∈NK :|xUc |>R

|v(x) − vU (xU )| = 0,

wherexU denotes the restriction of the vectorx to indices
in the subclassU and Uc denotes the complementary set
of U . Intuitively, this means that the drift vector-field has
limits when we make the number of users of some of the
classes go to infinity, and that we can interchange the order
of the coordinates when taking these limits. We assume in the
following that the drift vector has uniform limits, so that we
can define the asymptotic driftsδU : N|U| → R

K as follows:

δU (xU ) := lim
xk→∞, k∈Uc

δ(x). (7)

Here,Uc corresponds to the “saturated” classes for which we
let the number of users go to∞. We define the stochastic
processXU as theU-dimensional stochastic process corre-
sponding to the original process seeing an infinite number of
users of classk ∈ Uc and letπU denote its stationary measure
assuming it exists. We define the averaged drift vectors by

δ̃U =
∑

x∈N|U|

δU (x)πU (x). (8)

Finally, following [12] we say that a vector fieldv is partially
increasing ifvi(x) is increasing inxj for all j 6= i. These
assumptions, which are crucial to prove the convergence
towards the unique strong fluid limit, are verified for many
cases of interest, see the next lemma.

Lemma 4.2:A priority index policy or a BR policy with
non-state dependent tie-breaking rule (i.e., independently of
the numbers of users) induces a partially increasing drift vector
field with uniform limits.

Proof: We prove the lemma for BR policies, the other
case being similar. When increasing the number of users of
one class only, the probability that this class has at least one

user in its best possible state is increased. Hence, given that
the tie-breaking rule does not depend on the number of users,
the probability that this class is served is increased whilethe
probability that a user of another class is served decreases.
This implies that the drift vector field is partially increasing.

By the independence of the channel variations, the proba-
bility that classi ∈ Uc has at least one user in its best state
is 1− (1 − qi,Ni)

xi , wherexi is the number of class-i users.
Hence, when the numbers of class-i users,i ∈ Uc, grows large,
the probability of having in each class inUc at least one user
in its best state (and hence causing a driftδU (xU )) converges
to 1. Together with the property that the tie-breaking rule does
not depend on the number of users, this implies that

δ(x) = δU(xU )
∏

i∈Uc

(1− (1− qi,Ni)
xi) + o(1/|x|), (9)

as xk → ∞, k ∈ Uc, which in turn implies the uniform
convergence ofδ(·) to δU (·) for anyU .

We now state the main result of this Section, the descriptionof
the strong fluid limit. The proof can be found in Appendix A.

Theorem 4.3:For a given policyf inducing a partially
increasing drift vector field with uniform limits, we have

lim
r→∞

P( sup
0≤s≤t

|Y f,r(s)− yf(s)| ≥ ǫ) = 0, for all ǫ > 0,

with yf (t) a piece-wise linear function that can be described
recursively as follows. LetU0 = ∅ andT0 = 0. Then we have,

dyfk (t)

dt
= δ̃f,Ul

k , t ∈ [T f
l , T

f
l+1], (10)

with T f
l+1 = T f

l + min
k∈Uc

l ,δ̃
Ul
k <0

yfk (T
f
l )

−δ̃f,Ul

k

, (11)

andUl+1 = Ul ∪ arg min
k∈Uc

l ,δ̃
Ul
k <0

yfk (T
f
l )

−δ̃f,Ul

k

,

and if there exists nok ∈ Uc
l with δ̃f,Ul

k < 0, thenT f
l+1 = ∞.

We can now give our definition of the strong fluid limit.
Definition 7: For a given policyf inducing a partially

increasing drift vector field with uniform limits, we call the
processyf(t) (as obtained in Theorem4.3) the strong fluid
limit for the policy f .

Remark 3 (Calculation of the averaged drifts):
Theorem 4.3 characterizes the strong fluid limit as a
piece-wise linear function with slopes̃δU . In practice, the
calculations of these slopes involve:

• deriving the asymptotic drifts (see (7)),
• calculating the stationary distributions ofXU ,
• averaging the asymptotic drifts with these stationary

distributions (see (8)).

For instance, assumeK = 2, N1 = 2, N2 = 1, and a Bernoulli
arrival process. Consider the policy that gives priority tothe
best class-1 user present in the system and otherwise (i.e.,
when there is no class 1) serves a class-2 user. Then

δ∅ = (λ1 − µ1,N1
, λ2),

δ{1}(x1) = (λ1 − s1(x1), λ2 − µ2,N2
1(x1=0)),



6

with s1(x1) = µ1,N1
(1−(1−q1,N1

)x1)+µ1,N1−1(1−q1,N1
)x1 .

The processX{1} is a 1-dimensional Markov chain with
stationary distribution

π{1}(x1) = C

x1
∏

j=1

λ1(1− s1(j − 1))

(1− λ1)s1(j)
,

whereC is a normalization constant. The average drift can
now be computed using (8).

In the specific case of BR policies with a priority-type tie-
breaking rule, we can in fact explicitly derive the strong fluid
limit by making use of rate-conservation arguments. This will
be used later on to obtain asymptotic optimality statements.

Proposition 4.4:Consider a BR policy with a priority-type
tie-breaking rule. Let us reorder the classes according to the
priority ordering. The averaged drift vectors are

δ̃∅ = (λ1 − µ1,N1
, λ2, . . . , λK), (12)

if T1 < ∞, then

δ̃{1} = (0, λ2 − µ2,N2

(

1−
λ1

µ1,N1

)

, . . . , λK), (13)

and if Tk−1 < ∞, thenUk−1 = {1, . . . , k − 1} and

δ̃Uk−1 = (0, . . . , 0, λk − µk,Nk
(1−

k−1
∑

j=1

λj

µj,Nj

), . . . , λK). (14)

Proof: Using Lemma4.2, the drift δ(·) associated to a
BR policy is partially increasing with uniform limits, hence
the strong fluid limit is given by Theorem4.3. WhenU = ∅,
there are infinitely many users of each class and hence there is
always a class-1 user in its best state, which directly implies
(12). Note thatT1 < ∞ if and only if λ1

µ1,N1

< 1 (see
definition of T1 in Theorem4.3). In this case the process
X{1} is ergodic. ForT1 ≤ t ≤ T2, we can simplify the
asymptotic drift δ̃{1} using the specific properties of the
policy and rate conservation arguments: letA1,x1

be the
event that class1 is served and there arex1 class-1 users
when all the other classes are saturated. With a slight abuse
of notation, let us denote byπ{1}(A1,x1

) the probability of
eventA1,x1

under the stationary distribution ofX{1}. Since
X{1} is ergodic, by rate stability we have the following rate-
conservation equation,

∑

x1
π{1}(A1,x1

)µ1,N1
= λ1, see (44)

This gives that
∑

x1
π{1}(Ac

1,x1
) = 1− λ1

µ1,N1

. SinceU1 = {1}
(so in particular there is still an infinite amount of class-2
users which are exclusively served when there are no class-
1 users in their best state) class2 receives service at rate
µ2,N2

∑

x1
π{1}(Ac

1,x1
) = µ2,N2

(1− λ1

µ1,N1

) which gives (13).
Consider now the case whereU := {1, . . . , k−1} (assuming

as before that
∑k−1

j=1
λj

µj,Nj
< 1). Let Aj,xU be the event that

classj ∈ U is served and there arexi users of classi, i ∈ U .
By rate-conservation arguments, see (44), we obtain

∑

xU

πU (Aj,xU )µj,Nj = λj , j ∈ U .

Noting that the setsAj,xU are disjoints,∀ j ∈ U , this implies
that

∑

xU
πU (∪j∈UAj,xU ) =

∑

j∈U
λj

µj,Nj
. Since classk is

only served when no class-i users are being served,i ∈

U , there is a class-k departure with probabilityµk,Nk
(1 −

∑

xU
πU (∪j∈UAj,xU )). Hence, we obtain Equation (14).

Remark 4:For all BR policies where the scheduler chooses
with probabilityαU

k to serve classk when a subsetU of classes
has at least one user in its best channel condition, the fluid
limit in the interior of the orthant has a drift given by:

δ∅ = (λ1 − α
{1,...,K}
1 µ1,N1

, λ2 − α
{1...,K}
2 µ2,N2

,

· · · , λK − α
{1,...,K}
K µK,NK ). (15)

However, in general we cannot explicitly derive the second-
vector fields. An exception is the case of two classes. Then,
using the rate-conservation argument as in the previous propo-
sition, we obtain (assuming w.l.o.g. that class 1 empties first)

δ̃{1} = (0, λ2 − (1 −
λ1

µ1,N1

)µ2,N2
).

Remark 5 (Weak and strong fluid limits):Though a quite
subtle technical point, it is worth emphasizing the conceptual
difference between the notion of weak fluid limits and the
notion of strong fluid limit, introduced in SectionsIV-A
andIV-B, respectively. Note that “weak” versus “strong” refers
to accumulation points versus unique limit. The names do
however not take into account the mode of convergence.

Weak limits are a powerful tool for stability if one can
characterize that they all vanish after a finite amount of time,
as will be used in Theorem5.2 for the set of BR policies.
However, in general weak limits might not capture the precise
asymptotic behavior of the process (see [13]). On the contrary,
when having a unique strong fluid limit, the asymptotic be-
havior of the scaled process is completely described, allowing
for example to obtain the policy-dependent stability conditions
for a large class of policies (see Theorem5.1).

V. STABILITY ANALYSIS

The derivation of the weak and strong fluid limits in Sec-
tion IV allows us to conclude the stochastic stability results.
The first Theorem derives the stability conditions for any
policy having a partially increasing drift with uniform limits,
using the strong fluid limit as obtained in Theorem4.3.

Theorem 5.1:A policy f inducing a partially increasing
drift vector field with uniform limits is stable ifT f

l < ∞
for all l, whereT f

l is given by Theorem4.3.
Proof: If T f

l < ∞ for all l, the strong fluid limit described
in Theorem4.3 is equal to0 for t large enough, i.e.,Y f,r(t)
converges in probability to 0 fort large enough. In addition,
the random variableY f,r

k (t) is uniformly integrable. This can
be seen by the fact thatY f,r

k (t) can be upper bounded by
xk(0) plus the users that have arrived until time⌊rt⌋ divided
by r, which is uniform integrable, see [15, Lemma 4.5].

The convergence in probability to 0 and the uniform integra-
bility together imply thatlimr→∞ E(Y f,r

k (t)) = 0, for t large
enough,∀ k, see [7, Theorem 3.5]. Using an extended Foster-
Lyapunov criterion as expressed in [18] or [28, Corollary 9.8],
this implies the positive recurrence ofXf(·).

In the following theorem we state the maximum stability
condition, and prove that any BR policy achieves maximum
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stability. The proof is based on the weak fluid limit characteri-
zation as given in SectionIV and can be found in Appendix B.

Theorem 5.2:The maximum stability condition is

K
∑

k=1

λk

µk,Nk

< 1. (16)

In addition, any BR policy is maximum stable.
Condition (16) was recognized as the maximal rate stability

condition in [1] and as the maximum stability condition under
a time-scale separation assumption in [9].

We note that SB, PI and PB are stable under the maximum
stability conditions (they belong to the class of BR policies).
The intuition behind Theorem5.2 is that asymptotically the
system under a BR policy behaves as a classical work-
conserving system where classk has departure probability
µk,Nk

. On the contrary, other policies, including RB and the
cµ-rule, spend (at the fluid scale) a non-negligible fraction
of time serving users that are not in their best states, and
are therefore not maximum stable. For an example, we refer
to Section VII where we numerically obtain the stability
conditions for RB and thecµ-rule, making use of Theorem5.1.

Remark 6 (Overload):When
∑K

k=1 λk/µk,Nk
> 1 the sys-

tem is said to be in overload. That is, there does not exist
any policy that can make the system stable. Theorem4.3
is however still applicable, providing us with the rates at
which the number of users in the different classes grow: given
x(0) = 0, the growth rate of the number of users over time
is given byXf,r(r)/r = Y f,r(1), which in the limit is equal
to δf,U . This gives us a mean to compare the performance of
various policies in overload (see as well SectionsVI andVII ).

VI. A SYMPTOTIC OPTIMALITY

Besides stability, another important performance measure
concerns the long-run average holding cost as given in (1).
Deriving an optimal policy with respect to this criterion is
difficult and the size of the state space makes the problem
intractable. For this reason we introduce a related deterministic
control problem, which allows us to prove that any BRP policy
is asymptotically optimal for the original stochastic system.
This emphasizes the important role of the tie-breaking rulein
order to achieve efficient performance of the system.

We study the following deterministic fluid control model,
which arises from the original stochastic model by only taking
into account the mean drifts, i.e.,

min
u

K
∑

k=1

ckx
u
k(t), for all t ≥ 0, subject to (17)

xu
k(t) = xk(0) + λkt−

Nk
∑

n=1

µk,n

∫ t

0

uk,n(v)dv, (18)

xu
k(t) ≥ 0, k = 1, . . . ,K, (19)
K
∑

k=1

Nk
∑

n=1

uk,n(v) ≤ 1, uk,n(v) ≥ 0, ∀ k, n, v ≥ 0, (20)

and the control functionsuk,n(v) being integrable. Herexu
k(t)

represents the amount of fluid in classk under controlu(·).

We remark that though in general the fluid limit of a policy
does depend on the distributions of the random environments
(i.e., theqk,n’s), these do not appear in the above equations of
the fluid control model. This is because the fluid trajectory
xk(t) should be interpreted as a limit of the fluid-scaled
process. Hence, whenxk(t) > 0 this implies that there are
infinitely many class-k users so that with probability1 there
are class-k users in each of the channel state conditions (this
being independent of the exact values of theqk,n > 0’s).

An optimal controlu∗(·) is derived in the following lemma.
Lemma 6.1:Assume c1µ1,N1

≥ c2µ2,N2
≥ . . . ≥

cKµK,NK . The fluid controlu∗(·) that solves the fluid control
problem is as follows. Letl = argmin{k : xk(t) > 0}. Then

u∗
k,Nk

(t) =
λk

µk,Nk

, for k < l, u∗
l,Nl

(t) = 1−
l−1
∑

i=1

λi

µi,Ni

,

andu∗
k,n(t) = 0 otherwise.

Proof: Let us denotewu
k (t) = xu

k(t)/µk,Nk
. First, we

show that for any feasible controlu(·), we have

j
∑

k=1

wu∗

k (t) ≤

j
∑

k=1

wu
k (t), for all t ≥ 0, j = 1, . . . ,K. (21)

If
∑j

k=1 w
u∗

k (t) = 0, then (21) trivially holds. Now assume
∑j

k=1 w
u∗

k (t) > 0. By definition of u∗(·) this implies that
∑j

k=1 w
u∗

k (s) > 0, for all s ∈ [0, t], since once all these
classes empty underu∗(t), they will remain empty. Since
u∗(t) gives full priority to classes 1 untilj over classes
j+1 until K, we have that

∑j
k=1

∫ t

0 u
∗
k,Nk

(v)dv = t. Hence,
∑j

k=1

∫ t

0 u∗
k,Nk

(v)dv = t ≥
∑j

k=1

∑Nk

n=1

∫ t

0 uk,n(v)dv ≥
∑j

k=1

∑Nk

n=1

∫ t

0
µk,n

µk,Nk

uk,n(v)dv, which implies (21), since
∑j

k=1 w
u
k (t) −

∑j
k=1 w

u∗

k (t) =
∑j

k=1

∫ t

0 u
∗
k,Nk

(v)dv −
∑j

k=1

∑Nk

n=1

∫ t

0
µk,n

µk,Nk

uk,n(v)dv ≥ 0.

The minimization term
∑K

k=1 ckx
u
k(t) can be written

as
∑K

k=1 ckµk,Nk
wu

k (t) = (c1µ1,N1
− c2µ2,N2

)wu
1 (t) +

· · · + (cK−1µK−1,NK−1
− cKµK,NK )

∑K−1
k=1 wu

k (t) +

cKµK,NK

∑K
k=1 w

u
k (t). Together with (21) and

cjµj,Nj − cj+1µj+1,Nj+1
≥ 0, ∀ j, we obtain that

∑K
k=1 ckµk,Nk

wu
k (t) is minimized byu∗(·).

The optimal fluid cost serves as a lower bound for the fluid-
scaled cost of the stochastic network, see the lemma below.

Lemma 6.2:For any policyf and for almost all sample
paths, we have

lim inf
r→∞

K
∑

k=1

ckY
f,r
k (t) ≥

K
∑

k=1

ckx
u∗

k (t), for all t ≥ 0. (22)

Proof: Lemma4.1 states that for almost all sample paths
we havelim infr→∞ Y f,r

k (t) = yfk (t), with yfk (t) a weak fluid
limit for policy f (this follows by considering the subsequence
rl corresponding to the liminf-sequence in Lemma4.1). Note
that a weak fluid limit is an admissible trajectory for the
fluid control problem. Hence,lim infr→∞

∑K
k=1 ckY

f,r
k (t) =

∑K
k=1 cky

f
k (t) ≥

∑K
k=1 ckx

u∗

k (t).
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Since (22) holds almost surely, it follows by Fatou’s lemma
that the lower bound holds in probability as well, i.e.,

P(
K
∑

k=1

ckY
f,r
k (t)−

K
∑

k=1

ckx
u∗

k (t) ≥ 0) → 1, for all t ≥ 0.

(23)
We define a policy to beasymptotically optimalwhen
the lower bound is obtained in probability, i.e.,∀ǫ > 0,
limr→∞ P(|

∑K
k=1 ck(Y

f,r
k (s)− xu∗

k (s))| ≥ ǫ) = 0.
The next Theorem characterizes a class of policies that is

asymptotically optimal.
Theorem 6.3:Any BRP policy is asymptotically optimal.

Proof: We have dxu∗

k (t)
dt = λk − u∗

k,Nk
(t)µk,Nk

, with
u∗(·) an optimal control as derived in Lemma6.1. This drift
coincides with the drift of the strong fluid limityBRP (·),
see Proposition4.4, hence yBRP (t) = xu∗

(t). Together
with Theorem4.3, we obtain thatlimr→∞

∑K
k=1 ckY

BRP,r
k (t)

converges in probability to
∑K

k=1 ckx
u∗

k (t).

It can be checked that the above implies that any BRP policy
minimizes lim infr→∞ E(

∫∞

0

∑

ckY
f,r
k (t)dt). Unfortunately,

this does not give any performance guarantee in terms of the
long-run time-average holding cost as in Equation (1). Nu-
merical experiments reported in SectionVII indicate however
that BRP policies significantly outperform all other policies in
terms of the long-run time-average holding cost.

Note that the optimality results described in this section also
apply in overload systems. We have the following corollary for
the total growth rate.

Corollary 6.4: Any BRP policy minimizes the growth rate
of the total cost, i.e., for allǫ > 0,

lim
r→∞

P

(

∑K
k=1 ckX

r,f
k (r)

r
−

∑K
k=1 ckX

r,BRP
k (r)

r
≥ −ǫ

)

= 1.

Proof: Combining (23) with the asymptotic optimality of
a BRP policy, the statement is immediate.

To the best of our knowledge, the only policy studied in the
literature that belongs to BRP, and hence is both maximum
stable and asymptotically optimal, is PI. We recall that PI
was derived in [4] as the solution of a relaxed optimization
problem. SB and PB will as well become asymptotically
optimal when the myopic tie-breaking rule would be applied,
showing the importance of the tie-breaking rule.

Remark 7:From Theorem6.3we conclude that the myopic
tie-breaking rule is crucial in order to obtain an asymptot-
ically optimal scheduling policy. In view of Equation (2),
we note that under this myopic rule, higher priority is given
to users with smaller service requirements,E(Bk). Hence,
BRP policies appropriately mix size-based information with
achieving opportunistic gains. This is in agreement with the
findings of [30] where the authors investigate the tradeoff
between prioritizing small users and opportunistic scheduling:
They show thatif the opportunistic capacity is upper bounded
and increases as1 − ax, with a ∈ [0, 1) and x the number
of users, then a significant improvement of performance can

be achieved by exploiting information on the service time
requirement. In our model the capacity has this behavior,
see for instance Equation (9), and as will be observed in
the numerical results, exploiting size-based informationindeed
allows to obtain significant improvements.

Remark 8: In the asymptotic regime, the optimal tie-
breaking rule is to give priority based onµk,Nk

. However,
outside this regime the optimal tie-breaking rule will depend
both on theµk,Nk

’s and on the probabilities that users are in
their best channel condition, theqNk,k ’s. The reason for this
is that in the asymptotic regime there are many users in the
system, which is why theqk,Nk

’s become irrelevant in the limit
(as the number of users grows to infinite, the probability of
having one best-rate user becomes equal to 1). Note however
that our numerical simulations in the next section suggest that
outside the asymptotic regime the asymptotically optimal tie-
breaking rule performs very well as well.

VII. N UMERICAL EXPERIMENTS

We consider a CDMA 1xEV-DO system with two classes
of users (K = 2). Time is slotted, with the length of one
slot beingtc = 1.67ms. In each time slot, one new class-k
user arrives with probabilityλk. We choose10.257 kb as the
expected service requirement of both a class-1 and class-2 user.
Associated to the state of the channel, we have transmission
rates (kb/s), see TableI (taken from [5]).

We simulate the queueing system as described in SectionII .
We assume that class-1 users have five possible transmis-
sion rates while class-2 users have three. The corresponding
probabilities (qk,n) are given in TableI. In addition, applying
Equation (2) we calculate the departure probabilities (µk,n).
We fix λ2 = 0.05, soλ2/µ2,N2

= 0.5. We setc1 = c2 = 1, so
that we are interested in minimizing the expected total number
of users in the system, see Equation (1). We will compare the
performance of the policies SB, RB, PI, PB and thecµ rule,
which were introduced in SectionIII .

Before presenting the numerical results we first summarize
the main conclusions that we will make in this section:

• For different policies we validate the convergence of the
system towards its fluid limit.

• We prove that not all policies obtain maximum stability.
More precisely, we calculate the stability conditions under
RB and thecµ-rule and observe that these are much more
stringent than the stability condition for BR policies.

• The drifts of the fluid limit, δU , which are calculated
numerically (and in some cases theoretically), provide
very important insights on the performance. In particular,
insightful monotonicity results in the tie-breaking rule are
obtained with respect to the performance of the system.
In addition, the drift analysis allows to show that PI
outperforms all other policies in terms of the growth rates.

• Our simulations illustrate that the tie-breaking rule has a
big impact on the performance of the system and we find
that BRP policies, i.e., policies that combine opportunistic
scheduling with the myopic tie-breaking rule, minimize
the long-run time-average holding cost (see (1)).
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Channel state (n) 1 2 3 4 5 6 7 8 9 10 11

Transmission rate (kb/s) in CDMA 38.4 76.8 102.6 153.6 204.8307.2 614.4 921.6 1228.8 1843.2 2457.6
Probabilities in CDMA 0.00 0.01 0.04 0.08 0.15 0.24 0.18 0.09 0.12 0.05 0.04

q1,n 0 0 0.05 0 0.23 0 0.42 0 0.21 0 0.09
q2,n 0 0 0.15 0 0.33 0 0.52 0 0 0 0

µ1,n 0 0 0.017 0 0.033 0 0.1 0 0.2 0 0.4
µ2,n 0 0 0.017 0 0.033 0 0.1 0 0 0 0

TABLE I
TRANSMISSION RATES AND CHANNEL CONDITION PROBABILITIES IN THE CDMA 1XEV-DO WIRELESS NETWORK, AS REPORTED IN[5].

a) Fluid limit: We first illustrate how the scaled process
converges to the fluid limit. We taker = 10000, Y r(0) =
X(0)/r = (1, 1) and plot the scaled processesY r

1 (t), Y
r
2 (t),

andY r
1 (t) + Y r

2 (t) for different policies, see Figure2. In this
simulation we setλ1 = 0.14, soλ1/µ1,N1

= 0.35.
We describe the fluid limityf(t) as defined in Theorem4.3.

When both classes are saturated, i.e.,U = ∅, the drift is

δf,∅ = (λ1 − αfµ1,N1
, λ2 − (1 − αf )µ2,N2

), (24)

see Remark4. Hereαf is a random tie-breaking rule, i.e., in
case of a tie,αf is the probability that class 1 is favoured over
class 2. For our set of parameters, the best class-1 user under
the cµ-rule and RB is always preferred over the best class-
2 user, i.e., there occur no ties, hence one can setαf = 1
in (24) for f = cµ,RB. For PI, SB and PB we do have
ties, and we setαPI = 1 (since PI applies the myopic tie-
breaking rule) andαSB = αPB = 1/2 (since SB and PB apply
a random tie-breaking rule). In TableII we present the so-
obtained values forδf,∅. From the drifts it is clear that under all
policies class 1 empties before class 2. The moment that this
happens,T f

1 , can be derived from Theorem4.3 and satisfies
TPI
1 = T cµ

1 = TRB
1 < T SB

1 = TPB
1 , see also Figure2 a).

For T f
1 < t ≤ T f

2 , the drift of class1 is 0, whereas the
drift of class2 depends on the policy. From Proposition4.4
we have that for all BR policies (e.g. PI, SB and PB)δf,{1} =
(0, λ2 − µ2,N2

(1 − λ1/µ1,N1
)). For thecµ rule and RB we

calculate the drift numerically using Remark3, see TableII .
In particular we observe that these drifts are positive for the
latter two policies, which implies instability of the system, as
can be seen in Figure2 b). We observe that fort ≤ T f

1 the
number of class-2 users increases under policies PI,cµ and
RB, while for SB and PB, the drift of class-2 users is negative.

We note that the slopes of the strong fluid limit indeed
coincide with the slopes of the original process,Y r(t) (r =
10000), as plotted in Figure2.

A direct consequence of the drift function is that SB, PB,
and PI (in fact all BR policies) empty the system at the
same time (under the maximum stability condition), i.e.,T f

2

is the same (this can be seen directly from Equation (43) for
example). However, the performance of a policy will depend
on the order in which classes are served. In the fluid limit,
this is fully determined by the choice of the tie-breaking rule.
Note that, as can be seen from Figure2 c), PI, (and hence any
BR policy with the myopic tie-breaking rule) minimizes the
total number of users at any moment in time.

δf,∅ δf,{1}

f Class 1 Class 2 Class 1 Class 2

PI -0.26 0.05 0 -0.015
cµ-rule -0.26 0.05 0 0.0096
PB/SB -0.06 0 0 -0.015

RB -0.26 0.05 0 0.0004

TABLE II
DRIFT OF THE FLUID LIMIT.

δf,∅ δf,{1}

f Class 1 Class 2 Class 1 Class 2

PI -0.16 0.05 0 0.01
cµ-rule -0.16 0.05 0 0.036
PB/SB 0.04 0 - -

RB -0.16 0.05 0 0.029

TABLE III
DRIFT OF THE FLUID LIMIT IN OVERLOAD SYSTEM.

b) Stability region: We now vary the value ofλ1 from
0.004 to 0.196, and as a consequence we have thatρ :=
λ1/µ1,N1

+ λ2/µ2,N2
varies from0.51 to 0.99. The policies

PI, PB and SB belong to the BR policies, and are hence stable
when ρ < 1. For thecµ-rule and RB the stability condition
can be numerically calculated as follows: First, we calculate
the stationary distribution of class-1 users once the stationary
regime is reached. Then, we calculate the average driftδ̃f,{1}

according to Definition (8). Policy f is stable if δ̃f,{1}2 < 0,
which reduces toρ < 0.79 for the cµ-rule and toρ < 0.84
for RB. In Figure3 a) we plot the mean number of users for
different values ofρ and we observe that the mean number of
users (and hence the mean delay) for these policies grows to
infinity as the loadρ approaches the critical value.

c) Impact of Tie-Breaking rule:We study the impact
of the tie-breaking rule on the performance of the system.
In order to investigate this issue in more depth, we simulate
PI under different random tie-breaking rules, i.e., we let the
probability α vary from 0 until 1 (Recall that the parameter
α is the probability, in case of a tie, that class 1 is favoured
over class 2). We emphasize that PI as defined in [4] uses
by default the myopic tie-breaking rule, i.e.,αPI = 1. In
Figure 3 b) we plot the relative degradation (in terms of the
mean number of users) over PI as we varyα. We observe that
the degradation in the mean performance is decreasing asα
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Fig. 3. (a) Mean number of users and stability thresholds, (b) PI under different tie-breaking rules: relative degradation (in %) over PI withα = 1, (c)
Scaled total number of users in overload,ρ = 1.1.

increases. In the fluid-scaling system a similar observation can
be made: from (24) and Remark4 it follows that the drift of
the total number of users of the strong fluid limit (as obtained
in Theorem4.3) is decreasing (or constant) inα, for all time t.

The results show that the myopic tie-breaking rule, which
was proven to be asymptotically optimal in the fluid limit (see
Theorem6.3), is in practice indeed optimal when minimizing
the mean number of users. In addition, the relative degradation
of the tie-breaking rule withα = 1/2 (compared to the myopic
tie-breaking ruleαPI = 1) can be very large. For example,
for ρ = 0.8 the degradation is 29% and forρ = 0.9 it is 45%.

d) Overload: In Figure 3 c) we plot a trajectory of the
total scaled number of usersY r

1 (t) + Y r
2 (t) (for r = 100)

when λ1 = 0.240 and ρ = 1.1, so all policies are unstable.
In TableIII we give the values for the drifts (growth rates) of
the fluid limit yf(t). In this example, the worst performance
is under SB/PB and the best performance is for PI. This is in
contrary to the stable regime where SB/PB is maximum stable
with a performance strictly better than thecµ-rule and RB, see
Figure 3 a). This implies that the performance of this policy
can differ very much between stable and overload regimes.
In addition, the total growth rate of the system is always
minimized under any BRP policy, that is a best-rate policy
with the myopic tie-breaking rule, as proved in Corollary6.4.

VIII. C ONCLUSION

We have characterized the classes of policies that are
maximum stable and asymptotically optimal in a system with
random environment. An important conclusion, validated by
numerical experiments, is that the tie-breaking rule has a
tremendous impact on the performance. Our analysis also

shows that simple priority-index policies like PI or SB with
a cµ tie-breaking rule, are stable and asymptotically opti-
mal. While in this model we assumed geometric service
requirements, we do believe that direct extensions of all our
results exist for phase-type distributed service requirements.
In particular, we expect that an optimal tie-breaking rule will
be of a simple priority-index type.
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APPENDIX A: PROOF OFTHEOREM 4.3

We first derive a property on the drift vector.
Lemma 8.1:Supposeδf (·) has uniform limits. Then for any

U and any compact setC ⊂ R
|Uc|
++ there exists anL > 0 and

ǫr with limr→∞ ǫr = 0 such that

|δf (x)− δU ,f (xU )| ≤ ǫr + L|
xUc

r
− y|,

∀x ∈ R
K
+ , xUc ∈ R

|Uc|
++ , y ∈ C ⊂ R

|Uc|
++ . (25)

Proof: Considerǫ > 0, andy ∈ C such thatyi > ǫ, ∀i ∈
Uc. DefineBry,rǫ ⊂ R

|Uc|
++ the ball of centerry and radiusrǫ.

Assume that the drift functionδ(·) has uniform limits. Hence,
ǫr = supy∈C supxUc∈Bry,rǫ

|δf (x)−δU ,f(xU )|, converges to0,
asr → ∞. Since|xUc

r −y| ≥ ǫ whenxUc /∈ Bry,rǫ, we obtain
that |δf (x)−δU ,f (xU )| ≤ supxUc∈Bry,rǫ

|δf (x)−δU ,f (xU )|+

+supxUc /∈Bry,rǫ
|δf (x) − δU ,f (xU )| ≤ ǫr + L|xUc

r − y|, with

L :=
2maxk,n(λk,µk,n)

ǫ ≥
supxUc /∈Bry,rǫ

|δf (x)−δU,f (xU )|

ǫ .

In what follows, we will use the martingale decomposition of
the process (see [34]), i.e., we defineM(·) such that

X(t) = X(0) +

t−1
∑

s=0

δ(X(s)) +M(t), (26)

whereM is a martingale, and|M(0)| = 0. The following
lemma gives a useful property for the martingaleM(t).

Lemma 8.2:It holds that E
(

|Mk(t)|
2
)

≤ C′t, ∀k =

1 . . . ,K, for some constantC′ > 0.
Proof: Using that the drift is bounded and the arrival

increments have a finite variance, it immediately follows
from (26) thatE

(

|Mk(t)|
2
)

< ∞, ∀t. Hence,

E

(

|Mk(t)|
2
)

(27)

≤ E

(

|Mk(0)|
2
)

+

t
∑

s=1

E

(

|(Mk(s)−Mk(s− 1))|2
)

,

see [34, Chapter 12.1]. From (26), we have that for all
s, |Mk(t) − Mk(t − 1)| ≤ |Xk(t) − Xk(t − 1)| +
|δ(Xi(t − 1))|. Since the drift is bounded, and the ar-
rival process has finite mean and variance, this implies that
E
(

|Mk(t)−Mk(t− 1)|2
)

≤ C′, with C′ > 0 a constant.
Thus, the statement follows from (27).

We prove Theorem4.3 for two classes of users, the general
case being notationally much more cumbersome but mathe-
matically equivalent. The trajectory of the fluid limit is defined
piece-wise. We refer as thefirst part of the fluid limit to
the caset < T1, and assecond part of the fluid limitto
the caseT1 ≤ T2, and we shall prove the convergence
separately for the two parts. The basic techniques used to
prove the convergence of the first part of the trajectory are
fairly standard and we proceed using the tools of [20]. Let
us however emphasize that the proof relies crucially on the
extended Lipschitz condition (25). Verifying this condition
might be difficult in practice. In Lemma8.1, combined with
Lemma 4.2, we however showed that the conditions are
satisfied for various scheduling policies of interest. Proving
the convergence of the second part of the trajectory is much
more subtle as it involves an averaging phenomena: one of
the classes reaches a stationary regime while the other class
keeps being macroscopically big. We must therefore rely on
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stochastic comparisons and on the ergodic theorem for Markov
chains. Such phenomena have been observed and analyzed
in [18] for homogeneous random walks in the positive orthant.

First part of the trajectory:Assume strictly positive initial
conditions for both classes, i.e.,x1(0) > 0 and x2(0) > 0.
At time t = 0 all classes are saturated, hence in the first part
of the trajectory,t < T1, we need to considerU = U0 =
∅. Consider the deterministic functiony(·) as defined in the
theorem,y(t) = x(0) + δ∅t, and we define an error function
er(t) := E

(

sup0≤s≤t |Y
r(s)− y(s)|

)

. From (26) we obtain

|Y r(t)− y(t)| ≤
1

r

⌊rt⌋−1
∑

s=0

∣

∣

∣δ(Xr(s))− δ∅
∣

∣

∣ +

∣

∣

∣

∣

M r(⌊rt⌋)

r

∣

∣

∣

∣

.

(28)
We first control the martingale. Using successively Cauchy-
Schwartz, Doob’s inequality and Lemma8.2, we get

E

(

sup
s≤t

∣

∣

∣

∣

M r(⌊rs⌋)

r

∣

∣

∣

∣

)2

≤ E

(

(

sup
s≤t

∣

∣

∣

∣

M r(⌊rs⌋)

r

∣

∣

∣

∣

)2
)

≤ 4E

(

∣

∣

∣

∣

M r(⌊rt⌋)

r

∣

∣

∣

∣

2
)

≤
C′t

r
, for a C′ > 0. (29)

We now control the drift part in Equation (28). Since the
drift has uniform limits, we obtain from Lemma8.1 that
|δ(Xr(s)) − δ∅| ≤ ǫr + L|X

r(s)
r − y( sr )|, ∀ s ≤ rt. Hence,

bounding the Riemann sum for piece-wise constant functions
by an integral, there exists aκ > 0 such that

1

r

⌊rt⌋−1
∑

s=0

∣

∣

∣δ(Xr(s))− δ∅
∣

∣

∣ ≤ ǫrt+ κ

∫ t

0

|
Xr(rs)

r
− y(s)|ds

≤ ǫrt+ κ

∫ t

0

sup
0≤s̃≤s

∣

∣

∣

∣

Xr(rs̃)

r
− y(s̃)

∣

∣

∣

∣

ds. (30)

Taking expectations on both sides we obtain

E





1

r

⌊rt⌋−1
∑

s=0

∣

∣

∣δ(Xr(s))− δ∅
∣

∣

∣



 ≤ ǫrt+ κ

(∫ t

0

er(s)ds

)

.

(31)
Together with (28), (29) and (31), we deduce that

er(t) ≤ E





1

r

⌊rt⌋−1
∑

s=0

∣

∣

∣δ(Xr(s))− δ∅
∣

∣

∣



+ E

(

sup
s≤t

∣

∣

∣

∣

M r(⌊rs⌋)

r

∣

∣

∣

∣

)

≤ ǫrt+ κ

(∫ t

0

er(s)ds

)

+

√

C′t

r
.

Hence, for anyǫ > 0 there existsr0 such that, for a
C′′ > 0, er(t) ≤ C′′

(

ǫt+
∫ t

0 er(s)ds
)

, for r ≥ r0. Using
Gronwall’s lemma [27], we obtain that for anyr ≥ r0,

er(t) ≤ C′′ǫt

(

1 + et
∫ t

0

e−sds

)

≤ C′′ǫt
(

1 + tet
)

,

for all t < T1. Hence,limr→∞ er(t) = 0 for t < T1. Since
er(t) = E(sup0≤s≤t |Y

r(s) − y(s)|) ≥ P(sup0≤s≤t |Y
r(s) −

y(s)| > ǫ′) · ǫ′, we obtain limr→∞ P(sup0≤s≤t |Y
r(s) −

y(s)| > ǫ′) = 0, for t < T1.
In caseT1 = ∞, the Theorem4.3 is now proved∀t > 0. In

the remainder of the proof we therefore assume thatT1 < ∞.

Second part of the trajectory (one stationary class):We
decomposed the trajectory ofY r into a first part (t < T1) and
a second part (t > T1). By the Markov property, we can study
the second part of the trajectory supposing thatY r(T1) =

(x1, y2(T1)r). SinceT1 < ∞, the processX{1}
1 is ergodic.

Using the monotonicity of the drift, we have thatXr
1 (t) ≤st

X
{1}
1 (t) for t > T1 (this can be observed by coupling the two

processes and noting that in the case of an infinite number of
class-2 users, the service rate for class 1 is the lowest possible
since there will always be a class-2 user in its best state). This
implies that the family(Xr

1 (t))r is tight and thatX
r
1 (t)
r →

0, as r → ∞, for t > T1. At time T1 class 2 is saturated,
i.e., U1 = {1}. In what follows we assume thatT1 ≤ t <
T2. Consider the deterministic functiony2(·) as defined in the
theorem,y2(t) = y2(T1) + δ̃

{1}
2 (t− T1), T1 ≤ t < T2, and

define the error functionEr
2(t) := supT1≤s≤t |Y

r
2 (s)−y2(s)|.

From (26) we obtain

Y r
2 (t) = y2(T1) +

1

r

⌊rt⌋−1
∑

s=⌊rT1⌋

δ2(X
r(s)) +

M r
2 (⌊rt⌋)

r
. (32)

Using the triangular inequality we obtain,

Er
2(t) ≤

1

r

⌊rt⌋−1
∑

s=⌊rT1⌋

∣

∣

∣
δ2(X

r(s))− δ
{1}
2 (Xr

1 (s))
∣

∣

∣
(33)

+
1

r

⌊rt⌋−1
∑

s=⌊rT1⌋

∣

∣

∣δ
{1}
2 (Xr

1 (s))− δ̃
{1}
2

∣

∣

∣+ sup
0≤s≤t

∣

∣

∣

∣

M r
2 (⌊rs⌋)

r

∣

∣

∣

∣

.

From Lemma 8.1 we obtain that there existsǫr with
limr→∞ ǫr = 0, such that∀s = ⌊rT1⌋, . . . , ⌊rt⌋.

|δ2(X
r(s))− δ

{1}
2 (Xr

1 (s))| ≤ ǫr + L|
Xr

2(s)

r
− y2(

s

r
)|. (34)

We now derive a bound on|δ{1}2 (Xr
1 (s)) − δ̃

{1}
2 |. In order

to do that, we define a one-dimensional process Xr
1 having

the same dynamics as our initial process but with the number
of class-2 users fixed tor(y2(T1) − θ), 0 < θ < y2(T1). Let
πθ,r be the stationary distribution of Xr1. Adapting Lemma 6
in [12] to our discrete time setting, we obtain that

lim
r→∞

πθ,r(x) = π{1}(x), ∀x. (35)

We defineT r = inf{t : Xr
2 (rt) < r(y2(T1) − θ)}. Using

coupling arguments, we see thatT r ≥ T1 a. s., while for
T1 < t ≤ T r, Xr

1(t) ≤st X
r
1 (t) ≤st X

{1}
1 (t). Sinceδ{1}2 (·) is

increasing (follows from monotonicity assumption) we obtain

1

r

⌊rt⌋−1
∑

s=⌊rT1⌋

δ
{1}
2 (Xr

1(s)) ≤
1

r

⌊rt⌋−1
∑

s=⌊rT1⌋

δ
{1}
2 (Xr

1 (s))

≤
1

r

⌊rt⌋−1
∑

s=⌊rT1⌋

δ
{1}
2 (X

{1}
1 (s)) for t ≤ T r. (36)

Sinceδ{1}2 is uniformly upper-bounded, we have that

lim
r→∞

∑

x

πθ,r(x)δ
{1}
2 (x) =

∑

x

lim
r→∞

πθ,r(x)δ
{1}
2 (x)

=
∑

x

π{1}(x)δ
{1}
2 (x) = δ̃

{1}
2 .
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T r

y2(T1)

T1

y2(T1)− θ

y2(t)

Y r

2 (t)

T∞

Fig. 4. CaseT∞ < ∞.

T r

y2(T1)

T1

y2(T1)− θ

y2(t)

Y r

2 (t)

Fig. 5. CaseT∞ = ∞.

Hence, we obtain that for allǫ > 0 there existsr0 such that
∑

x≥0 π
θ,r0(x)δ

{1}
2 (x) ≥ δ̃

{1}
2 −ǫ, for all r ≥ r0, and applying

the ergodic theorem for Markov chains we get

lim
r→∞

1

r

⌊rt⌋−1
∑

s=rT1

δ
{1}
2 (X

{1}
1 (s)) = (t− T1)δ̃

{1}
2 , a.s. and

lim
r→∞

1

r

⌊rt⌋−1
∑

s=rT1

δ
{1}
2 (Xr

1(s)) ≥ (t− T1)(δ̃
{1}
2 − ǫ), a.s..

Together with (36) we obtain that there exists anr0 such that

|
1

r

⌊rt⌋−1
∑

s=⌊tT1⌋

δ
{1}
2 (Xr

1 (s))− δ̃
{1}
2 | ≤ ǫ, a.s., for t ≤ T r, r ≥ r0.

(37)
Let us now condition on the set of eventsΩr

1(ǫ̃) = {ω :

sups≤t
|Mr

2 (⌊rs⌋)|
r ≤ ǫ̃}. From (33), (34) and (37), and using

an inequality similar to (30), we obtain that for any sample
path inΩr

1(ǫ̃) (with ǫ̃ small enough) it holds that

Er
2(t) ≤ C′′(ǫt+

∫ t

0

Er
2(s)ds), for all t ≤ T r, (38)

with r large enough, andC′′ > 0. Using Gronwall’s lemma
[27], Equation (38) implies thatEr

2(t) ≤ C′′ǫt(1+tet). Hence,
we can conclude that for a givenǫ > 0, there is añǫ > 0 such
that for each sample path inΩr

1(ǫ̃) it holds that

Er
2(t) ≤ ǫ, for all t ≤ T r, andr large enough. (39)

We defineT∞ := T1 − θ

δ̃
{1}
2

if δ̃
{1}
2 < 0, andT∞ = ∞

otherwise. Assumeω ∈ Ωr
1(ǫ̃). If T r < T∞ < ∞, then

T∞ − T r =
Er

2(T
r)

|δ̃
{1}
2 |

≤
ǫ

|δ̃
{1}
2 |

, so T r ≥ T∞ −
ǫ

|δ̃
{1}
2 |

,

see also Figure4. WhenT∞ = ∞, it is easy to check that
T r = ∞ for ǫ small enough: Consider anǫ < θ. If T r < ∞,
then |Y r

2 (T
r) − y2(T

r)| > θ. However, sinceω ∈ Ωr
1(ǫ̃) we

also have|Y r
2 (T

r)−y2(T
r)| < ǫ, which gives a contradiction

with the above. See also Figure5.
Therefore, givent such thatt < T∞, there exists anǫ

small enough such thatt < T r for all r large enough. Hence,
from (39) we obtain fort < T∞,

P

(

sup
T1≤s≤t

|Y r
2 (s)− y2(s)| ≥ ǫ

)

= P (Er
2(t) ≥ ǫ) ≤ P (Ω/Ωr

1(ǫ̃)) . (40)

From (29), we obtainlimr→∞ E

(

sups≤t

∣

∣

∣

Mr(⌊rs⌋)
r

∣

∣

∣

)

= 0.

SinceE

(

sups≤t

∣

∣

∣

Mr(⌊rs⌋)
r

∣

∣

∣

)

≥ P(sups≤t

∣

∣

∣

Mr(⌊rs⌋)
r

∣

∣

∣ ≥ ǫ̃) ·

ǫ̃, we obtain thatP (Ω/Ωr
1(ǫ̃)) = P(sups≤t

∣

∣

∣

Mr(⌊rs⌋)
r

∣

∣

∣ ≥

ǫ̃) ≤ 1
ǫ̃E

(

sups≤t

∣

∣

∣

Mr(⌊rs⌋)
r

∣

∣

∣

)

→ 0, as r → ∞.
Together with (40), this implies that for t < T∞,
limr→∞ P

(

supT1≤s≤t |Y
r
2 (s)− y2(s)| ≥ ǫ

)

= 0. Letting θ ↑

y2(T1), henceT∞ ↑ T1 +
y2(t)

δ̃
{1}
2

= T2, we obtain thatY r
2 (·)

converges in probability toy2(·) on the set[T1, T2).

APPENDIX B: PROOF OFTHEOREM 5.2

If condition (16) is not satisfied, the system is not rate stable,
see Lemma8.3 below, which precludes stability. Hence, (16)
is a necessary condition for stability. We are now left with
proving that BR policies are stable under condition (16). In
order to do that, we (i) prove that, under any BR policy, the
set of sample paths where service is given to a user that is not
in its best state is asymptotically almost surely empty. Then
(ii) we prove that the fluid limit will be equal to zero almost
surely for some timeT large enough, if condition (16) holds.
This will allow to conclude the proof.

In the remainder of the proof we focus on BR policies and
assume condition (16) to be satisfied. Let us define

T :=

∑K
k=1

yf
k (0)

µk,Nk
(

1−
∑K

k=1
λk

µk,Nk

) < ∞. (41)

We define the random variableT r
ǫ = inf{t :

∑K
k=1

Y r
k (t)

µk,Nk

≤ ǫ}

for 0 < ǫ < 1 and letT
r

ǫ = min {T r
ǫ , T }. Consider the event

Ar which occurs if, during the time interval[0, ⌊rT
r

ǫ⌋], there is
at least one user which has been served while not being in its
best possible state. Since any BR policy gives absolute priority
to users which are in their best possible state, it follows that

P(Ar) = 1−
∏⌊rT

r
ǫ⌋

s=0 [1−
∏K

k=1(1−qk,Nk
)rYk(

s
r )]. SinceT

r

ǫ ≤
T and using basic algebra, it is easy to check that there existsa
constantξ ∈ [0, 1) such thatP(Ar) ≤ 1− (1− ξr)rT =: g(r).
We will now show that

P(∩∞
r=1 ∪

∞
r̃=r Ar̃) = 0. (42)

Since log(1 + x) = x + o(x) when x is close to 0, we
obtain that(1 − ξr)rT = e−rTξr+o(rξr) for large values ofr.
Using Taylor expansions and the fact that

∑∞
r=1 rξ

r < ∞,
it follows that,

∑∞
r=1 g(r) =

∑∞
r=1(1 − (1 − ξr)rT ) =
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∑∞
r=1 1 − e−rTξr+o(rξr) < ∞. Hence, we obtain (42) using

Borel-Cantelli’s lemma [19].
We will now show that at timeT the weak fluid limit is

almost surely equal to zero. From Equation (42) we obtain
that, almost surely, eventAc

r occurs whenr is large enough.
Hence, only users in their best possible state are served in the
interval [0, rT

r

ǫ ] when r is large enough, i.e.,TBR,r
k,n (t) = 0,

for n 6= Nk andt ≤ rT
r

ǫ , for r large enough, a.s.. Hence, for
almost allω we have that in the weak fluid limit presentation of
Lemma4.1 it holds that

∑K
k=1 τ

BR
k,Nk

(t) = t andτBR
k,n (t) = 0

for all n 6= Nk, t ≤ lim infr→∞ T
r

ǫ . So we obtain that for
t ≤ lim infr→∞ T

r

ǫ , any weak fluid limityBR(·) satisfies

K
∑

k=1

yBR
k (t)

µk,Nk

=
K
∑

k=1

xk(0)

µk,Nk

+
K
∑

k=1

λk

µk,Nk

t−
K
∑

k=1

τBR
k,Nk

(t)

=
K
∑

k=1

xk(0)

µk,Nk

−

(

1−
K
∑

k=1

λk

µk,Nk

)

t. (43)

Let Tǫ < ∞ denote the moment that
∑K

k=1
yBR
k (t)
µk,Nk

= ǫ. For a
given sample pathω, let rk be the subsequence correspond-
ing to lim infr→∞ T

r

ǫ . By Lemma 4.1 we know that there

exists a subsequencerkl
of rk such that|

∑

k
yBR(T

rkl
ǫ )

µk,Nk

−
∑

k
Y

BR,rkl (T
rkl
ǫ )

µk,Nk

| ≤ ǫ′, for ǫ′ > 0 andl large enough. Hence,

if T
rkl
ǫ ≤ Tǫ, we have thatTǫ − T

rkl
ǫ ≤ ǫ′

1−
∑

λk/µk,Nk

, i.e.,

T
rkl
ǫ ≥ Tǫ −

ǫ′

1−
∑

λk/µk,Nk

. Since limǫ′↓0 lim infr→∞ T
r

ǫ ≥

Tǫ, the description (43) holds for all t ≤ Tǫ. Now letting ǫ
go to zero, thenTǫ → T , hence Equation (43) holds for any
t ≤ T , and in particular|yf (T )| = 0.

We conclude that for almost all sample paths, any weak
fluid limit converges to 0 at timeT , in particular the sequence
corresponding to the liminf and the limsup. Hence, one can
conclude thatlimr→∞ Y f,r

k (T ) = yfk (T ) = 0, almost surely.
Since Y f,r

k (T ) converges almost surely (and therefore, also
in probability) to 0, we can use the same argument as in
Theorem5.1, in order to conclude that the system will be
stable under policyf , which finishes the proof of Theorem5.2.

Below we state the rate stability result.
Lemma 8.3:Assume X(t) is rate stable, i.e.,

limt→∞ Xi(t)/t = 0 Assume X(t) is rate stable, i.e.,
limt→∞ Xi(t)/t = 0 for all i. Then

∑K
k=1

λk

µk
≤ 1.

Proof: We first derive rate conservation equations for
the (per class) number of users. Using the martingale de-
composition of the Markov chain, we obtain thatXi(t)/t =
xi(0)/t+

∑t
s=1 δi(X(s))/t+Mi(t)/t, whereMi is a square

martingale such thatE[Mi(t)
2] ≤ Ct, with C > 0 a constant.

Hence,M(t)
t → 0, almost surely. So, ifXi(t)

t → 0 then

lim
t→∞

1

t

t
∑

s=1

δi(X(s)) = 0. (44)

Hence the time average of the Cesaro mean of the servicesi(·)
dedicated to classi is equal toλi. Given that we consider a
system with capacity 1,

∑K
i=1

si(t)
µi,Ni

≤ 1, ∀t, which, combined

with the previous equation, gives that
∑K

i=1
λi

µi,Ni
≤ 1.
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