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Abstract

We consider a single-server multi-class queue that implements relative priorities among customers of the

various classes. The discipline might serve one customer at a time in a non-preemptive way, or serve all customers

simultaneously. The analysis of the steady-state distribution of the queue-length and the waiting time in such

systems is complex and closed-form results are available only in particular cases. We therefore set out to develop

approximations for the steady-state distribution of these performance metrics. We first analyze the performance

in light traffic. Using known results in the heavy-traffic regime, we then show how to develop an interpolation-

based approximation that is valid for any load in the system. An advantage of the approach taken is that it is

not model dependent and hence could potentially be applied to other complex queueing models. We numerically

assess the accuracy of the interpolation approximation through the first and second moments.

Key words: light traffic, interpolation approximation, discriminatory processor sharing, random order of

service

1 Introduction

In this paper we are interested in analyzing the steady-state performance of two multi-class single-server models:

discriminatory processor sharing (DPS) and relative-priorities (RP). The behavior of both systems is determined

by a vector of class-dependent weights, which we will denote by (g1, . . . , gK) for DPS and by (p1, . . . , pK) for RP.

DPS is a time-sharing discipline in which all customers in the system get served simultaneously, being gk∑
j njgj

,

the fraction of the service that is allocated to a class-k customer, with nj the number of class-j customers in
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the system. On the other hand RP operates in a non-preemptive manner, and the probability that the next

customer to be served is from class k is given by nkpk∑
j njpj

. The intra-class scheduling discipline under RP can be

any non-anticipating policy, e.g. First Come First Served (FCFS), Last Come First Served (LCFS), or Random

Order of Service (ROS).

Both DPS and RP are versatile queueing models providing a natural framework to model service differenti-

ation in systems. DPS is a multi-class extension of the well-studied egalitarian Processor Sharing (PS) policy,

where the various classes are assigned positive weight factors. The DPS queue has received lot of attention

due to its application to model the performance of bandwidth sharing policies in communication networks, see

for example [21, 8, 10, 18]. The RP model can have applications in various domains, in particular in ATM

networks [3], telecommunication networks [6], or genetic networks, where molecules are analogous to customers,

the enzyme is analogous to the server and protein species correspond to classes, see [25].

The exact analysis of both DPS and RP is difficult, and closed-form results are scarce and exist only under

limiting assumptions. For DPS with exponential service time distributions, in [26] the authors established that

the generating function of the queue length vector satisfies a differential equation. From this equation, the

authors further show that the moments can be determined numerically as the solution of a system of equations.

RP is more amenable to analyze because it is non-preemptive. In [23] the authors established for general service

requirements a set of equations for the generating function of the queue length vector and the Laplace-Stieltjes

Transform (LST) of the waiting time. For both DPS and RP, a closed-form expression for the mean queue length

is available only for the case of two classes, see [12] for DPS (with exponential service times) and [17] for RP. The

heavy-traffic limits for DPS and RP have been studied in [20, 15, 32]. For both models it has been shown that

a so-called “state-space collapse” appears, which describes that the queue lengths of the various classes become

proportional in the heavy-traffic regime.

Motivated by the difficulty in analyzing both systems in exact form, in this paper we derive closed-form

approximations for the steady-state distribution of the queue length vector and waiting time. We have chosen

these metrics since they are among the most frequently considered measures in the performance evaluation

literature. More precisely, we will first investigate the performance of both systems in light traffic, that is, when

the arrival rate tends to 0. This approach was pioneered in a series of papers by Reiman & Simon, see for

example [29], where the objective was the mean number of customers or mean sojourn time, and extended to the

distribution of the sojourn time for Markovian queues in [14] and [28]. In one of our main contributions, we will

derive the distribution of performance metrics under DPS in a light-traffic regime for general service times. We

emphasize that in that case no analytical characterizations are available for DPS. In the case of RP, we will show

that the light-traffic approximation can be obtained directly from the differential equations obtained in [23]. We

will then combine our light-traffic approximations with the heavy-traffic characterization in order to develop an

interpolation approximation that aims at capturing the performance for any load. We investigate the accuracy

of our approximations for several service time distributions to illustrate the applicability of the approach.

We note that this paper is a generalization of [19] where we developed closed-form approximations for the

mean conditional and unconditional sojourn times for the DPS policy. The main result in [19, Proposition IV.1]
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is a particular case of Proposition 6.6, as described in Section 6.3.

The remainder of the paper is organized as follows. In Section 2 we provide a short overview of the related

literature. In Section 3 we present the main modeling assumptions and notation used in this paper. In Section 4

we provide a detailed explanation of how to obtain the light-traffic derivatives and how to build the interpolation

approximation. Section 5 and Section 6 focus on the RP model and the DPS model, respectively. We first

introduce the known results from the literature (including known heavy-traffic results), and then explain how to

derive the light-traffic approximation and the interpolation approximation. In Section 7 we numerically illustrate

the accuracy of our approximations.

2 Related work

In this section we present a brief overview of the main results available on the models DPS and RP, and on

light-traffic approximations.

The DPS model was introduced by Kleinrock in [24]. Despite the simplicity of the model description and

the fact that the properties of the egalitarian Processor-Sharing queue (equal weights) are quite thoroughly

understood, the analysis of DPS has proven to be extremely difficult. In a seminal paper Fayolle et al. [12]

studied the mean conditional (on the service requirement) and unconditional sojourn time. For general service

time distributions, the authors obtained the mean conditional sojourn time as the solution of a system of

integro-differential equations. Asymptotics of the sojourn time have received considerable attention for example

in [5] and [4]. Time-scale separations have been studied in [30] and [7]. The performance of DPS in overload and

its application to model TCP flows is considered in [2]. The application of DPS to analyse the performance of TCP

is also considered in [21] and for more applications of DPS in communication networks see [8, 10, 18]. DPS under

a heavy-traffic regime (when the traffic load approaches the available capacity) was analysed in Grishechkin [15]

assuming finite second moments of the service requirement distributions. Subsequently, assuming exponential

service requirement distributions, a direct approach to establish a heavy-traffic limit for the joint queue length

distribution was described by Rege & Sengupta [26] and extended to phase-type distributions in [32]. For an

overview of the literature on DPS we refer to the survey [1].

A special case of RP is when the intra-class scheduling discipline is uniformly random, that is, within a

class a customer is selected randomly. This model was proposed in [16] and it is referred to as discriminatory-

random-order-of-service (DROS). In recent years several interesting studies have been published on DROS,

[17, 22, 23, 20]. Expressions for the mean waiting time of a customer given its class have been obtained in [17].

In [22, 23] the authors derive differential equations that the transform of the joint queue lengths and the waiting

time in steady-state must satisfy, respectively, and this allows the authors to find the moments of the queue

lengths as a solution of linear equations. In [20] the authors obtain that the scaled waiting time of a customer

of a given class in heavy traffic is distributed as the product of two exponentially distributed random variables,

see Section 5.1 for more details.

The light-traffic regime concerns the performance of the system for small values of the arrival rate λ, i.e.,
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when the system is almost empty. The approach relies on approximating the performance measure of interest

by a Taylor series expansion at λ = 0. In order to obtain an approximation for any value of the arrival rate,

in [27, 28, 29] Reiman and Simon propose an interpolation technique that consist of interpolating the light-

traffic approximation and the heavy-traffic result. This technique has been applied with success to models

like processor-sharing, fork-join, etc.; see examples in the literature in [9, 31, 19, 14, 28]. The method was

extended to the distribution of the sojourn time for Markovian queues in [14] and [28]. In the case of models

that permit a multidimensional quasi birth-and-death representation researchers have also developed light-traffic

approximations of the mean queue lengths using the power-series algorithm, see for example [11].

3 Model description

We consider a multi-class single-server queue with K classes of customers. Class-k customers, k = 1, . . . ,K,

arrive according to independent Poisson processes with rate λk ≥ 0. We denote the overall arrival rate by

λ =
∑K
k=1 λk and let αk = λk/λ be the probability that an arrival is of class k. Class-k customers have

i.i.d. generally distributed service requirements denoted by Bk, k = 1, . . . ,K, with the distribution function

Fk(b) := P(Bk ≤ b), and Laplace Stieltjes transform (LST) B∗k(s). We assume that E
[
B2
k

]
< ∞, k = 1, . . . ,K.

We further denote by B the service requirement of an arbitrary arriving customer. The traffic intensity for

class-k customers is denoted by ρk := λkE[Bk] and the total traffic intensity is denoted by

ρ :=

K∑
k=1

ρk =

K∑
k=1

λkE[Bk] = λ

K∑
k=1

αkE[Bk] = λE[B].

We will use throughout the paper the notation (x)+ = max{0, x}.

In this paper we study the Discriminatory Processor Sharing (DPS) and the Relative Priorities (RP) policies.

DPS simultaneously shares the resources among the K classes. There are strictly positive class-dependent

weights g1, . . . , gK associated with each of the classes. Whenever there are nk class-k customers, k = 1, . . . ,K,

in the system, each class-k customer is served at rate gk/
∑K
j=1 njgj .

The RP policy is a non-preemptive discipline and serves at each moment in time one customer. Upon service

completion, the probability that the next customer to be served is of class k is given by nkpk/
∑
j njpj , where,

pj > 0, j = 1, . . . ,K, are class-dependent weights, and nj is the number of class-j customers at the decision

epoch. Once a class is chosen to be served, an intra-class scheduling discipline determines which customer in

this class will be served. We assume the intra-class discipline to be non-preemptive and not to make any use of

information on the actual service requirements of the customers.

We denote the steady-state number of class-k customers in the system at arbitrary epochs by Nk. We

define the vector ~N = (N1, . . . , NK) and the total number of customers is denoted by N :=
∑K
k=1Nk. For a

given λ, let ψ(λ, ~z) := E[zN1
1 · · · z

NK
K ] be the joint probability generating function (pgf) of (N1, . . . , NK), with

~z = (z1, ..., zK). In the remainder of the paper we will add a superscript {DPS,RP} to the metrics in order to

denote the dependency on the service discipline.

We will also be interested in the waiting time defined as the sojourn time in the system minus the service
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requirement. In the case of RP, we make the assumption that the intra-class scheduling discipline is random,

that is, the DROS discipline, since for that setting an expression for the scaled waiting time in heavy traffic

is available. Under DROS, the probability that a particular class-k customer is selected for service is pk∑
j pjnj

.

We denote the conditional (on the service requirement b) and unconditional waiting time of an arbitrary class-k

customer by Wk(b) and Wk, respectively, and let Wk(λ, b, x) := P [Wk(b) > x] be the complementary distribution

function and W̃k(λ, u) := E
[
e−uWk

]
its Laplace-Stieltjes transform (LST).

The main results of the paper are the derivation of approximations for the (i) pgf of the queue length

distribution for both DPS and RP, (ii) the LST of the waiting time in RP, and (iii) the distribution of the

waiting time in DPS.

4 Interpolation approximation

In this section we denote by G(λ, ~y), the performance metric we are interested in, as a function of the arrival

rate λ and a vector ~y. The interpretation of the function G and the vector ~y will change depending on the

metric we are approximating. In this paper the metric G will represent either (i) the generating function ψ(λ, ~z),

hence ~y = ~z, (ii) the LST W̃DROS
k (λ, u), hence ~y = u, or (iii) the complementary distribution of the waiting

time WDPS
k (λ, b, x), hence ~y = (b, x). We will characterize G(λ, ~y) both as λ ↓ 0, the light-traffic regime, and

as λ ↑ 1/E(B) (or equivalently ρ ↑ 1), the heavy-traffic regime. In both cases, closed form expressions for the

performance metrics can be derived, allowing us to obtain an approximation for arbitrary λ by an interpolation

technique.

In Section 4.1 we describe how performance metrics can be derived for the light-traffic regime and in Sec-

tion 4.2 the heavy-traffic regime is discussed. Section 4.3 presents the general setting for the light and heavy-traffic

interpolation approximation, which we will simply refer to as interpolation approximation.

4.1 Light-traffic analysis

The light-traffic regime concerns the performance of the system when the arrival rate λ approaches zero, or

in other words, when the amount of work arriving to the system per unit of time approaches zero. We will

approximate G(λ, ~y) by a Taylor series expansion at λ = 0. Assuming that the first n derivatives of G(λ, ~y) at

λ = 0 exist, we have the following approximation for G(λ, ~y) when λ is close to zero:

GLT (λ, ~y) := G(0)(0, ~y) + λG(1)(0, ~y) + · · ·+ λn

n!
G(n)(0, ~y), (1)

where G(0)(0, ~y) := G(0, ~y), to which we refer to as the zeroth light-traffic derivative, and, G(m)(0, ~y),m =

1, 2, . . . , denotes the m-th derivative at λ = 0, i.e., G(m)(0, ~y) := ∂mG(λ,~y)
∂λm

∣∣∣
λ=0

. We will refer to Equation (1) as

the light-traffic approximation of order n. The choice of the value of n will depend on the compromise between

tractability and accuracy that is aimed at. In general, a characterization for G(λ, ~y) might not exist and hence

G(m)(0, ~y) cannot be obtained in a direct manner. In that case we use the results in [29, Section 3.] and [33,

Chapter 6.3.] where it is shown how to derive the light-traffic derivatives of arbitrary order m under a general
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admissibility condition. Following the discussion in [29, Appendix A] we make the next assumption on the service

requirements Bk:

E[eηBk ] =

∞∑
n=0

ηn

n!
E[Bnk ] <∞, (2)

for some η > 0,∀k, which entails admissibility. This finite exponential moment condition requires that all

moments of the service requirement Bk to be finite. Equation (2) is likely stronger than needed but its purpose

here is to provide a convenient framework where calculations can be justified. In this paper we will make use of

the expressions as obtained in [29, 33] for the zeroth, first and second light-traffic derivatives. The expressions

are given in the proposition below. For the sake of self-completeness a proof is provided in Appendix A.

Proposition 4.1. ([29, Section 3], [33, Chapter 6.3]) Let A(s, t) denote the number of arrivals in the interval

[s, t) in addition to a tagged customer who is assumed to arrive at time 0. Let G(λ, ~y|A) denote the performance

metric G(λ, ~y) conditioned on event A. Then the zeroth, first and second light-traffic derivative can be written

as

G(0)(0, ~y) = G
(

0, ~y
∣∣∣A(−∞,∞) = 0

)
,

G(1)(0, ~y) =

∫ ∞
−∞

(
G
(

0, ~y
∣∣∣A(−∞,∞) = 1, τ1 = t

)
−G

(
0, ~y
∣∣∣A(−∞,∞) = 0

))
dt

and

G(2)(0, ~y) =

∫ ∞
−∞

∫ ∞
−∞

(
G
(

0, ~y
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
−G

(
0, ~y
∣∣∣A(−∞,∞) = 1, τ1 = t′

)
−G

(
0, ~y
∣∣∣A(−∞,∞) = 1, τ1 = t′′

)
+G

(
0, ~y
∣∣∣A(−∞,∞) = 0

))
dt′dt′′,

where τi, i = 1, 2, is the arrival time of the i-th customer.

4.2 Heavy-traffic regime

The heavy-traffic regime consists in investigating the queue when it is near saturation, i.e., ρ ↑ 1. This regime

can be obtained by letting

λ ↑ λ̂ :=
1

E[B]
,

since then ρ = λE[B] ↑ 1. When passing to the heavy-traffic regime we keep the fraction of class-k arrivals, αk,

fixed and we define

λ̂k := αkλ̂ =
αk
E[B]

and ρ̂k := αkλ̂E[Bk] = αk
E[Bk]

E[B]
. (3)

In Sections 5 and 6 we provide a brief overview of the heavy-traffic results known for RP and DPS. The basic

principle is to establish that the scaled performance metrics (1 − λE[B]) ~N and (1 − λE[B])Wk, have a proper

limit as λ ↑ 1
E[B]

. Hence, in the heavy-traffic regime we have expressions for the following scaled performance

metrics:

(i) ψ(λ, ~z1−λE[B]) = E[~z(1−λE[B]) ~N ],

(ii) W̃DROS
k (λ, u(1− λE[B])) = E[e−u(1−λE[B])Wk ],
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(iii) WDPS
k (λ, b, x/(1− λE[B])) = P[(1− λE[B])WDPS

k (b) > x],

where we used the notation ~zγ
~N := (zγN1

1 , . . . , zγNKK ). We are hence interested in the scaled performance metric

G(λ, fλ(~y)) as λ ↑ 1
E[B]

, where fλ(~y) is the scaling used. Depending on the three metrics described above, this

function is given by

(i) fλ(~z) = ~z1−λE[B],

(ii) fλ(u) = u(1− λE[B]),

(iii) fλ(b, x) = (b, x/(1− λE[B])).

Let GHT (~y) be the heavy-traffic term defined as

GHT (~y) := lim
λ↑1/E[B]

G
(
λ, fλ(~y)

)
. (4)

4.3 Light-traffic and heavy-traffic interpolation

In the case expressions for a performance metric are known both for light traffic and heavy traffic, an approxima-

tion for an arbitrary λ can be derived following the light and heavy-traffic interpolation technique. This technique

was popularized by Reiman and Simon [27, 28, 29] and consists in approximating the scaled performance metric,

G (λ, fλ(~y)), by a polynomial Ĝ (λ, ~y) of order n+ 1:

Ĝ (λ, ~y) := h0(~y) + h1(~y)λ+ h2(~y)λ2 + . . .+ hn+1(~y)λn+1. (5)

Unnormalizing we then obtain the light and heavy-traffic interpolation approximation for the performance metric

G(λ, ~y), that is,

GINT (λ, ~y) := Ĝ
(
λ, f−1

λ (~y)
)
, (6)

where GHT (~y) denotes the heavy-traffic result as defined in (4).

To determine the coefficients h0(~y), . . . , hn(~y) we take the m-th derivative to λ, m = 0, . . . , n, in (6) at λ = 0

and set this equal to the m-th derivative of the performance metric to be approximated. Hence, we obtain the

following light-traffic conditions:

∂mGINT (λ, ~y)

∂λm

∣∣∣∣∣
λ=0

= G(m)(0, ~y), for m = 0, . . . , n. (7)

Note that expressions for G(m)(0, ~y) are given in Proposition 4.1. To determine hn+1(~y), we use the heavy-traffic

condition:

lim
λ↑1/E[B]

Ĝ
(
λ, ~y
)

= GHT (~y), (8)

where G
(
1/E[B], ~y

)
is the heavy-traffic result as described in Section 4.2. In the proof of Proposition 5.6 we

explain how to determine the coefficients h0(~y), . . . , hn+1(~y) in practice. We will refer to the approximation (6)

as the light and heavy-traffic interpolation, or simply as interpolation approximation, of order n+ 1.
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Proposition 4.2. The interpolation approximation of order n+ 1 can equivalently be written as

GINT (λ, ~y) =

n∑
i=0

λi
(

1− (λE[B])n+1−i
)
hi
(
f−1
λ (~y)

)
+ (λE[B])n+1GHT

(
f−1
λ (~y)

)
. (9)

Proof. From the heavy-traffic condition (8) we obtain

hn+1(~y) = E[B]n+1

(
GHT (~y)−

n∑
i=0

hi(~y)

E[B]i

)
.

Equation (9) follows after substituting this expression in (5) and then undoing the normalisation as in Equa-

tion (6).

We note that in the case G(λ, ~y) denotes the sojourn time distribution, (9) reduces to Equation (1) in [14].

An important observation is that the interpolation approximation obtained for the LST and pgf of the

performance metrics might not correspond themselves to a random variable, that is, they might not be completely

monotone functions as defined in [13, Section XIII.4]. However, we will show that they can still provide accurate

approximations for the moments.

5 Relative-priorities queue

This section is devoted to the RP model. In Section 5.1 we will describe the heavy-traffic results on RP. These

allow us to determine the interpolation approximation for the distribution of the joint queue length and waiting

time in Section 5.2 and Section 5.3, respectively.

We recall from Section 3 that the steady-state number of class-k customers in the system is denoted by NRP
k .

We also recall that ψRP (λ, ~z), with ~z = (z1, ..., zK), denotes the joint pgf of (NRP
1 , . . . , NRP

K ).

5.1 Preliminaries

In [23] the distribution of the joint queue length was studied assuming that the intra-class scheduling is uniform

random. However, since the service discipline is non-preemptive, non-anticipating and all class-k customers

in the queue are stochastically equivalent, the distribution of the queue length vector does not depend on the

particular choice of the intra-class policy. Hence, for any arbitrary work-conserving intra-class policy we have

the following result from [23].

Theorem 5.1. [23, Theorem 3 and Theorem 4] The joint pgf ψRP (λ, ~z) of the joint stationary queue lengths at

arbitrary time epochs is given by

ψRP (λ, ~z) = 1− ρ+

K∑
i=1

αizi

(
1− ρ+

pi
αi

∂

∂zi
r(λ, ~z)

)
1−B∗i (λ− λ

∑K
k=1 αkzk)

1−
∑K
k=1 αkzk

, (10)
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where r(λ, ~z) is defined as r(λ, ~z) := E
[
z
Q1
1 ·...·zQK

K∑K
k=1

Qkpk
· 1(

∑K
k=1

Qk>0)

]
, with Qk, k = 1, . . . ,K, the steady-state

number of class-k customers in the system at departure epochs, and satisfies the equation

K∑
i=1

pi

(
zi −B∗i (λ−

K∑
j=1

λjzj)

)
∂

∂zi
r(λ, z1, . . . , zK) = (ρ− 1)

(
1−

K∑
i=1

λi
λ
B∗i (λ−

K∑
j=1

λjzj)

)
.

Unfortunately (10) cannot be solved analytically for arbitrary λ. However, in [23, Section 3.2] the authors

present a numerical scheme to obtain the moments of the total queue length. We will use this scheme in Section

7 in order to numerically estimate the accuracy of our approximation for the first and second moments of the

queue length for arbitrary λ.

Under RP, once a customer enters service it is served until it has received its full service requirement. Hence,

we will be interested in the waiting time. In the case of the waiting time we focus on the random intra-class

scheduling discipline, that is, we consider the specific model DROS. In this case the probability that a particular

class-k customer is selected for service is pk∑
j pjnj

. We denote the waiting time of an arbitrary class-k customer

by WDROS
k . We refer to this customer as the tagged class-k customer. Let Q∗k denote the number of class-

k customers in the system (excluding the tagged customer) immediately after service initiation of the tagged

customer in case the tagged customer arrives while the server is busy, i.e., WDROS
k > 0.

We now define the following joint transform:

TDROSl (u, z1, . . . , zK) := E[e−uW
DROS
l z

Q∗1
1 · · · zQ

∗
K

K 1{WDROS
l

>0}]. (11)

Note that the transform of the waiting time W̃DROS
k of the tagged class-k customer is given by

W̃DROS
k (λ, u) = E[e−uW

DROS
k ] = E[e−u·01{WDROS

k
=0} + e−u·W

DROS
k 1{WDROS

k
>0}] = 1− ρ+ TDROSk (u,~1), (12)

since 1−ρ is the probability that the tagged class-k customer arrives in an idle period. For the random intra-class

scheduling discipline we have from [23] the following result for the transform TDROSk (u, ~z).

Theorem 5.2. [23, Theorem 8] For the random intra-class scheduling discipline, the joint transform TDROSl (u, ~z)

satisfies

K∑
i=1

pi
pl

(
∂

∂zi
TDROSl (u, ~z))(zi −B∗i (u+ λ− λ

K∑
k=1

αkzk)) + TDROSl (u, ~z)

=

K∑
i=1

((1− ρ)λαi + λpi
∂

∂zi
r(λ, ~z))

B∗i (λ− λ
K∑
k=1

αkzk)−B∗i (u+ λ− λ
K∑
k=1

αkzk)

u
, (13)

with r(~z) as defined in Theorem 5.1.

The integro-differential equations as given in Theorems 5.1 and 5.2 cannot be solved in general, however

they are very valuable in obtaining insights into the performance of the system. In particular, they were key

in carrying out a heavy-traffic analysis of RP (see below), and they will be key in obtaining the light-traffic

approximation required to derive the interpolation results in Sections 5.2 and 5.3.
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Heavy-traffic results for the RP model were obtained in [20]. As stated in the following proposition, a state-

space collapse for the scaled queue length vector in the heavy-traffic regime was established, that is, in the limit

the scaled queue length vector is distributed as the product of an exponentially distributed random variable and

a deterministic vector.

Proposition 5.3. [20, Proposition 3.1] The scaled joint pgf of the stationary queue lengths, ψRP (λ, ~z(1−λE[B])),

satisfies

lim
λ↑1/E[B]

ψRP (λ, ~z(1−λE[B])) = lim
λ↑1/E[B]

E[z
(1−λE[B])NRP1
1 · · · z(1−λE[B])NRPK

K ] =
E[B]ν(~p)

E[B]ν(~p)−
∑K
i=1

αi
pi

ln (zi)
,(14)

where

ν(~p) :=
2
∑K
k=1 αkE[Bk]/pk

E[B2]
. (15)

Or in other words, as λ ↑ 1/E[B], (1−λE[B])(NRP
1 , . . . , NRP

K )
d→ X · (α1

p1
, α2
p2
, ..., αK

pK
), where

d→ denotes conver-

gence in distribution and X is an exponentially distributed random variable with mean 1/(E[B]ν(~p)).

The next proposition states that under the heavy-traffic regime the waiting time of a tagged class-l customer,

WDROS
l , is the product of two exponentially distributed independent random variables:

Proposition 5.4. [20, Proposition 5.1] The Laplace Transform of the scaled waiting time of a class-k customer

under the heavy-traffic regime satisfies

lim
λ↑1/E[B]

W̃DROS
k (λ, (1− λE[B])u) = lim

λ↑1/E[B]
E[e−u(1−λE[B])WDROS

k ] =
ν(~p)pk
u

epk
ν(~p)
u

∫ ∞
pk

ν(~p)
u

e−l

l
dl. (16)

Or in other words, as λ ↑ 1/E[B], (1 − λE[B])WDROS
k

d→ Zk ·X, where
d→ denotes convergence in distribution

and X and Zk are exponentially distributed independent random variables with E[Zk] = 1/pk, E[X] = 1/ν(~p)

and ν(~p) as given in (15).

5.2 Approximation for the joint queue-length distribution

In this section we set ~y = ~z and let G(λ, ~z) = ψRP (λ, ~z) be the pgf of the joint queue lengths under RP. Then,

using Theorem 5.1 (when λ = 0) we obtain the following light-traffic approximation.

Lemma 5.5. The light-traffic approximation (of order 2) of the joint pgf of (NRP
1 , . . . , NRP

K ) is given by

ψRP,LT (λ, ~z) = 1− ρ+ λ

K∑
i=1

αiE[Bi]zi +
λ2

2

K∑
i=1

αiziE[B2
i ]

(
K∑
k=1

αkzk − 1

)
.

Proof. See Appendix B for the proof.

We now present the interpolation approximation for the queue length.

Proposition 5.6. The light and heavy-traffic interpolation (of order 3) of the joint pgf of (NRP
1 , . . . , NRP

K ) is

10



given by

ψRP,INT (λ, ~z)

=
(
1− ρ3

)
+ λ

(
1− ρ2

)(
−E[B] +

K∑
i=1

αiE[Bi]z
(1−ρ)−1

i

)
+
λ2 (1− ρ)

2

(
− 2E[B]

K∑
i=1

αiz
(1−ρ)−1

i E[Bi]
ln(zi)

1− ρ

+

K∑
i=1

αiz
(1−ρ)−1

i E[B2
i ]

(
K∑
k=1

αkz
(1−ρ)−1

k − 1

))
+ ρ3

E[B]ν(~p)

E[B]ν(~p)−
∑K
i=1

αi
pi

ln
(
z
(1−ρ)−1

i

) , (17)

with ν(~p) as given in Equation (15).

Proof. The result follows using the heavy-traffic term GHT (~z) as given in (14), together with Lemma 5.5 and

Proposition 4.2. A detailed proof is provided in Appendix C.

Equation (17) can be readily used to derive our approximation for the first and second moments of the total

number of customers in the system. The first moment is given by

E[NRP,INT ] = E[NRP,INT
1 + . . .+NRP,INT

K ] =

∂

(
ψRP,INT (λ, ~z)

∣∣∣
zi=zj=z

)
∂z

∣∣∣∣∣
z=1

= ρ+
λ2E[B2]

2
+

ρ3

(1− ρ)

E[B2]

2E[B]
∑K
k=1

αk
pk

E[Bk]
·
K∑
i=1

αi
pi
. (18)

Under the assumption that there is one class in the system, that is, αi = 0, ∀i 6= k and αk = 1, Equation (18)

is exact. It gives E[NRP,INT ] = ρ +
λ2E[B2]

2

(
1 +

ρ

1− ρ

)
= ρ +

λ2E[B2]

2(1− ρ)
, that is, it coincides with the well

known Pollaczek-Khinchine formula for the M/G/1 queue.

The second derivative of
(
ψRP

)INT
(λ, ~z) with respect to z, evaluated at z = 1, is given by

∂2

(
ψRP,INT (λ, ~z))

∣∣∣
zi=zj=z

)
∂z2

∣∣∣∣∣
z=1

= E
[(
NRP,INT

)2]
− E[NRP,INT ] =

λ2E[B2]

1− ρ
2 + ρ

2

+
ρ3

1− ρ
2E[B]

E[B2]

K∑
k=1

αk
pk

E[Bk]

(
E[B2]

2E[B]
∑K
k=1

αk
pk

E[Bk]

)2 K∑
i=1

αi
pi

(
2

(1− ρ)

E[B2]

2E[B]
∑K
k=1

αk
pk

E[Bk]

K∑
i=1

αi
pi
− 1

)
.

(19)

Therefore, the approximation for the second moment of the total number of customers is given by the sum of

Equations (18) and (19):

E
[(
NRP,INT

)2]
=

∂2

(
ψRP,INT (λ, ~z))

∣∣∣
zi=zj=z

)
∂z2

∣∣∣∣∣
z=1

+ E[NRP,INT ]. (20)

In Section 7 we use the expression for the first and second moments, Equations (18) and (20), to numerically

assess the accuracy of our interpolation approximation.
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5.3 Approximation for the waiting time distribution

We recall that the waiting time in RP depends on the intra-class scheduling discipline being implemented. We

will consider the particular case in which the intra-class scheduling discipline is random, that is, DROS. In this

section, we set ~y = u and let G(λ, u) = W̃DROS
k (λ, u) be the LST of a class-k customer’s waiting time under

DROS.

Taking the derivatives of Equation (13) with respect to λ we obtain the following light-traffic approximation.

Lemma 5.7. The light-traffic approximation (of order 1) of the Laplace Transform of the waiting time under

DROS is given by

W̃DROS,LT
k (λ, u) = 1− ρ+ λ

(
K∑
i=1

αi
1−B∗i (u)

u

)
.

Proof. See Appendix D for the proof.

We note that the light-traffic approximation is independent of the class. Indeed, from Proposition 4.1 we

know that the 1st order approximation is calculated when there is only one additional arrival to the system

(apart from the tagged customer), and thus, the non-preemptive scheduling policy does not play any role. The

2nd order approximation can be calculated, however the final expression is much more cumbersome, and yet

the numerical accuracy does not significantly improve. In the next proposition we present the interpolation

approximation which does depend on the class due to the heavy-traffic term:

Proposition 5.8. The light and heavy-traffic interpolation (of order 2) of the LST of the waiting time under

DROS is given by

W̃DROS,INT
k (λ, u)

= (1− ρ)2 + λ(1− ρ)

(
−E[B] +

K∑
i=1

αi
1−B∗i ((1− ρ)−1u)

(1− ρ)−1u

)
+ ρ2

ν(~p)pk
(1− ρ)−1u

e
pk

ν(~p)

(1−ρ)−1u

∫ ∞
pk

ν(~p)

(1−ρ)−1u

e−l

l
dl,

with ν(~p) given as in Equation (15).

Proof. The result follows after using the heavy-traffic term GHT (u) as given in (16), together with Lemma 5.7

and Proposition 4.2. A detailed proof is omitted, but it follows similarly to that of Proposition 5.6.

6 Discriminatory-Processor-Sharing queue

We now focus on the DPS model. In Section 6.1 we will describe the main results on DPS that are used

later on. In Section 6.2 we obtain the interpolation approximation for the distribution of the queue-length

vector, and in Section 6.3 for the waiting time. We recall from Section 3 that the steady-state number of

class-k customers in the system at arbitrary epochs is denoted by NDPS
k . We also recall that ψDPS(λ, ~z), with

~z = (z1, ..., zK), denotes the joint pgf of (NDPS
1 , . . . , NDPS

K ). The conditional (on the service requirement b) and

unconditional waiting time of an arbitrary class-k customer is denoted by WDPS
k (b) and WDPS

k , respectively,

and WDPS
k (λ, b, x) = P

[
WDPS
k (b) > x

]
.

12



6.1 Preliminaries

As mentioned in Section 1 the analysis of DPS is difficult, and therefore there is no exact analysis available

for the queue-length distribution under general service time distributions. However, there are several results on

DPS in heavy traffic that are available in the literature and that we will use in order to obtain our interpolation

approximation.

As stated in the following proposition, in heavy traffic a state-space collapse for the scaled queue length vector

appears, that is, in the limit the scaled queue length vector is distributed as the product of an exponentially

distributed random variable and a deterministic vector.

Proposition 6.1. [32, Proposition 2.1.] The scaled joint pgf of the stationary queue lengths, ψDPS(λ, ~z(1−λE[B])),

satisfies

lim
λ→1/E[B]

ψDPS(λ, ~z(1−λE[B])) = lim
ρ→1

E[z
(1−λE[B])NDPS1
1 · · · z(1−λE[B])NDPSK

K ] =
E[B]/E[Y ]

E[B]/E[Y ]−
∑K
i=1

αiE[Bi]
gi

ln (zi)
, (21)

where

E[Y ] =
E
[
B2
]

E[B]
∑K
k=1 αkE [B2

k] /gk
. (22)

Or in other words, as λ ↑ 1/E[B], (1− λE[B])(NDPS
1 , . . . , NDPS

K )
d→ Y ·

(
α1E[B1]
g1

, α2E[B2]
g2

, . . . , αKE[BK ]
gK

)
, where

d→ denotes convergence in distribution and Y is an exponentially distributed random variable with mean E[Y ] as

given in (22).

In [15] it was obtained that under the heavy-traffic regime the conditional sojourn time of a tagged class-k

customer is the product of an exponentially distributed random variable and a deterministic factor. Since under

the heavy-traffic scaling the sojourn time is equal to the waiting time we have the following result:

Proposition 6.2. [15, Theorem 4.2] The Laplace Transform of the scaled conditional waiting time of a class-k

customer satisfies

lim
λ→1/E[B]

P[(1− ρ)WDPS
k (b) ≤ x] = e

−x gk
bE[V ] , (23)

where

E[V ] =
E[B2]∑K

i=1 αiE[B2
i ]/gi

. (24)

Or in other words, as λ ↑ 1/E[B], (1 − λE[B])WDPS
k (b)

d→ b
gk
V, where

d→ denotes convergence in distribution

and V is exponentially distributed with mean E[V ] as given in (24).

6.2 Approximation for the joint queue-length distribution

In this section we set ~y = ~z and let G(λ, ~z) = ψDPS(λ, ~z) be the joint pgf of the joint queue lengths under DPS.

Since there is no characterization available for the queue length distribution, we derive in the next lemma the

light-traffic derivatives using the result given in Proposition 4.1. The proof method is constructive, and it can

readily be applied to other queueing systems for which no analytical results are available. We thus believe that

this represents in itself one of the main contributions of the paper.
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Lemma 6.3. The light-traffic approximation (of order 2) of the pgf of (NDPS
1 , . . . , NDPS

K ) is given by

ψDPS,LT (λ, ~z) =
(
ψDPS

)(0)
(λ, ~z)

∣∣∣
λ=0

+ λ
(
ψDPS

)(1)
(λ, ~z)

∣∣∣
λ=0

+
λ2

2

(
ψDPS

)(2)
(λ, ~z)

∣∣∣
λ=0

= 1− ρ+ λ

K∑
i=1

αiziE [Bi] +
λ2

2
· 2

(
K∑

i,j=1

αiαj (zi − 1)E

[(
Bi −Bj

gi
gj

)(
Bi −min{Bi, Bj

gi
gj
}
)

−1

2

(
Bi −min{Bi, Bj

gi
gj
}
)2

− B2
i

2

]

+

K∑
i,j=1

αiαj (zi · zj − 1)E

[
Bj

(
1 +

gi
gj

)(
Bi −min{Bi,

gi
gj
Bj}

)
+

1

2

(
1 +

gj
gi

)
min{Bi,

gi
gj
Bj}2

]

+

K∑
i,j=1

αiαj (zj − 1)E
[
gi

2gj
min{gj

gi
Bi, Bj}2 −Bi min{gj

gi
Bi, Bj}

])
.

Proof. To calculate the zeroth, first and second light-traffic derivatives of the joint pgf of the queue length we

measure how many customers are in the system when the tagged customer arrives (at time 0), given that 0, 1

or 2 customers might arrive to the system at most, respectively. For instance, for the zeroth derivative we need

to consider the system with no other arrivals, hence ~N = ~0. For the first derivative we consider one additional

arrival. Hence, different cases might happen: the customer arriving at time t might come before the tagged

customer and leave before or after its arrival. Then the tagged customer observes either ~N = ~0 or ~N = ek, with

k the class of the arrival, respectively. Or the one customer arrives after the tagged customer, in which case the

tagged customer observes ~N = ~0. To obtain the second light-traffic derivative we analyse all different cases in a

similar way. See Appendix E for the detailed proof.

Proposition 6.4. The light and heavy-traffic interpolation (of order 3) of the joint pgf of (NDPS
1 , . . . , NDPS

K )

is given by

ψDPS,INT (λ, ~z)

=
(
1− ρ3

)
+ λ

(
1− ρ2

)( K∑
i=1

αiz
(1−ρ)−1

i E [Bi]− E [B]

)
+ λ2 (1− ρ)

K∑
i,j=1

αiαj

(

E

[(
z
(1−ρ)−1

i − 1
)( gi

gj
Bj

(
min{Bi,

gi
gj
Bj} −Bi

)
− 1

2
min{Bi,

gi
gj
Bj}2

)]

+E

[(
z
(1−ρ)−1

i · z(1−ρ)
−1

j − 1
)(

Bj

(
1 +

gi
gj

)(
Bi −min{Bi,

gi
gj
Bj}

)

+
1

2

(
1 +

gj
gi

)
min{Bi,

gi
gj
Bj}2

)]

+E

[(
z
(1−ρ)−1

j − 1
)( gj

2gi
min{Bi,

gi
gj
Bj}2 −

gj
gi
Bi min{Bi,

gi
gj
Bj}

)])

−E[B]

K∑
i=1

αiE[Bi]z
(1−ρ)−1

i ln
(
z
(1−ρ)−1

i

)
+ ρ3

E[B]/E[Y ]

E[B]/E[Y ]−
∑K
i=1

αiE[Bi]
gi

ln
(
z
(1−ρ)−1

i

) ,
with E[Y ] as given in Equation (22).
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Proof. The result follows after using the heavy-traffic term GHT (~z) as given in (21), together with Lemma 6.3

and Proposition 4.2. We omit the details since the proof follows the same steps as the proof of Proposition 5.6

We now derive the first and second moment of our approximation for the total number of customers in the

system. The approximation for the first moment of the total number of customers is given by

E[NDPS,INT ] = E[NDPS,INT
1 + . . .+NDPS,INT

K ] =

∂

(
ψDPS,INT (λ, ~z)

∣∣∣
zi=zj=z

)
∂z

∣∣∣∣∣
z=1

= ρ+ λ2
K∑

i,j=1

αiαjE

[(
2 +

gi
gj

)
BiBj −

(
2 +

gi
gj

)
Bj min{Bi, Bj

gi
gj
}

+

(
1

2
+

3gj
2gi

)
min{Bi, Bj

gi
gj
}2 − gj

gi
Bi min{Bi,

gi
gj
Bj}

]
+

ρ3

1− ρ
E[Y ]

E[B]

K∑
i=1

αiE[Bi]

gi
. (25)

The second derivative of ψDPS,INT (λ, ~z) with respect to z, evaluated at z = 1, is

∂2

(
ψDPS,INT (λ, ~z)

∣∣∣
zi=zj=z

)
∂z2

∣∣∣∣∣
z=1

= E
[(
NDPS,INT

)2]
− E

[
NDPS,INT

]

= λ2
K∑

i,j=1

αiαj

(
ρ

(1− ρ)
E

[
−Bj

gi
gj
Bi +Bj

gi
gj

min{Bi, Bj
gi
gj
} − 1

2
min{Bi, Bj

gi
gj
}2
]

+
2(1 + ρ)

(1− ρ)
E

[(
Bj

(
1 +

gi
gj

)(
Bi −min{Bi,

gi
gj
Bj}

)
+

1

2

(
1 +

gj
gi

)
min{Bi,

gi
gj
Bj}2

)]

+
ρ

(1− ρ)
E

[(
gj
2gi

min{Bi,
gi
gj
Bj}2 −

gj
gi
Bi min{Bi,

gi
gj
BUt′′ }

)])

+ρ3
E[Y ]

E[B]

(
2E[Y ]

E[B]

(
K∑
i=1

αiE[Bi]

gi
(1− ρ)−1

)2

−

(
K∑
i=1

αiE[Bi]

gi
(1− ρ)−1

))
. (26)

Therefore, the second moment of the total number of customers is obtained from Equations (25) and (26):

E
[(
NDPS,INT

)2]
=

∂2

(
ψDPS,INT (λ, ~z))

∣∣∣
zi=zj=z

)
∂z2

∣∣∣∣∣
z=1

+ E
[
NDPS,INT

]
. (27)

We observe that under the assumption that the service time distributions are exponential with the same

mean 1/µ, the DPS queue behaves as an M/M/1 queue. The first and second moment of our approximation are

E
[
NDPS,INT

]
=

ρ

1− ρ and E
[(
NDPS,INT

)2]
= 2ρ2

(1−ρ)2 +
ρ

1− ρ , hence, they are exact. The approximation is

also exact with general service time distributions in the case that there is only one class in the system, that is,

αi = 0, ∀i 6= k and αk = 1, since then E[NDPS,INT ] = ρ+ ρ2 +
ρ3

1− ρ =
ρ

1− ρ .

In Section 7 we use the expression for the first and second moment, Equations (25) and (27) to numerically

test the accuracy of the interpolation approximation.

6.3 Approximation for the waiting time distribution

In this section we set ~y = (b, x) and let G(λ, b, x) = WDPS
k (λ, b, x) = P

[
WDPS
k (b) > x

]
be the complementary

distribution function of the conditional waiting time. We note that in the case of DPS, the waiting time has an
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atom at the point x = 0 of size 1−P(WDPS
k (b) > 0). In the ensuing we develop the interpolation approximations

for P(WDPS
k (b) > x), x ≥ 0.

As was the case for the queue-length distribution, under DPS there is no characterisation available for the

waiting time distribution with general service time distributions. Thus, in the next lemma we obtain the light-

traffic derivatives using the result given in Proposition 4.1. Again, the proof method is constructive and it could

be applied to other queueing systems for which no analytical results are available. The proof can be found in

Appendix F.

Lemma 6.5. The light-traffic approximation (of order 1) of the complementary distribution function of the

conditional waiting time of a tagged class-k customer with a given service requirement b is given by

WDPS,LT
k (λ, b, x)

= λ

K∑
j=1

αjE

[(
1 +

gk
gj

)(
−x+ min{Bj ,

gj
gk
b}
)+

+1

[
gj
gk
b > x

](
Bj −min{Bj ,

gj
gk
b}
)

+ 1 [Bj > x]

(
b− gk

gj
min{Bj ,

gj
gk
b}
)]

(28)

Proof. To calculate the first light-traffic derivative of the complementary distribution function of the waiting

time we measure which is the waiting time of the tagged customer, that arrives at time 0, given that 1 customer

might arrive to the system at most. For the first derivative six different cases might happen. See Appendix F

for the detailed proof.

We note that the first order light-traffic approximation is class and weight dependent, unlike the RP model.

This happens due to the time-sharing property of the DPS policy.

We can now present the interpolation approximation for the complementary distribution function of the

conditional waiting time in DPS.

Proposition 6.6. The light and heavy-traffic interpolation (of order 2) of the complementary distribution of the

conditional waiting time of a tagged class-k customer with a given service requirement b is given by

WDPS,INT
k (λ, b, x)

= λ(1− ρ)

K∑
j=1

αjE

[(
1 +

gk
gj

)(
−(1− ρ)x+ min{Bj ,

gj
gk
b}
)+

+ 1

[
gj
gk
b > (1− ρ)x

](
Bj −min{Bj ,

gj
gk
b}
)

+1 [Bj > (1− ρ)x]

(
b− gk

gj
min{Bj ,

gj
gk
b}
)]

+ ρ2e
−(1−ρ)x gk

bE[V ] , (29)

with E[V ] as given in (24).

Proof. The result is obtained by using the heavy-traffic term GHT (b, x) as given in (23), together with Lemma 6.5

and Proposition 4.2. The detailed proof is omitted since it is similar to that of Proposition 5.6.

From Equation (29) we obtain that the mean conditional waiting time, E
[
WDPS,INT
k (b)

]
, of a class-k cus-
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tomer satisfies the equation:

E
[
WDPS,INT
k (b)

]
= bρ+ λ

K∑
j=1

αjE
[

1

2

(
1 +

gk
gj

)
min{Bj , b

gj
gk
}2 −

(
b
gj
gk

+
gk
gj
Bj
)

min{Bj , b
gj
gk
}+ b

gj
gk
Bj

]

+
(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
.

We observe that this coincides with that obtained in [19, Proposition IV.1]. In particular, in [19] the authors

showed that the mean conditional sojourn time of a customer was decreasing as its relative priority increased,

that it was uniformly bounded in the second moments of the service requirements and that the approximation

was exact in various scenarios: one class K = 1, multi class with equal weights, total mean sojourn time for

exponentially distributed service requirements.

From Proposition 6.6 we get as a corollary the interpolation approximation for the unconditional waiting

time:

Corollary 6.7. The interpolation approximation (of order 2) of the complementary distribution function of the

unconditional waiting time of a tagged class-k customer is given by

WDPS,INT
k (λ, x) :=

∫ ∞
0

WDPS,INT
k (λ, b, x)dFk(b)

= λ(1− ρ)

K∑
j=1

αj

((
1 +

gk
gj

)∫ ∞
(1−ρ)x gk

gj

(∫ gj
gk
b

(1−ρ)x
(1− Fj(bj)) dbj

)
dFk(b)

+

∫ ∞
(1−ρ)x gk

gj

(∫ ∞
gj
gk
b

(1− Fj(bj)) dbj

)
dFk(b)


+

∫ ∞
(1−ρ)xgk/gj

((
b− gk

gj
(1− ρ)x

)
(1− Fj((1− ρ)x))− gk

gj

∫ b
gj
gk

(1−ρ)x
(1− Fj(bj))dbj

)
dFk(b)

)
+ρ2e

−(1−ρ)x gk
E[Bk]E[V ] . (30)

From Equation (30) it can easily be obtained the approximation derived in [14, Section 2.2.] for the uncon-

ditional sojourn time distribution under Processor Sharing.

7 Numerical results

In this section we numerically investigate the accuracy of the approximations obtained in Proposition 5.6 and

Proposition 6.4.

To measure the accuracy, for the RP model we use as reference the algorithm proposed by Kim et al. in [23,

Section 3.2], that allows us to obtain the moments numerically for any service-time distribution, and we denote

their results by (∗)KIM , where ∗ refers to the metric studied. For the DPS model we use the algorithm proposed

by Rege et al. in [26, Section 1] which is only valid for exponential service times and we denote their results by

(∗)REGE where, again, ∗ refers to the metric under consideration.

We review now the service time distributions we will use. We recall that a random variable Bi is exponentially

17
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Figure I: Scenario 1. Relative error under RP of the first (left) and second moments (right) of the total number of
customers in the system for hyper-exponential, exponential and Pareto service-time distributions.

distributed if Fi(bi) = 1− e−bi/E[Bi]. We say that Bi has Pareto distribution with scale parameter ci and shape

parameter γi if Fi(bi) = 1 −
(

1

1 + cibi

)γi
. We will further consider hyper-exponential distributions. We say

that Bi has a hyper-exponential distribution with mi phases if

Fi(bi) = 1−
mi∑
k=1

βike(−bi/E[Bik]), (31)

where βik is the probability that a class-i customer is exponentially distributed with mean E[Bik]. A particular

case of the hyper-exponential distribution is the so-called degenerate hyper-exponential distribution. In this case

one of the phases has mean 0. For instance, let us consider the case of 2 phases, mi = 2, and let βi1 = w, βi2 =

1−w,w ∈ [0, 1],E[Bi1] = 1/(µiw) and E[Bi2] = 0. It then follows that E[Bi] = 1/µi and E[B2
i ] = 2w

(wµi)2
= 2

wµ2
i
.

Hence, the coefficient of variation is C2
Bi

= 2/w − 1, so that it ranges from 1 to ∞ as w changes from 1 till 0.

We make the observation that if classes k = 1, . . . ,mi are exponentially distributed (where class k has arrival

rate λk and mean service requirement E[Bk]) and have the same DPS weight, g1 = . . . = gmi , then they can

be seen as a single (merged) class i with a hyperexponential distribution with parameters βik = λk/
∑mi
l=1 λl

and E[Bik] = E[Bk], for each phase k = 1, . . . ,mi. This allows us to calculate the moments in DPS with

hyperexponential distribution using the algorithm of [26].

We note that the exponential distribution has a constant hazard rate, while the hyper-exponential and Pareto

distributions have a decreasing hazard rate, and their second moment can be made arbitrarily large. Finally we

remark that the hyperexponential distribution satisfies the sufficient condition (2) in order for the admissibility

condition to hold, whereas Pareto does not satisfy it; moments of an order higher than γi are unbounded.

Throughout this section the performance criteria will be the relative error. For the first and second moments of

the number of customers, we will hence calculate 100%× E[N ]−E[NINT ]
E[N ]

and 100%×
E[N2]−E

[
(NINT )2

]
E[N2]

, respectively.

RP model

We measure the accuracy of the approximation obtained in Proposition 5.6 by considering the first and second

moments that are given in Equations (18) and (20).

Scenario 1. In Figure I we plot the relative error of the first and second moments of the total number of

customers in the system with respect to the load for exponential, hyper-exponential and Pareto service time

18
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Figure II: Scenario 2. Relative error under RP of the first (left) and second moments (right) of the total number of
customers in the system with respect to w for different values of the load.

distributions. We consider two classes and set E[B1] = 11/3 and E[B2] = 44/3. We assume that an arriving

customer is of class 1 (class 2) with probability α1 = 8/12 (α2 = 4/12). The weights are set equal to p1 = 2

and p2 = 5. We observe in Figure I that the first moment remains accurate for any choice of the service time

distribution. The absolute relative error of the second moment is small for the exponential and hyper-exponential

distribution, but reaches the value of 30% for Pareto distributions. The fact that Pareto does not satisfy the

admissibility condition (2) might explain the large relative error.

Scenario 2. In Figure II we consider 2 classes of customers. Class-1 customers’ service requirements follow

an exponential distribution of rate µ1, while class-2 customers’ service requirements follow a degenerate hyper-

exponential distribution as defined in Equation (31) with parameters m2 = 2, β21 = w, β22 = 1 − w,E[B21] =

1/(µ2w) and E[B22] = 0. We consider p1 = 2, p2 = 5, α1 = 7/12, α2 = 5/12, E[B1] = 11/3, E[B2] = 1/mu2 =

44/3. In Figure II we plot the relative error of the first and second moments of the total number of customers

in the system with respect to w for different values of the load. Observe that, as expected, for ρ ≈ 0 and ρ ≈ 1

our interpolation approximation is exact. The absolute largest error occurs for intermediate values of the load,

as w approaches 0, that is, as the coefficient of variation of B2 goes to ∞.

DPS model

We first measure the accuracy of the approximation obtained for the queue length in Proposition 6.4 by consid-

ering the first and second moments that are given in Equations (25) and (27). We do this both for exponentially

distributed service times and for degenerate hyper-exponential distributed service times.

In Figure III we consider Scenario 1 with weights g1 = 2 and g2 = 5. We plot the relative error of the first and

second moments of the number of customers in the system, respectively, for exponentially distributed service

requirements. We observe that our approximation for the first and second moments is accurate with at most

1.2% and 3% absolute relative error, respectively.

In Figure IV we consider Scenario 2 with weights g1 = 2, g2 = 5. Hence, class 1 has exponential service times

and class 2 has degenerate hyper-exponential service times. We plot the relative error of the first and second

moments of the total number of customers in the system with respect to w for different values of the load.

Observe, again, that as for the RP model, when ρ ≈ 0 and ρ ≈ 1 our approximation is exact. The absolute
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Figure IV: Scenario 2. Relative error under DPS of the
first (left) and second moments (right) of the total number
of customers in the system for different values of the load.
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(right) of the total number of customers in the system
under DPS and RP for exponential service-time distribu-
tions.

largest relative error occurs for intermediate values of the load, as w approaches 0, that is, as the coefficient of

variation of B2 approaches ∞.

In Figure V we use Proposition 6.6 to plot the complementary distribution of the conditional and unconditional

waiting time of a class-k customer for Scenario 1. For the conditional waiting time we set the service time of the

tagged customer to b = 11/3. Class 2 gets relatively a larger weight (g1 = 2, g2 = 5), and as a consequence, we

see in Figure V that the conditional waiting time of class 2 is stochastically smaller than that of class 1. However,

the service time of class 1 customers is smaller than that of class 2. As a result, we see that the probability that

the unconditional waiting time of class 1 is bigger than x is larger than that of class 2, for x small enough.

Comparing RP and DPS

Scenario 3. In Figure VI we plot the first and second moments of the total number of customers in the system

for RP and DPS. We plot both our interpolation approximation as well as the exact results obtained from the

literature. We consider two classes, class 1 is exponentially distributed with E[B1] = 5, and class 2 is degenerate
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hyper- exponential with E[B2] = 2. We assume that an arriving customer is of class 1 (class 2) with probability

α1 = 8/12 (α2 = 4/12). The weights of the DPS and RP are the same, namely, g1 = p1 = 5 and g2 = p2 = 1. We

observe in Figure VI that our approximation is rather accurate. In addition, as w → 0, that is, as the coefficient

of variation grows large, the performance of DPS is better than that of RP, both for our approximation as for

the exact results. This is something we could expect, since as w → 0, the second moment of class 2 tends to ∞,

and therefore the performance of RP (which is non-preemptive) is worse than DPS (which is time-sharing).
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Appendix A: Proof of Proposition 4.1

We provide the proof of how to obtain the zeroth and first light-traffic derivatives. This is based on the analysis

of J. Walrand in [33, Chapter 6.3]. Higher order light-traffic derivatives can be obtained in a similar way.

Consider a system that starts at time −Z and that keeps going until time T, being Z, T > 0 given. Let

G(λ, ~y,−Z, T ) denote the term we are interested in approximating and note that limZ,T→∞G(λ, ~y,−Z, T ) =

G(λ, ~y). Let A(s, t) denote the number of arrivals in the interval [s, t) in addition to the tagged customer who is

assumed to arrive at time 0. Throughout this section we assume that the limits (with respect to Z and T ) and

expectations can be interchanged. We then have

G(λ, ~y,−Z, T ) =

∞∑
a=0

G
(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = a
)
· (λ(T + Z))a

a!
e−λ(T+Z), (32)

where G
(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = a
)

is conditioned on the fact that there are exactly a arrivals in the interval

[−Z, T ). Evaluating it at λ = 0 gives

G(λ, ~y,−Z, T )

∣∣∣∣∣
λ=0

= G
(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = 0
)
, (33)

and now taking the limit Z, T →∞ we obtain the zeroth light-traffic derivative

G(0)(0, y) := lim
Z,T→∞

G(λ, ~y,−Z, T )
∣∣∣
λ=0

= G
(

0, ~y,−Z, T
∣∣∣A(−∞,∞) = 0

)

where the second equality follows from (33).

Next, consider the derivative with respect to λ in Equation (32) and evaluate it at λ = 0. This gives

∂

∂λ
G(λ, ~y,−Z, T )

∣∣∣
λ=0

= −G
(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = 0
)
· (T + Z) +G

(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = 1
)
· (T + Z)

=

∫ T

−Z

(
G
(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = 1, τ1 = t
)
−G

(
λ, ~y,−Z, T

∣∣∣A(−Z, T ) = 0
))

dt, (34)

where τ1 is the arrival time of the first customer. The second equality holds because the arrivals follow a Poisson

process. Hence given that the number of arrivals in [−Z, T ) is one (A(−Z, T ) = 1), we have that τ is uniformly

distributed on [−Z, T ).

Now taking Z, T →∞ we obtain the first light-traffic derivative

G(1)(0, ~y) := lim
Z,T→∞

∂

∂λ
G(λ, ~y,−Z, T )

∣∣∣∣∣
λ=0

=

∫ ∞
−∞

(
G
(

0, ~y
∣∣∣A(−∞,∞) = 1, τ1 = t

)
−G

(
0, ~y
∣∣∣A(−∞,∞) = 0

))
dt,

where the second equality follows from (34).
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Appendix B: Proof of Lemma 5.5

As explained in Equation (1) the light-traffic approximation can be written as

ψRP,LT (λ, ~z) =
(
ψRP

)(0)
(0, ~z) + λ

(
ψRP

)(1)
(0, ~z) + λ2

(
ψRP

)(2)
(0, ~z). (35)

We now obtain the zeroth, first and second light-traffic derivatives for the joint pgf ψRP (λ, ~z) of the joint

stationary queue lengths at arbitrary time epochs.

From (10) it follows directly that the zeroth derivative in λ = 0 satisfies

(
ψRP

)(0)
(λ, ~z)

∣∣∣
λ=0

= 1. (36)

Taking the derivative in (10) we obtain that the first derivative satisfies

(
ψRP

)(1)
(0, ~z) =

∂ψRP (0, ~z)

∂λ

= −E[B] +
1

1−
∑K
k=1 αkzk

K∑
i=1

αizi

((
−E[B] +

pi
αi

∂2r(λ, ~z)

∂λ∂zi

)(
1−B∗i

(
λ− λ

K∑
k=1

αkzk

))

+

(
1− ρ+

pi
αi

∂r(λ, ~z)

∂zi

)(
−B∗

′
i

(
λ− λ

K∑
k=1

αkzk

)(
1−

K∑
k=1

αkzk

)))∣∣∣∣∣
λ=0

= −E[B] +

K∑
i=1

αiE[Bi]zi

(
1 +

pi
αi

∂r(λ, ~z)

∂zi

∣∣∣∣∣
λ=0

)
= −E[B] +

K∑
i=1

αiE[Bi]zi. (37)

In the last step we used that

∂r(λ, ~z)

∂zi

∣∣∣∣∣
λ=0

= E

[
Qi∑K

k=1Qkpk
· z

Q1
1 · . . . · zQKK

zi
· 1(

∑K
k=1

Qk>0)

] ∣∣∣∣∣
λ=0

= P(
∑

Qk > 0)
∣∣∣
λ=0

E

[
Qi∑K

k=1Qkpk
· z

Q1
1 · . . . · zQKK

zi
|
K∑
k=1

Qk > 0

] ∣∣∣∣∣
λ=0

= ρ
∣∣∣
λ=0

E

[
Qi∑K

k=1Qkpk
· z

Q1
1 · . . . · zQKK

zi
|
K∑
k=1

Qk > 0

] ∣∣∣∣∣
λ=0

= 0, (38)

since the RP model is a work-conserving policy P(
∑
Qk > 0) = ρ is equal to the probability of the server being

busy, which is independent of the scheduling policy. The other term is finite since it satisfies

E

[
Qi∑K

k=1Qkpk
· z

Q1
1 · . . . · zQKK

zi

∣∣∣∣∣
K∑
k=1

Qk > 0

] ∣∣∣∣∣
λ=0

=

∞∑
q1=0,...,qK=0∑K

k=1 qk>0

qi∑K
k=1 qkpk

· z
q1
1 · . . . · z

qK
K

zi
P

(
Q1 = q1, . . . , QK = qK

∣∣∣∣∣
K∑
k=1

Qk > 0

)∣∣∣∣∣
λ=0

=

∞∑
q1=0,...,qK=0∑K

k=1 qk=1

qi∑K
k=1 qkpk

· z
q1
1 · . . . · z

qK
K

zi
P

(
Q1 = q1, . . . , QK = qK

∣∣∣∣∣
K∑
k=1

Qk > 0

)∣∣∣∣∣
λ=0

+ o(λ2)

=
qi
qipi
· 1 · . . . · 1 · P

(
~Q = ei

∣∣∣∣∣
K∑
k=1

Qk > 0

)∣∣∣∣∣
λ=0

=
αi
pi
, (39)
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due to

P

(
~Q = ei

∣∣∣∣∣
K∑
k=1

Qk > 0

)∣∣∣∣∣
λ=0

=
P
(
~Q = ei ∩

∑K
k=1Qk > 0

)
P
(∑K

k=1Qk > 0
) ∣∣∣∣∣

λ=0

=
P
(
~Q = ei

)
P
(∑K

k=1Qk > 0
)∣∣∣∣∣
λ=0

=
αiρ(1− ρ)

ρ

∣∣∣∣∣
λ=0

= αi,

(40)

which follows from A · P
(
~Q = ~0

)
= B · P

(
~Q = ei

)
+ o(λ), where A = αiρ and B = 1 from [22, Equation 1] and

again the fact that the RP model is a work-conserving policy.

The second derivative satisfies

(
ψRP

)(2)
(λ, ~z)

∣∣∣
λ=0

=
∂2ψRP (λ, ~z)

∂λ2

∣∣∣
λ=0

=
1

1−
∑K
k=1 αkzk

K∑
i=1

αizi

(
pi
αi

∂3r(λ, ~z)

∂λ2∂zi

(
1−B∗i

(
λ− λ

K∑
k=1

αkzk

))

+2

(
−E[B] +

pi
αi

∂2r(λ, ~z)

∂λ∂zi

)(
−B∗

′
i

(
λ− λ

K∑
k=1

αkzk

))(
1−

K∑
k=1

αkzk

)

+

(
1− ρ+

pi
αi

∂r(λ, ~z)

∂zi

)(
−B∗

′′
i

(
λ− λ

K∑
k=1

αkzk

))(
1−

K∑
k=1

αkzk

)2)∣∣∣∣∣
λ=0

=

K∑
i=1

αizi

(
2

(
−E[B] +

pi
αi

∂2r(λ, ~z)

∂λ∂zi

∣∣∣∣∣
λ=0

)
E[Bi]−

(
1 + αipi

∂r(λ, ~z)

∂zi

∣∣∣∣∣
λ=0

)
E[B2

i ]

(
1−

K∑
k=1

αkzk

))

=

K∑
i=1

αiziE[B2
i ]

(
K∑
k=1

αkzk − 1

)
, (41)

where in the last step we used

∂2r(λ, ~z)

∂λ∂zi

∣∣∣∣∣
λ=0

=

∂

(
ρ · E

[
Qi∑K

k=1
Qkpk

· z
Q1
1 ·...·zQK

K
zi

|
∑K
k=1Qk > 0

])
∂λ

∣∣∣∣∣
λ=0

= E[B]E

[
Qi∑K

k=1Qkpk
· z

Q1
1 · . . . · zQKK

zi
|
K∑
k=1

Qk > 0

] ∣∣∣∣∣
λ=0

+ ρ|λ=0 ·
∂E
[

Qi∑K
k=1

Qkpk
· z

Q1
1 ·...·zQK

K
zi

|
∑K
k=1Qk > 0

]
∂λ

∣∣∣∣∣
λ=0

= E[B]
αi
pi
, (42)

which follows from Equation (39).

From Equations (36), (37) and (41), together with Equation (35), we obtain the result in Lemma 5.5 and

conclude the proof.

Appendix C: Proof of Proposition 5.6

We obtain the light and heavy-traffic interpolation of the joint pgf of the queue length under the RP policy.

As explained in Section 4.3 we approximate G
(
λ, ~z(1−ρ)

)
= ψRP

(
λ, ~z(1−ρ)

)
by the polynomial

Ĝ (λ, ~z) = h0(~z) + λh1(~z) + λ2h2(~z) + λ3h3(~z).
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Unnormalizing, that is, for f−1
λ (~z) = ~z(1−ρ)

−1

, we have

ψRP,INT (λ, ~z) = Ĝ
(
λ, ~z(1−ρ)

−1
)

= h0

(
~z(1−ρ)

−1
)

+ λh1

(
~z(1−ρ)

−1
)

+ λ2h2

(
~z(1−ρ)

−1
)

+ λ3h3

(
~z(1−ρ)

−1
)
.

Then, from the light-traffic conditions (7) we obtain h0(~z), h1(~z), h2(~z). First we have, ψRP,INT
(
λ, ~z(1−ρ)

−1
) ∣∣∣

λ=0
=

ψRP,INT (0, ~z) = h0(~z). Together with (36) we obtain h0(~z) = 1.

Second,

∂ψRP,INT (λ, ~z)

∂λ

∣∣∣∣∣
λ=0

=
dĜ
(
λ, ~z(1−ρ)

−1
)

dλ

∣∣∣∣∣
λ=0

=
∂Ĝ
(
λ, ~z(1−ρ)

−1
)

∂λ

∣∣∣∣∣
λ=0

+

K∑
i=1

∂Ĝ
(
λ, ~z(1−ρ)

−1
)

∂zi

∣∣∣∣∣
λ=0

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣∣∣
λ=0

=
(
h1

(
~z(1−ρ)

−1
)

+ 2λh2

(
~z(1−ρ)

−1
)

+ 3λ2h3

(
~z(1−ρ)

−1
)) ∣∣∣

λ=0

+

K∑
i=1

dh0

(
~z(1−ρ)

−1
)

dzi
+ λ

dh1

(
~z(1−ρ)

−1
)

dzi
+ λ2

dh2

(
~z(1−ρ)

−1
)

dzi
+ λ3

dh3

(
~z(1−ρ)

−1
)

dzi

∣∣∣∣∣
λ=0

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣
λ=0

= h1(~z) +

K∑
i=1

dh0

(
~z(1−ρ)

−1
)

dzi

∣∣∣∣∣
λ=0

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣
λ=0

= h1(~z) +

K∑
i=1

d(1)

dzi

∣∣∣∣∣
λ=0

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣
λ=0

= h1(~z).

Together with (37) we obtain h1(~z) = −E[B] +
∑K
i=1 αiE[Bi]zi.

Third,

∂2ψRP,INT (λ, ~z)

∂λ2

∣∣∣∣∣
λ=0

=
d2Ĝ

(
λ, ~z(1−ρ)

−1
)

dλ2

∣∣∣∣∣
λ=0

=
∂2Ĝ

(
λ, ~z(1−ρ)

−1
)

∂λ2

∣∣∣∣∣
λ=0

+

K∑
i=1

∂
(
∂Ĝ
(
λ, ~z(1−ρ)

−1
)
/∂λ

)
∂zi

∣∣∣∣∣
λ=0

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣∣∣
λ=0

+

K∑
i=1

((
∂
(
∂Ĝ
(
λ, ~z(1−ρ)

−1
)
/∂zi

)
∂λ

∣∣∣∣∣
λ=0

+
∂
(
∂Ĝ
(
λ, ~z(1−ρ)

−1
)
/∂zi

)
∂zi

∣∣∣∣∣
λ=0

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣∣∣
λ=0

)

·
d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣∣∣
λ=0

+
∂Ĝ
(
λ, ~z(1−ρ)

−1
)

∂zi

∣∣∣∣∣
λ=0

·
d2
(
z
(1−ρ)−1

i

)
dλ2

∣∣∣∣∣
λ=0

)

= 2h2(~z) + 2

K∑
i=1

dh1(~z)

dzi
·

d
(
z
(1−ρ)−1

i

)
dλ

∣∣∣∣∣
λ=0

= 2h2(~z) + 2E[B]

K∑
i=1

αiE[Bi]ziln(zi).

Together with (41) we obtain h2(~z) =
1

2

(∑K
i=1 αiziE[B2

i ]
(∑K

k=1 αkzk − 1
)
− 2E[B]

∑K
i=1 αiziE[Bi]ln(zi)

)
.

Finally, from Proposition 4.2 and noting that GHT (~z) is equal to Equation (21), we conclude the proof.

Appendix D: Proof of Lemma 5.7

As explained in Equation (1) the light-traffic approximation can be written as

W̃DROS,LT
k (λ, u) =

(
W̃DROS
k

)(0)
(0, u) + λ

(
W̃DROS
k

)(1)
(0, u).

We now obtain the zeroth and first light-traffic derivatives of the Laplace Transform of the waiting time of
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a class-l customer under DROS using the result presented in Theorem 5.2.

The zeroth derivative satisfies
(
W̃DROS
k

)(0)
(λ, u)

∣∣∣
λ=0

= [1−ρ+TDROSl (u,~1)]
∣∣∣
λ=0

= 1+TDROSl (u,~1)
∣∣∣
λ=0

= 1,

since from Equation (13) we obtain

TDROSl (u,~1)
∣∣∣
λ=0

(
1 +

K∑
i=1

pi
pl

(1−B∗i (u))

)
= 0⇒ TDROSl (u,~1)

∣∣∣
λ=0

= 0.

And the first derivative satisfies

(
W̃DROS
k

)(1)
(λ, u)

∣∣∣
λ=0

= −E[B] +
∂TDROSl (u,~1)

∂λ

∣∣∣∣∣
λ=0

= −E[B] +

(
K∑
i=1

αi
1−B∗i (u)

u

)
,

since, again from Equation (13),

∂TDROSl (u,~1)

∂λ

∣∣∣∣∣
λ=0

(
1 +

K∑
i=1

pi
pl
E[Q∗i ]

∣∣∣
λ=0

(1−B∗i (u))

)
=

K∑
i=1

(
αi + pir(λ,~1)

∣∣∣
λ=0

) 1−B∗i (u)

u

⇒ ∂TDROSl (u,~1)

∂λ

∣∣∣∣∣
λ=0

=

(
K∑
i=1

αi
1−B∗i (u)

u

)
,

where E[Q∗i ]
∣∣∣
λ=0

= 0 and r(λ,~1)
∣∣∣
λ=0

= 0 from Equation (38).

Appendix E: Proof of Lemma 6.3

We obtain the zeroth and first light-traffic derivatives and give the main steps to obtain the second light-traffic

derivative of the joint pgf of the queue length under DPS. The zeroth derivative satisfies

(
ψDPS

)(0)
(λ, ~z) = ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

)
= z01 · · · z0K = 1.

Let t denote the time epoch in which a customer arrives to the system, and let Ut denote its class. For the

first derivative there might happen two different cases:

If t > 0, we have z0Ut = 1 and therefore ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

)
= 0.

If t < 0, we have

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t

)
=

 z0Ut if t+BUt < 0

zUt if t+BUt > 0,

such that ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t

)
= E [1 [t+BUt < 0] + 1 [t+BUt > 0] zUt ].

Therefore,

(
ψDPS

)(1)
(λ, ~z) =

∫ 0

−∞

(
ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

))
dt

= E
[∫ 0

−∞
(1 [t+BUt < 0] + 1 [t+BUt > 0] zUt − 1) dt

]
= E [(zUt − 1)BUt ] .

To calculate the second derivative let us assume t′ < t′′, where t′ and t′′ denote the arrival epochs of two
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customers. At the end, because of symmetry, we multiply the final result by 2. Then, we separate three main

different cases:

If 0 < t′ < t′′

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′

)
−ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′′

)
+ ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

)
= 0.

If t′ < 0 & 0 < t′′ we have two cases:

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
=

 z0Ut′ · z
0
Ut′′

if t′ +BUt′ < 0

zUt′ if t′ +BUt′ > 0,

such that,

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
= E

[
1
[
t′ +BUt′ < 0

]
+ 1

[
t′ +BUt′ > 0

]
zUt′

]
= ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′

)
.

Therefore,

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′

)
−ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′′

)
+ ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

)
= 0.

If t′ < t′′ < 0 there might happen several cases as shown below.

First, if t′ +BUt′ < t′′ we have

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
=

 z0Ut′ · z
0
Ut′′

if t′′ +BUt′′ < 0

zUt′′ if t′′ +BUt′′ > 0,

such that,

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
= E

[
1
[
t′′ +BUt′′ < 0

]
+ 1

[
t′′ +BUt′′ > 0

]
zUt′′

]
= ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′′

)
.

Therefore,

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′

)
−ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′′

)
+ ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

)
= 0.
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Second, if t′ +BUt′ > t′′ we have

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)

=



zUt′ if (BUt′ − t
′′ + t′)

gUt′′
gUt′

> BUt′′ & t′′ +BUt′′
gUt′ + gUt′′

gUt′′
< 0 & t′ +BUt′ +BUt′′ > 0

1 if (BUt′ − t
′′ + t′)

gUt′′
gUt′

> BUt′′ & t′′ +BUt′′
gUt′ + gUt′′

gUt′′
< 0 & t′ +BUt′ +BUt′′ < 0

zUt′ · zUt′′ if (BUt′ − t
′′ + t′)

gUt′′
gUt′

> BUt′′ & t′′ +BUt′′
gUt′ + gUt′′

gUt′′
> 0

zUt′′ if (BUt′ − t
′′ + t′)

gUt′′
gUt′

< BUt′′ & t′′ + (BUt′ − t
′′ + t′)

gUt′ + gUt′′
gUt′

< 0 & t′ +BUt′ +BUt′′ > 0

1 if (BUt′ − t
′′ + t′)

gUt′′
gUt′

< BUt′′ & t′′ + (BUt′ − t
′′ + t′)

gUt′ + gUt′′
gUt′

< 0 & t′ +BUt′ +BUt′′ < 0

zUt′ · zUt′′ if (BUt′ − t
′′ + t′)

gUt′′
gUt′

< BUt′′ & t′′ + (BUt′ − t
′′ + t′)

gUt′ + gUt′′
gUt′

> 0

Then,

(
ψDPS

)(2)
(λ, ~z)

= 2 ·
∫ 0

−∞

(∫ 0

t′

(
ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = t′, τ2 = t′′

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′

)
−ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = t′′

)
+ ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

))
dt′′
)

dt′

= 2 ·
∫ ∞
0

(∫ r

0

(
ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = −r, τ2 = −s

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = −r

)
−ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = −s

)
+ ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

))
ds

)
dr

where

ψDPS
(

0, ~z
∣∣∣A(−∞,∞) = 2, τ1 = −r, τ2 = −s

)
− ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = −r

)
−ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 1, τ1 = −s

)
+ ψDPS

(
0, ~z
∣∣∣A(−∞,∞) = 0

)
= E

[
1
[
−r +BUt′ > −s

](

1

[
(BUt′ + s− r)

gUt′′
gUt′

> BUt′′ ,−s+BUt′′
gUt′ + gUt′′

gUt′′
< 0

]
1
[
−r +BUt′ +BUt′′ > 0

] (
zUt′ − 1

)
+1

[
(BUt′ + s− r)

gUt′′
gUt′

> BUt′′ ,−s+BUt′′
gUt′ + gUt′′

gUt′′
> 0

] (
zUt′ · zUt′′ − 1

)
+1

[
(BUt′ + s− r)

gUt′′
gUt′

< BUt′′ ,−s+ (BUt′ + s− r)
gUt′ + gUt′′

gUt′
< 0

]
· 1
[
−r +BUt′ +BUt′′ > 0

] (
zUt′′ − 1

)
+1

[
(BUt′ + s− r)

gUt′′
gUt′

< BUt′′ ,−s+ (BUt′ + s− r)
gUt′ + gUt′′

gUt′
> 0

] (
zUt′ · zUt′′ − 1

)
+E

[
1
[
−r +BUt′ > 0

]
(1− zUt′ )

]
+E

[
1
[
−s+BUt′′ > 0

]
(1− zUt′′ )

])]
.

After working out the six integrals we end up with the result in Lemma 6.3.
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Appendix F: Proof of Lemma 6.5

We give the main steps to obtain the first light-traffic derivative of the complementary distribution function of

the conditional waiting time under DPS.

To calculate the first derivative
(
WDPS
k

)(1)
(0, b, x) we need to calculate

∫∞
−∞ E

[
1
[
WDPS
k

(
b
∣∣∣A(−∞,∞) = 1, τ1 = t

)
> x

] ]
dt,

where WDPS
k

(
b
∣∣∣A(−∞,∞) = 1, τ1 = t

)
denotes the conditional waiting time of the tagged class-k customer

when there is exactly one arrival at time t on R and satisfies

WDPS
k

(
b
∣∣∣A(−∞,∞) = 1, τ1 = t

)
=



t+ but if t ≤ 0 ≤ t+ but and b
gk
>

t+but
gut

gut
gk
b if t ≤ 0 ≤ t+ but and b

gk
≤ t+but

gut

0 if t+ but < 0

but if 0 < t < b and b−t
gk

>
but
gut

−t gut
gk

+ b
gk+gut
gk

if 0 < t < b and b−t
gk
≤ but

gut

0 if 0 < b < t,

(43)

where ut describes the class of the customer arriving at time t and but the service requirement of the customer

arriving at time t.

We will focus on the calculation corresponding to the first term of (43), that is, the case when t ≤ 0 ≤ t+BUt

and t <
gUt
gk
b−BUt , (where the inequalities of the random variables hold sample-path wise). We have

∫ 0

−∞
E

[
1

[
−BUt ≤ t <

gUt
gk

b−BUt
]
1 [t+BUt > x]

]
dt

=

∫ ∞
0

E

[
1

[
BUt ≥ t > BUt −

gUt
gk

b

]
1 [−t+BUt > x]

]
dt

= E

[∫ ∞
0

1

[
BUt ≥ t > BUt −

gUt
gk

b

]
1 [BUt − x > t] dt

]
,

as we make use of Tonelli’s Theorem. It follows that

∫ ∞
0

1

[
BUt ≥ t > BUt −

gUt
gk

b

]
1 [BUt − x > t] dt =

∫ max{
(
BUt−

gUt
gk

b

)+

,min{BUt ,BUt−x}}(
BUt−

gUt
gk

b
)+ dt

= max
{

0, BUt − x−
(
BUt −

gUt
gk

b

)+ }
=
(
BUt − x−

(
BUt −min{BUt ,

gUt
gk

b}
))+

=
(
− x+ min{BUt ,

gUt
gk

b}
)+
.

We thus obtain

∫ ∞
0

E
[
1

[
BUt ≥ t > BUt −

gUt
gk

b

]
1 [t+BUt > x]

]
dt = E

[(
−x+ min{BUt ,

gUt
gk

b}
)+ ]

.

The other five cases in (43) can be calculated in a similar way and after some simplifications, this will give

us the result as stated in (28).
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