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Abstract

In this paper, we present a unifying analysis for redundancy systems with cancel-on-start (c.o.s.) and cancel-
on-complete (c.o.c.) with exponentially distributed service requirements. With c.o.s. (c.o.c.) all redundant
copies are removed as soon as one of the copies starts (completes) service. As a consequence, c.o.s. does not
waste any computing resources, as opposed to c.o.c..

We show that the c.o.s. model is equivalent to a queueing system with multi-type jobs and servers,
which was analyzed in [1], and show that c.o.c. (under the assumption of i.i.d. copies) can be analyzed by
a generalization of [1] where state-dependent departure rates are permitted. This allows us to show that
the stationary distribution for both the c.o.c. and c.o.s. models have a product form. We give a detailed
first-time analysis for c.o.s and derive a closed form expression for important metrics like mean number of
jobs in the system, and probability of waiting. We also note that the c.o.s. model is equivalent to Join-
Shortest-Work queue with power of d (JSW(d)). In the latter, an incoming job is dispatched to the server
with smallest workload among d randomly chosen ones. Thus, all our results apply mutatis-mutandis to
JSW(d).

Comparing the performance of c.o.s. with that of c.o.c. with i.i.d copies gives the unexpected conclusion
(since c.o.s. does not waste any resources) that c.o.s. is worse in terms of mean number of jobs. As part
of ancillary results, we illustrate that this is primarily due to the assumption of i.i.d copies in case of c.o.c.
(together with exponentially distributed requirements) and that such assumptions might lead to conclusions
that are qualitatively different from that observed in practice.
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1. Introduction

Using redundancy to minimize latency in parallel server systems has become very popular in recent
years [2, 3, 4, 5, 6, 7]. While there are several variants of a redundancy-based system, the general notion of
redundancy is to create multiple copies of the same job that will be sent to a subset of servers. By allowing
for redundant copies, the aim is to minimize the system latency by exploiting the variability in the queue
lengths of the different queues. Several recent works have both empirically [2, 8, 9, 3] and theoretically
[4, 5, 6, 10, 11, 12] indicated that redundancy can help in reducing the response time of a system.

Broadly speaking, depending on when replicas are deleted, there are two classes of redundancy systems:
cancel-on-start (c.o.s) and cancel-on-completion (c.o.c). In redundancy systems with c.o.c, once one of the
copies has completed service, the other copies are deleted and the job is said to have received service. On
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the other hand, in redundancy systems with c.o.s, copies are deleted as soon as one copy starts being served.
From a practical point of view, if servers have similar computing capacity the c.o.s system is preferable:
both configurations require the same amount of signaling among servers, but the c.o.s system does not waste
any computation resources. Having said that, most of the recent literature has focused on systems with
c.o.c, and c.o.s. has largely remained elusive to exact analysis.

In a recent series of papers on the c.o.c. model, Gardner et al. [6, 7] have provided a thorough analysis of
the c.o.c based redundancy system with K servers each with their own queue. In the redundancy-d model
of [7], redundant copies of an arriving job are sent to d ≤ K homogeneous servers chosen uniformly at
random. Under the additional assumptions that service times are exponentially distributed and that the
redundant copies are independent and identically distributed (we call this the independence assumption),
Gardner et al. have shown that the steady-state distribution has a product form. Further, they derive the
mean response time in closed form and show that the stability region, i.e., the arrival rate for which steady
state exists, does not reduce when compared to a system with no redundancy (d = 1). The latter seems
counter-intuitive, because having multiple copies of the same job should imply more work for the servers
and as a consequence result in a reduction of the stability region. The reason that this does not happen
is due to the independence assumption made in [7]. The exponential assumption together with i.i.d. copies
creates a situation where the effective departure rate of a job is d times faster than that in a single server.
One of the objectives in this paper is to further assess the impact of this assumption on the performance.

In this paper, we provide to the best of our knowledge, the first analysis of a redundancy-d system with
c.o.s. for 1 ≤ d ≤ K. We assume exponentially distributed service times, but copies do not need to be i.i.d.
This is because for the c.o.s. model, whether the copies are i.i.d or not is irrelevant for the analysis and hence
we do not require the independence assumption. We adopt as a benchmark the same underlying multi-server
topology as the one of [7]. This model is very convenient, everything is symmetric and homogeneous and
this permits us to isolate the impact of the redundancy scheme. We first show that c.o.s is equivalent to a
system with a single central queue and multi-type jobs and multiple servers that was analyzed by Visschers
et. al. [1]. This allows us to conclude that the steady-state distribution of c.o.s is of product-form. In
addition, we obtain for the first time an expression for the generating function for the number of waiting
jobs and the mean number of jobs in the redundancy-d system with c.o.s..

We then show that redundancy-d with c.o.s is equivalent to Join-Shortest-Work queue with power of
d (JSW(d)). In the latter, an incoming job is dispatched to the server with smallest workload among d
randomly chosen ones. The redundancy model hence represents a method of implementing JSW(d) without
requiring to know the residual work in each of the queues. In addition, performance measures obtained for
the c.o.s model carry over to JSW(d).

Finally we extend and adapt the model of Visschers et al. [1] in such a way that by using a new state
descriptor (that is different from [1]), we are able to analyze the redundancy system with c.o.c and i.i.d.
copies. We believe that our results open an important avenue for future work by establishing the link
between redundancy models and the central queue model of [1]. A summary of our main contribution is
given below:

1. We obtain a unifying approach to derive a product form stationary distribution for both c.o.s. and c.o.c.
model (Proposition 1 and Proposition 7).

2. We provide the first exact analysis for the redundancy-d system with c.o.s. and derive the generating
function for the number of waiting jobs and its mean (Proposition 2). A key interpretation from the
generating function is the fact that the number of waiting jobs is a mixture of sums of geometric random
variables.

3. By allowing redundant copies that cancel-on start, we achieve the performance of JSW(d) without re-
quiring to know the job sizes and the workload in the servers (Proposition 3). Thereby we also provide
the first exact analysis for the performance under JSW(d) (Corollary 1).

4. In Proposition 6, we generalize the modeling framework of [1] and use this generalization to provide a
novel method to analyze the stationary distribution for redundancy-d systems with c.o.c.
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5. Numerically we observe that the impact of the modeling assumption of independent copies is non-
negligible.

The rest of the paper is organized as follows. In the next section, we look at some of the related work and
discuss the model and preliminaries in Section 3. We analyze the c.o.s. model in Section 4, its equivalence
to JSW(d) in Section 5 and discuss some asymptotic regimes in Section 6. We give an alternative product
form for the c.o.c. model in Section 7 followed by some numerical results in Section 8.

2. Related work

The main motivation to investigate redundancy models comes from empirical evidence suggesting that
redundancy can help improve the performance in real-world applications. For example Vulimiri et al. [3]
illustrate the advantages of redundancy in a DNS query network where a host computer can query multiple
DNS servers simultaneously to resolve a name. Deal et al. [9] note that Google’s big table services use
redundancy in order to improve latency.

Most of the literature deals with the c.o.c model with exponentially distributed service times and the
independence assumption. Gardner et al. [6, 7] provide a comprehensive analysis of redundancy c.o.c
queueing models. In [6] the authors consider a class-based model where redundant copies of an arriving
job type are dispatched to a type-specific subset of servers, and show that the steady state distribution has
a product form. In [7], the previous result is applied to analyze a multi-server model with homogeneous
servers where incoming jobs are dispatched to randomly selected d servers. Bonald et al. [13, 14] have
shown that the c.o.c. model under the independence assumption and the balance fairness allocation yields
the same steady-state distribution. An important result for the c.o.c. model with idependence assumption
is that the necessary stability condition that the arrival rate per server is smaller than the service rate, is
also sufficient, see both [13] and [7]. Another important observation made in [13] is that the c.o.c model is a
special case of the Order Independent queue [15], which provides a direct method to derive the steady-state
distribution. However we note that the departure rates from a state under the c.o.s model fail to satisfy the
order independence condition, which in turn implies the necessity of a different approach from that used
in [13] to analyze c.o.s. We give more details in Section 7. In a recent paper [16], Adan et.al. show the
equivalence of the c.o.c. model with two other parallel service models.

A more general redundancy model is the so-called (n, k, r) model proposed and studied by Joshi et al.
[17]. In this model there are n servers, r redundant copies and a job is said to be served if k copies are served.
For this model, in [17], the authors analyze the impact of the service time distribution on the performance.
Shah et al. [5] have showed that under i.i.d memoryless service the average response time reduces as r
increases, and that r = n minimizes the average latency among all possible redundancy policies.

To the best of our knowledge, the only results available for the c.o.s. (and JSW (d)) model have appeared
in [17, Section 4], [12, Section 9] and [19]. In the former two, the analysis is restricted to the particular
case in which redundancy copies are sent to all the servers, and in the latter, JSW (d) is analyzed in the
mean-field regime.

Focusing on the independence assumption, Gardner et al. [12] propose a more accurate model in which
the service time of a redundant copy is decoupled into two components, one related to the inherent job
size of the task, and the other related to the server’s slowdown. As written in the abstract of [12] “The
independent runtime model is unrealistic, and has led to theoretical results which can be at odds with
computer systems implementation results.” One of our contributions is to provide some numerical examples
of this statement, and to provide an exact analysis for a redundancy model (c.o.s.) that does not need the
independence assumption.

Redundancy models have also been studied in other application domains. For example an analysis of
redundant models in the context of storage systems is provided in [10], and Ananthanarayanan et al. [2, 8]
have studied the benefits of redundancy in straggler mitigation in data centers and cloud computing.
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3. Model, Preliminaries and Notation

In this section, we will first describe the redundancy-d model with c.o.s. and c.o.c., and discuss the impact
of the independence assumption by looking at the case d = K. We then give some common preliminaries for
the two redundancy models which is followed by a brief description of the multi-type job and server model
of Visschers et al. [1]. This model forms the basis for our analysis of the two redundancy models.

3.1. Redundancy-d with c.o.s. and c.o.c.

We consider a generic redundancy-d model of K homogeneous servers each with a first-in first-out (FIFO)
queue. The service rate of each server is denoted by µ. Jobs arrive according to a Poisson process with rate
λ and have an exponentially distributed service requirement with unit mean. An arriving job chooses d
out of K servers uniformly at random and sends d copies of the same job to these feasible servers. For a
redundancy-d model, we will say that all jobs that choose the same d servers are of the same type. In all,
there are

(

K
d

)

job types and the arrival rate of any job type is λtype =
λ

(Kd )
.

Under cancel-on-start (c.o.s.), once any of the copies is taken for service, the remaining copies are
canceled immediately. Further, on arrival of a job, if more than one of its d feasible servers are idle, then the
job is served immediately at one of the idle feasible servers based on a predefined assignment rule and the
remaining copies are canceled. For this c.o.s. model, a natural assignment rule is the uniform assignment
rule that chooses an idle feasible server uniformly at random.

Under cancel-on-complete (c.o.c.), when one of the d copies of a job completes its service, the other
copies are removed. In addition, for the c.o.c. model we assume that the service requirements of the copies
of the same job are independent. We refer to this assumption as the independence assumption. As stated
earlier, the independence assumption was required for the product form analysis of [7] and such assumption
is however not required for the analysis of the c.o.s. model.

Before giving the preliminaries, we first illustrate the impact of the independence assumption for the
particular case of d = K.

Example 1. Case d = K: impact of independence assumption: When redundant copies are indepen-
dent, the c.o.c. model with d = K is equivalent to a single-server queue with arrival rate λ and service rate
µK.2 This implies that the mean number of jobs in the system is ρ/(1−ρ) where ρ := λ

Kµ
. If we were to drop

the independence assumption and instead assume that all copies have exactly the same service requirement,
then the c.o.c. model with d = K reduces to K completely synchronized single-server queues, each having
an arrival rate of λ and a service rate of µ.3 The stability condition is now λ < µ, i.e., ρ < 1

K
which is

considerably smaller than the stability condition under the independence assumption (ρ < 1). In addition,
without the independence assumption, the mean number of jobs increases significantly to ρK/(1−Kρ).

Turning now to the c.o.s. model, when d = K, with or without the independence assumption, this model
is equivalent to an M/M/K queue (see Appendix E for details). Clearly, while the c.o.c. model with inde-
pendence assumption significantly outperforms the c.o.s. model, the performance of c.o.c. degrades severely
when the independence assumption is dropped. Further, the stability region is also reduced illustrating the
unfair advantage due to the independence assumption.

Recall that the main motivation behind the use of redundancy models was to improve the delay perfor-
mance by sending copies to d servers simultaneously. However, in case of c.o.c. without the independence
assumption, implementing full redundancy (d = K) results in a much worse performance than when there
is no redundancy (d = 1). This is because d = 1 corresponds to Bernoulli routing in which case we have K
independent M/M/1 queues with rates λ/K and µ which has a better performance as compared to K syn-
chronized single servers with rates λ and µ (c.o.c. with d = K without the independence assumption). Under
c.o.s., such an inefficiency does not arise thereby emphasizing on the importance of c.o.s. for redundancy
systems with identical copies.

2This can be seen as follows: starting from an empty queue, a first job will have copies in all K servers. A copy will hence
finish at rate µK, after which a new job starts being served in all servers.

3A job will be served simultaneously in all K servers. Since the service requirement is identical, all copies finish after an
exponential time with mean µ.
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3.2. Preliminaries

3.2.1. Stability condition

We define the total load as ρ = λ
Kµ

and assume ρ < 1. For both the c.o.s. and c.o.c. models, ρ < 1

characterizes the stability condition under which a stationary distribution exists. This was proved in [6] for
c.o.c. For c.o.s. it follows from the symmetry in the model where each server serves a fraction 1/K of the
jobs. Since the service rate of a server is µ, each server is stable if λ/K < µ, i.e., ρ < 1.

Mean number of busy servers: Let p(i) denote the probability that there are i servers busy. Using the
rate balance principle, we have (for both c.o.s. and c.o.c.)

λ = µ

K
∑

i=0

ip(i). (1)

Hence, the mean number of busy servers in a redundancy-d system is
∑K

i=0 ip(i) =
λ
µ
= ρK.

3.2.2. Probability of an idle server

We now identify the probability of an arbitrary server (say server 1) being idle. Let P1 denote the
probability that server 1 is idle. Given i busy servers, let qi denote the probability that server 1 is idle. We
have,

P1 =
K
∑

i=0

p(i)qi

=

K
∑

i=0

p(i)

(

K−1
i

)

(

K
i

)

= 1− ρ, from Eq. (1).

3.2.3. Central queue architecture

An important feature of both the redundancy-d models is that they can be represented by a central queue
architecture with multiple servers. This fact was particularly useful in obtaining the stationary distribution
for the c.o.c. model (see Gardner et al. [6]).

While a job in the traditional parallel queue representation is represented by its d copies (a copy in
each queue of its d feasible servers), the same job is represented only once in the central queue (albeit by
a type label to indicate its d feasible server). See Fig. 1 for the representation of a central queue in terms
of c.o.c. and c.o.s. models. The jobs in the central queue architecture are ordered in a FIFO manner based
on the knowledge of the sequence of job arrivals. A key interpretation with the central queue architecture is
that when a server is free, it scans the central queue in FIFO order and (after skipping over infeasible jobs)
chooses the oldest feasible job for service. For the c.o.c. model, multiple feasible servers can serve a job in the
central queue. In the traditional parallel queue representation, this corresponds to the case when redundant
copies of the job are in service in different queues. For example in Fig. 1, for the c.o.c. model, job (1, 2)
in the central queue is being served by servers 1 and 2 simultaneously. In the traditional representation for
the c.o.c. on the left, copies of this job are in service in queues 1 and 2 respectively. On the contrary, due to
the cancel-on-start feature, we require that each job in the central queue architecture for the c.o.s. model is
served by only one server. Further, if multiple idle feasible servers can serve an arriving job, then ties are
broken using the uniform assignment rule.

Given the central queue architecture, note that the c.o.s. and c.o.c. model differ in their departure rate
for jobs in service. Yet, it is this architecture that enables us to offer a unifying framework to analyze
the two models. This unifying analysis is based on the multi-type job and server model of Visschers et al
[1] which also has a central queue architecture. For c.o.s., we note that the system model (and hence the
departure rate of jobs in the central queue) coincides with the model of [1]. This enables us to use [1] to
analyze redundancy-d with c.o.s. in detail in Section 4. For the c.o.c. model, since multiple servers can serve
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Figure 1: A central queue representation for redundancy-2 c.o.s. and c.o.c. In the central queue, jobs are denoted by their
feasible servers and are arranged in a FIFO order. Idle servers scan the central queue and serve the oldest feasible job. While
multiple servers can serve a job in c.o.c., the choice of server in c.o.s. is by the uniform assignment rule.

a feasible job in the central queue, a direct application of Visschers et al [1] is not possible. Additionally,
the departure rates from jobs in the central queue of a c.o.c. system depend on jobs that are present ahead
in the central queue. In Section 7, we give a novel analysis for redundancy-d with c.o.c. model that is
based on an extension, together with an adaptation of the state descriptor of Visschers et al. [1]. As a first
step, we provide an extension of Visschers et al. [1] in Section 7.1 to allow state dependent departure rates
from the central queue (as required for the c.o.c. model). We then adapt its state descriptor to c.o.c. by
introducing the notion of a super-server that is unique per job type (Section 7.2). The super-servers with
state dependent departure rates now mimic the central queue of a c.o.c. model leading to a novel analysis
of its stationary distribution. Thus, our extension of [1] provides a comprehensive analysis for redundancy
systems with c.o.s. and c.o.c..

3.3. Multi-type job and server model of [1]

In this section we present the multi-type job and multi-type server model and the results as presented
in Visschers et al. [1]. Visschers et al. [1] consider a central queue system with K possibly heterogeneous
servers and multi-type jobs. Let C denote the set of job types and M = {m1, . . . ,mK} denote the set of
servers respectively. For a ∈ C, Sa denotes the set of feasible servers that can serve jobs of type a. Similarly,
associated with a server M ∈ M is a set of feasible job types it can serve, denoted henceforth by C(M). The
jobs of type a ∈ C arrive according to a Poisson process with rate λa and the total arrival rate λ =

∑

a∈C λa.
All jobs have an exponential service requirement with unit mean and the service rate of server mi ∈ M is
denoted by µi for 1 ≤ i ≤ K. Each arriving job waits in a central queue and is served in a first-in first-out
(FIFO) basis. Each job can only be served by one of its feasible server. Further, when a server becomes
idle, it scans the central queue (in FIFO order) and picks the first feasible job that it finds for service. If an
arriving job finds that more than one of its feasible servers are idle, then an assignment rule decides which
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of the idle feasible server is to be assigned to the arriving job.

State space representation

The multi-type job and server model was analyzed in [1] using a Markovian descriptor of the type
(ni,Mi, ni−1,Mi−1, . . . , n1,M1). This Markovian descriptor characterizes states of the system with i busy
servers that are denoted by M1, . . . ,Mi and nj waiting jobs between servers Mj and Mj+1 for 1 ≤ j ≤ i−1.
The fact that this descriptor is Markovian can be seen from the state transitions and the corresponding
transition rates from any generic state s = (ni,Mi, . . . , n1,M1). For sake of completeness, we outline these
state transitions and the transition rates in Appendix F. (See [1] for exact details.) In the rest of this
section, we describe the meaning of this descriptor and introduce the notation for the transition rates that
are required for the state transitions in Appendix F. We end this section by recalling the main result from
[1] which says that this descriptor has a product form stationary distribution.

We will denote the state space for the multi-type job and server model by S where any generic state
s ∈ S is of the type s = (ni,Mi, ni−1,Mi−1, . . . , n1,M1). In this state space representation, jobs and active
servers are arranged in a FIFO basis from right to left. Therefore all nj jobs have arrived before nk jobs
where 1 ≤ j < k ≤ i. Note that a job is waiting in the central queue only if all of its feasible servers are busy
(serving jobs that came before it). Therefore n1 denotes the number of those jobs (who have arrived before nj

jobs where j > 1) that have to wait since they have server M1 as their only feasible server which happens to
be busy. Let us denote the set of such job types by U({M1}) where clearly U({M1}) = {a ∈ C : Sa = {M1}}.
Similarly, nj represent jobs (that arrived after nj−1 but before nj+1 jobs) that have to wait because their
feasible servers are busy. The feasible servers for these nj jobs must clearly be a subset of the active servers
{M1,M2, . . . ,Mj} ahead of it (otherwise the job would not have been waiting if any of its feasible server
was idle). Therefore for 1 ≤ j ≤ i, we have U({M1,M2, . . . ,Mj}) := {a ∈ C : Sa ⊆ {M1, . . .Mj}} as the set
of possible job types for nj waiting jobs in the representation.

To define the transition rates, let λM ({M1, . . . ,Mi}) denote the activation rate of server M, when the
set of active servers in state s is given by {M1, . . . ,Mi}. In state s , this is the arrival rate of those customers
that will make an idle server M to be busy. Note that this is also the transition rate from state s to
state (0,M, s). This activation rate λM ({M1, . . . ,Mi}) depends on the assignment rule defined for the
model, which determines the choice of an idle feasible machine (if any) for a job to be served. Next define
λU({M1,...,Mj}) as the arrival rate of jobs whose feasible servers are a subset of {M1,M2, . . . ,Mj}. We have

λU({M1,M2,...,Mj}) =
∑

a∈U({M1,M2,...,Mj})

λa. (2)

In state s = (ni,Mi, . . . , n1,M1), λU({M1,...,Mi}) denotes the arrival rate of customers that do not find any
feasible server to be idle. This is also the transition rate from s to (ni + 1,Mi, . . . , n1,M1).

To specify the departure rates, note that for any state s ∈ S, an active server Mj ∈ M has a fixed service
rate µMj

. For this model, we define a departure set function µ{·} ({·} is used to denote a set) which is given
by

µY =
∑

t∈Y

µt for Y ⊆ M. (3)

In words, the departure set function µY quantifies the total departure rate from a state where the set of active
servers is Y. In state s = (ni,Mi, . . . , n1,M1), the total departure rate is given by µ{M1...Mi} =

∑i

j=1 µMj
.

For sake of convenience, define µ̂Mj
(s) to be departure rate in state s from any server Mj with 1 ≤ j ≤ i.

It is easy to see that
µ̂Mj

(s) = µ{M1...Mj} − µ{M1...Mj−1} = µMj
. (4)

The notation µ̂Mj
(s) will be useful in Section 7.1 where we consider state dependent departure rates from

servers.
The quantities λM ({M1, . . . ,Mi}), λU({M1,M2,...,Mj}), µ{·} and µ̂Mj

(s) are now sufficient to describe the
transition rates and state transitions for the model. We do so in Appendix F which also illustrates the
Markovian nature of the state space representation.
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Product form stationary distribution

By considering assignment rules that satisfy the following assignment condition, Visschers et al. [1] were
successful in obtaining a product form stationary distribution.

Assignment Condition. For i = 1 . . . K, and for every subset {Mi, . . . ,M1} of M of size i, the following
holds for every permutation M̄1, . . . M̄i of M1, . . .Mi:

i
∏

j=1

λMj
({M1, . . .Mj−1}) =

i
∏

j=1

λM̄j
({M̄1, . . . M̄j−1}). (5)

We now recall the following theorem from [1] that provides the product form stationary distribution.

Theorem 1. For the multi-type job and server model with an assignment rule satisfying the assignment
condition, the steady state probability for all states s = (ni,Mi, . . . , n1,M1) ∈ S, is given by

π(s) = αi
ni . . . α1

n1
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0) (6)

where Πλ({M1, . . . ,Mi}) =
i
∏

j=1

λMj
({M1, . . .Mj−1}),

Πµ(Mi, . . . ,M1) =

i
∏

j=1

µ{M1,...Mj},

αj =
λU({M1,...,Mj})

µ{M1,...Mj}
and

µ{M1...Mi} =

i
∑

j=1

µMj
.

4. Redundancy-d with c.o.s.: An exact analysis

In this section, we provide the first exact analysis for the redundancy-d model with c.o.s.. To recall some
of the preliminaries on the redundancy-d model with c.o.s., multi-type jobs (

(

K
d

)

in number) arrive according

to a Poisson process with an arrival rate of λ

(Kd )
per type. The type of an arriving job is determined by its

choice of d feasible servers where copies of the job are replicated. When any one of these copies is taken for
service, the remaining copies are deleted. Additionally, on arrival of a job, if multiple feasible servers are idle,
then one of these idle feasible servers is chosen uniformly at random to serve the job (uniform assignment
rule). We also noted that the redundancy-d model with c.o.s. can alternatively be represented by a central
queue architecture where multi-type jobs wait in a central queue in a FIFO manner and where idle servers
scan the central queue in search of feasible jobs (see Fig. 1). But the redundancy-d model with c.o.s. as
described above is also exactly the system setting for the multi-type job and multi-server model (Visschers
et al. [1]) that was described in the previous section. This observation will now allow us to analyze the
c.o.s. model using Theorem 1.

For the c.o.s. model, we will use the Markovian descriptor (ni,Mi, ni−1,Mi−1, . . . , n1,M1) to represent
any state s ∈ S (following [1], see Section 3.3). Recall that in this representation, active servers and waiting
jobs are arranged in a FIFO basis from right to left. For a given state s, nj (j ≥ d) denotes the number
of waiting jobs that have their d feasible servers to be a subset of {Mj , . . . ,M1} and have arrived after the
first n1 + . . . + nj−1 waiting jobs. In fact, recall from the discussion in Section 3.3 that the type of these
nj waiting jobs belongs to the set U({M1,M2, . . . ,Mj}). A key observation to be made is that since each
job type has d feasible servers, it can never happen that there are jobs in the central queue waiting to be
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served and that there are less than d busy servers in the system. Therefore, n1 = . . . = nd−1 = 0. For the
redundancy-2 c.o.s. example of Fig. 1, using the above description it can be seen that the state space for
the example can be represented as (1,M4,M2,M3,M1) where Mi represents the ith server and the number
1 at the end indicates the waiting customer (1, 4).

Recall that to apply Theorem 1, we need to consider an assignment rule that satisfies the assignment
condition. We consider the uniform assignment rule: if an arriving job finds α of its d (α ≤ d) servers busy,
then the probability of choosing each idle server for service is 1

d−α
. For the uniform assignment rule, we

prove that it satisfies the assignment condition. The proof is in the Appendix.

Lemma 1. The uniform assignment rule satisfies the assignment condition given by Eq. (5).

4.1. Product form stationary distribution

In this section we provide the product form steady state distribution for redundancy-d system with c.o.s.
for the Markovian descriptor s = (ni,Mi, . . . , n1,M1) by applying Theorem 1 to the c.o.s. model. (See the
Appendix for the proof.)

Proposition 1. The steady state distribution for any state s = (ni,Mi, . . . , n1,M1) ∈ S is given by

π(s) =











Gi(K, d)π(0)

i!µi for i < d and n1 = . . . = nd−1 = 0,

ri
ni . . . rd

ndGi(K, d)π(0)

i!µi for i ≥ d and n1 = . . . = nd−1 = 0,

0 elsewhere

(7)

where π(0) is the probability of an empty system and where

Gi(K, d) =
i
∏

j=1

Gj(K, d),

Gj(K, d) =
λ
(

K
d

)

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
and

ri =
λ
(

i
d

)

iµ
(

K
d

) .

The stationary distribution for any state s can be written in an alternative form as follows. Define

Ḡj(K, d) =
Gj(K, d) ·K

λ
=

d
(

K−1
d−1

)

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
,

Ḡi(K, d) =
∏i

j=1 Ḡj(K, d) and r̄i = ri
ρ

=
(i−1

d−1)
(K−1

d−1 )
. The stationary distribution for any states s with n1 =

. . . = nd−1 = 0 can now be expressed as

π(s) =

{

Ḡi(K, d)ρ
iπ(0)
i! for i < d,

r̄ni

i . . . r̄nd

d Ḡi(K, d)π(0)
i! ρ(i+

∑i
j=d

nj) for i ≥ d.
(8)

Note that i+
∑i

j=d nj represents the total number of jobs in the system. From (8), one directly concludes
that the stationary distribution is a function only of ρ,K and d.

It is interesting to point out that the stationary distribution does not depend on the identity of the
servers that are active since the servers are assumed to be homogeneous. Hence the stationary probabilities
for states with the same number of active servers (i) and same number of waiting (ni) jobs between servers
are the same.
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4.2. Normalization constant and probability of busy servers

Recall the notation that p(i) denotes the stationary probability that the redundancy-d model with c.o.s.
has i busy servers, for 1 ≤ i ≤ K. This metric would be useful in obtaining the normalizing constant π(0),
which is also the probability that the system is empty (p(0) = π(0)). Noting that

p(i) =
∑

s∈Si

π(s) (9)

where Si = {s ∈ S : exactly i servers are busy}, we have the following lemma. The proof can be found in
Appendix C.

Lemma 2. The probability that i servers are busy is given by

p(i) = p̄(i)π(0) (10)

where

p̄(i) =

{(

K
i

)

Ḡi(K, d)ρi, for i < d,
(

1
1−ri

)

. . .
(

1
1−rd

)

(

K
i

)

Ḡi(K, d)ρi, for i ≥ d.
(11)

Further, π(0) is given by

π(0) =

(

1 +

K
∑

i=1

p̄(i)

)−1

. (12)

A related performance metric of interest is Pw(j), the probability that an arriving job sees j of its d
feasible servers as busy. When a job arrives, conditioned on i busy servers, the probability that j of its

servers are already busy is
(K−j

i−j )
(Ki )

, i ≥ j. Therefore we have

Pw(j) =
K
∑

i=j

p(i)

(

K−j
i−j

)

(

K
i

) . (13)

In particular, the probability a job has to wait, denoted by Pw, is given by Pw(d).

4.3. Distribution of number of jobs

An important performance metric for the c.o.s. system is the number of waiting jobs. In this section, we
obtain the expression for the probability-generating function for the number of waiting jobs in the system.
An inversion of this transform gives us the distribution of the number of waiting jobs.

Define p(i,m) as the probability that the system has i busy servers and m waiting jobs in the system.
When i < d, there are no jobs waiting in the central queue and we have

p(i,m) =

{

p(i) for m = 0,

0 elsewhere.

For i ≥ d, it follows from Proposition 1 that

p(i,m) = π(0)

(

K

i

)

Ḡi(K, d)ρili(m)

where li(m) =
∑

{ni...nd:∑i
l=d

nl=m}

rni

i . . . rnd

d .
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Let Q denote the random variable corresponding to the number of waiting jobs in the c.o.s. system. The
probability that there are m waiting jobs (Q = m) is given by p̂(m) =

∑K

i=1 p(i,m). Using the above
expressions for p(i,m), we can derive the distribution for the number of waiting jobs. Its proof can be found
in Appendix D.

Proposition 2. The P.G.F. for the number of waiting jobs is given by

E(zQ) =
d−1
∑

i=0

p(i) +
K
∑

i=d

p(i)





i
∏

j=d

Geomrj (z)



 (14)

where

Geomrj (z) =
1− rj
1− rjz

and p(i) is given by Eq. (10) and (12). The expected number of waiting jobs in the system is given by

E(Q) =
K
∑

i=d

p(i)





i
∑

j=d

rj
1− rj



 (15)

and the expected number of jobs in the system is given by E(N) = E(Q) + ρK.

Remark 1. From the P.G.F above, one can conclude that the random variable Q is a mixture of sum of
geometric random variables.

Remark 2. Special cases: We now discuss two special cases for the redundancy-d model with c.o.s. namely
d = 1 and d = K. The case d = 1 or redundancy-1 c.o.s. corresponds to the system with Bernoulli routing
of jobs to the K servers. This is also the case for redundancy-1 with c.o.c.. The redundancy-K with c.o.s.
is equivalent to an M/M/K system. This is easy to see from the central queue architecture; since each job
can be served at any of the K servers, a server that becomes free ends up choosing the head of the queue
customer for service. We verify in Appendix E that our expressions for c.o.s. for these special cases indeed
coincide with the known results.

5. Equivalence of JSW(d) and redundancy-d with c.o.s.

In this section, we will show the equivalence of the redundancy-d c.o.s. model with that of the join the
shortest work among d servers (JSW(d)) policy. This is trivial to note for the case when d = 1 and d = K.
When d = 1, the redundancy-1 c.o.s. model as well as the JSW(1) model are equivalent to probabilistic
routing to K queues when the routing probabilities are Bernoulli ( 1

K
). When d = K, redundancy-K c.o.s.

model is equivalent to an M/M/K multi-server queue (see Appendix E) whereas the JSW (K) policy is
simply the traditional JSW (join shortest work) policy which is known to be equivalent to the M/M/K
queue [18]. While the equivalence is now apparent for d = 1 and d = K, we give a formal proof of this
fact for any d in this section. The reasoning is based on a sample-path argument and hence the equivalence
holds for generally distributed service requirements and heterogeneous servers.

Proposition 3. Assume generally distributed service requirements and heterogeneous servers. For any given
sample-path realization, a given job will be served under both JSW(d) and redundancy-d with c.o.s. in the
same server. As a result, the following performance measures are the same under both models:

• Joint probability of servers being busy or idle.

• Delay distribution of a job.

• Total number of (waiting) jobs in the system.
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Proof. For a given realization, we couple the arrivals of jobs, the d servers sampled upon arrival, and their
service requirements. For redundancy-d with c.o.s., a job cannot be overtaken by copies that arrive after
him in any of its d sampled servers (since it has copies in all d FIFO-queues). It therefore follows directly
that upon arrival of the job, one can determine the server in which the job will be served. In order to
describe this server, we define the effective workload, V red

i (t) to denote the work present in server i that will
be served in this server. This ignores the workload due to those copies in server i that will not be served in
the server. As such, for redundancy-d with c.o.s. an arriving job will be served at the server with smallest
workload V red

i (t), among the d servers.
Under JSW(d), an arriving job is sent to the server with smallest workload W JSW

i (t), among the d
servers. Hence, in order to prove that a given job will be served in the same server under both models we
are left to show that W JSW

i (t) = V red
i (t) for all t. This can be seen as follows. First note that the (effective)

workload decreases at rate 1 whenever the process is positive. Now assume W JSW
i (t) = V red

i (t) is true
at time t, and a new job arrives. (This is trivial to note for t = 0.) It is served in the server (among the
d servers) with smallest value for W JSW

i (t) (V red
i (t)), under JSW(d) (redundancy-d, respectively). Since

W JSW
i (t) = V red

i (t), it is the same server say server m, that has the smallest value in the two system and
hence, the service requirement of this job is added both to W JSW

m (t+) and to V red
m (t+).

Remark 3. With the above proposition, redundancy-d with c.o.s. can be perceived as a method of im-
plementing JSW(d) without requiring the knowledge of the residual work in each of the queue. Such an
implementation of JSW(d) would only be possible if the underlying system allows for the possibility to use
extra copies of the same job. Indeed, the power of allowing even a single extra copy per job may prove to be
very beneficial in the absence of workload information at the queues.

Now from the equivalence between JSW(d) and redundancy-d with c.o.s., we have the following corollary
that to the best of our knowledge provides performance metrics for JSW(d) that have not been obtained
before.

Corollary 1. For a JSW(d) system with Poisson arrivals and exponential service requirements, the P.G.F.
for the number of waiting jobs is given by Eq. (14) and the expected number of waiting jobs in JSW(d) is
given by Eq. (15). The expected number of jobs in JSW(d) is given by E(N) = E(Q) + ρK.

6. Asymptotic regimes for c.o.s

In this section, we consider the redundancy-d system with cancel-on-start under limiting regimes. We
first consider the heavy-traffic regime where the number of servers is fixed and the traffic intensity approaches
1. In the second regime, we scale the number of servers and the arrival rate while keeping the traffic intensity
unchanged. This is the mean-field regime.

6.1. Heavy-traffic regime

For the heavy-traffic analysis, we keep the number of servers, K, fixed and let λ
µ

↑ K, so that ρ ↑ 1.

When d = 1, we have a system of K independent M/M/1 queues with parameters λ/K and µ. Hence, after
scaling by 1− ρ, the total number of jobs in the system converges, as ρ ↑ 1, to the sum of K exponentially
distributed random variables with mean 1. In the result below, we derive the distribution of the total scaled
number of waiting jobs for d ≥ 2.

Proposition 4. Assume d ≥ 2. Then

lim
ρ↑1

p(K) = 1 and lim
ρ↑1

E[e−s(1−ρ)Q] =
1

1 + s
,

for any s > 0. In words, this implies that (1− ρ)Q converges to an exponential random variable with unity
parameter, as ρ ↑ 1.
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Proof. From Eq. (11) we have p̄(i) = O(ρi) for i < d, while p̄(K) = O(ρK/(1− ρ)). Since ρ ↑ 1, this implies
that limρ↑1 p(K) = 1. Now, substituting z = e−s(1−ρ) in Eq. (14), together with limρ↑1 p(K) = 1 and taking
the limit ρ → 1 gives

lim
ρ→1

E[e−s(1−ρ)Q] = lim
ρ→1





K
∏

j=d

Geomrj (z)



 .

For i < K, we have limρ→1ri = r̄i < 1, since d ≥ 2. Further, limρ→1rK = r̄K = 1. This implies that
limρ→1 Geomrj (e

−(1−ρ)s) = 1 for j 6= K. For the case j = K, using L’Hopital’s rule it can be seen that

limρ→1 GeomrK (e−(1−ρ)s) = 1
1+s

. This completes the proof.

The above result shows that there is a large drop in the performance when passing from d = 1 to d = 2.
Further, for d ≥ 2, the performance is independent on the parameter d.

6.2. Mean-field regime

In this subsection we consider the mean-field regime and assume that the arrival rate into the system
is λ = λ̂K where λ̂ < µ, and let K → ∞. We note that in a recent work Hellemans and van Houdt [19]
have analyzed JSW (d) in the mean-field regime. In particular, they obtain the explicit expression for the
limiting workload and response time distribution for exponential job sizes. In the following, we analyze the
mean-field limit for the metric Pw(j) due to its meaningfulness for c.o.s.

Define ρ̂ = λ̂
µ
. For JSW(d), asymptotic independence in the mean-field limit has been proved in [20]. This,

together with the equivalence between JSW(d) and red-d c.o.s. and the fact that a given server under red-d
c.o.s. is busy with probability ρ̂ (see preliminaries), gives the following limiting result for the probability
Pw(j) that an arriving job sees j busy feasible servers.

Proposition 5. For λ = Kλ̂ with λ̂ < µ, we have

lim
K→∞

Pw(j) = ρ̂j(1− ρ̂)d−j

(

d

j

)

.

Proof. In [20, Theorem 2.1], JSW(d) is considered in the mean-field regime. It is proved there that given
a finite set of servers, these servers behave independently in the mean-field limit. Note that the joint
distribution of servers being idle is the same for both JSW(d) and red-d c.o.s. (Proposition 3). In addition,
we showed that the probability a server is busy equals ρ. Hence, the probability that j servers are busy out
of d, follows a binomial distribution with parameters d and ρ̂.

7. Redundancy with c.o.c.: an alternative product from

In this section, we give an alternative analysis for the redundancy-dmodel with c.o.c. [6, 7] by generalizing
the multi-type job and multi-type server model of Visschers et. al. [1]. Recall that the primary difference
between redundancy-d c.o.s. and c.o.c. is as follows.

• In c.o.c., redundant copies can be served simultaneously and are cancelled once one of the copy receives
service. When represented as a central queue architecture, it means that a job in the central queue
can be served by multiple feasible servers simultaneously (see Fig. 1).

• The service rate of a job in the central queue for c.o.c. depends on the type of jobs that are ahead of
it. Therefore, the departure rate of a job is in fact state dependent. (See [7] more details.)

It is due to these two feature of the c.o.c. model that a direct application of Theorem 1 is not possible.
In the rest of this section, we extend and adapt the model of Visschers et. al. [1] to accommodate these

two features that are required for the c.o.c. model. In Section 7.1 we first present a generalization of [1] that
allows for state dependent departure rates for servers. We call this the generalized multi-type job and server
model. Then in Section 7.2, we adapt the state descriptor for the c.o.c. model so that it fits this generalized
multi-type job and server model. These two steps allow us to provide an alternative product form stationary
distribution for the c.o.c. model.
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7.1. A generalized multi-type job and server model

Recall from the discussion in Section 3.3 that for the multi-type job and server model of [1], the departure
set function µ{·} is defined by Eq. (3). In this section, we will show that it is possible to consider departure
set functions that are different from Eq. (3) and that allow state dependent departure rates from active
servers (without affecting the nature of the results in [1]). More specifically, we will model situations where
in state s = (ni,Mi, . . . , n1,M1), the service rate of any server Mj for 1 ≤ j ≤ i is a function of servers
M1 to Mj−1 ahead of it. This is different from the setup of [1] where the service rate of server Mj was
constant at all times. We begin by recalling the definition of µ̂Mj

(s) from Section 3.3. For any state
s = (ni,Mi, . . . , n1,M1), µ̂Mj

(s) is the departure rate from any server Mj with 1 ≤ j ≤ i. We now have the
following important definition.

Definition 1. A generalized multi-type job and server model is defined as a multi-type job and server model
of [1] with the following modification.

1. The departure set function µ{·} is monotone, i.e., for every A1,A2 ⊆ M such that A1 ⊆ A2, we have
µA1

≤ µA2
.

2. In any state s = (ni,Mi, . . . , n1,M1), we have

µ̂Mj
(s) := µ{M1...Mj} − µ{M1...Mj−1}. (16)

From the above definition, note that the set function µ{·} can be defined in any arbitrary manner as long
as it is monotone. The set function defined by Eq. (3) satisfies the two conditions above making the model
of [1] a special case. In fact in that case we have µ̂Mj

(s) = µ{Mj} = µMj
. Being a set function, it should

be noted that µ{M1...Mi} also denotes total departure rate from any state (ni,Mσ(i), . . . , n1,Mσ(1)) where
{σ(1), . . . , σ(i)} is a permutation of {1, . . . , i}. In state s = (ni,Mi, . . . , n1,M1), it goes without saying that
the total departure rate µ{M1...Mi} satisfies

µ{M1...Mi} =

i
∑

j=0

µ̂Mj
(s)

(noting that for j = 1, we have µ{M1...Mj−1} = µ{φ} = 0). From the definition above, one can see that
the departure rate from a generalized multi-type job and server model has the following features which are
reminiscent of the order independent queue [15].

• The departure rate µ̂Mj
(s) from an active server depends only on the active servers ahead of it.

• The total departure rate is independent of the permutation of active servers.

Before we proceed with the main result, we will provide an example of a generalized multi-type job and
server model with three classes and three servers. The aim of this example is to present a scenario where
servers have a state dependent departure rates.

Example 2. Let C = {a, b, c} and M = {1, 2, 3}. Further, let Sa = {1}, Sc = {3} and Sb = {1, 2, 3}. The
departure set function for the model is defined as follows.

• µ{1} = µ{2} = µ{3} = 1

• µ{1,2} = µ{2,3} = µ{1,3} = 1.5 and

• µ{1,2,3} = 1.5.

For this model, consider a state of the form s = (n2, 2, n1, 1). The total departure rate in this state is
µ{1,2} = 1.5 and the departure rate from server 2 is given by µ̂2(s) = µ{2,1} − µ{1} = 0.5. On the other
hand, for some other state s = (n2, 1, n1, 2), the departure rate from server 2 is equal to µ̂2(s) = µ{2} = 1.
Similarly, for state s = (n3, 2, n2, 1, n1, 3), we have µ̂2(s) = µ{2,1,3}−µ{1,3} = 0. Clearly, this illustrates that
the same server can have different service rates depending on the active servers ahead of it.
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We now have the following proposition that upholds the validity of Theorem 1 for the generalized multi-
type job and server model.

Proposition 6. Consider a generalized multi-type job and server model with an assignment rule satisfying
the assignment condition (Eq. (5)). Assuming the steady state exists, the steady state probability for any
state s = (ni,Mi, . . . , n1,M1) ∈ S is given by

π(s) = αi
ni . . . α1

n1
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0) (17)

where

Πλ({M1, . . . ,Mi}) =
i
∏

j=1

λMj
({M1, . . .Mj−1}),

Πµ(Mi, . . . ,M1) =

i
∏

j=1

µ{M1,...Mj},

αj =
λU({M1,...,Mj})

µ{M1,...Mj}
.

Proof. The proof of this proposition is similar to that of Theorem 2 of [1] (Theorem 1 in this paper). An
outline of the proof is given in Appendix G to point out to the changes due to generalization of the departure
rate function.

7.2. An alternative product form for c.o.c.
In Proposition 6, we have generalized the results of [1] by considering a generalized multi-type job and

server model. This generalization can now be used to apply Proposition 6 to redundancy-d with c.o.c..
For the redundancy-d c.o.c. model, one can view a type for a job as the choice of d servers that are

chosen (see preliminaries). Since this choice is uniform over the set of all servers, each type is equally likely.
Recall that λtype denotes the arrival rate of each type where λtype = λ

(Kd )
. Also recall some earlier notation

where C denotes the set of all job types. For any type c ∈ C, Sc denotes the set of d feasible servers for that
type. Now for each type c ∈ C, we associate a label Oc. This label will be used to identify the least recent
(oldest) type c job present in the central queue.

A new state space representation for c.o.c.
We propose a new state space representation (ni, Oci , . . . , n1, Oc1) to analyze the redundancy-d model of

[7]. In such a state, the job at the head of line (of the central queue) is of type c1. Since the central queue
has FIFO ordering from right to left, this is also the oldest type c1 job in state s and is therefore indicated
by the label Oc1 . n1 denotes the number of type-c1 jobs that arrived after Oc1 . These jobs were followed by
a type-c2 job, represented by Oc2 . Now n2 denotes the subsequent arrivals that are of either type c1 or c2. In
general, in state s and for 0 ≤ j ≤ i, Ocj indicates the position in the central queue of the oldest type-cj job

and nj denotes waiting jobs of type c ∈
j
⋃

i=1

ci. Now in state s , the jobs that can receive service are the ones

that are represented by the labels (Oc). This is because of the FIFO scheduling in the central queue and
the fact that the waiting jobs (nj) are not the oldest jobs in their type. In state s = (ni, Oci , . . . , n1, Oc1),
the departure rate of job Ocj equals µ times the number of its feasible machines that are not used by the

jobs Ocj−1
, . . . , Oc1 . Hence, it is given by µ̂cj (s) := µ (|Fj(s)| − |Fj−1(s)|) , where Fj(s) :=

j
⋃

l=1

Scl . The total

departure rate in state s is the sum of the departure rates at each Ocj for 0 ≤ j ≤ i. This corresponds to
the departure set function given by

µ{Oc1
,...Ocj

} =
∑

t∈
j⋃

l=1

Scl

µ = µ|Fj(s)|. (18)

15



From the above description, it can be seen that the state space for the redundancy-2 c.o.c. model of Fig.
1 will be represented as (O14, O24, O23, O13, O12). All the 5 jobs are of distinct classes and hence will be
accorded distinct labels.

Redundancy-d c.o.c. as generalized multi-type job and server model

With a state space representation of s = (ni, Oci , . . . , n1, Oc1), the c.o.c. model can now be viewed as a
generalized multi-type job and server model where Ocj resembles a super-server of state dependent service
rate µ (|Fj(s)| − |Fj−1(s)|). Another artifact of this representation is that each super-server Ocj can serve
jobs only of type cj and therefore each type has a dedicated super-server that will only serve jobs of its type.
From this interpretation, it should be clear that there is no need to specify any assignment rule because
an arriving job is never faced with the prospect of being served by multiple super-servers (although he will
be served by multiple servers that define the super-server). Due to this, we have λOc

({Oc1 , . . . , Ocj}) = λc

and hence the assignment condition is trivially satisfied. Proposition 6 can now be used to provide a new
product form distribution for this redundancy model. This distribution is different from that of [7] due to
a different state space representation. At the end of this section we comment on the latter. We have the
following proposition (proof in Appendix H).

Proposition 7. For the redundancy-d c.o.c. model, the steady state distribution for any generic state
s = (ni, Oci , . . . , n1, Oc1) is given by

π(s) =
π(0)

i!

i
∏

j=1

(

jλtype

µ|Fj(s)|

)nj+1

. (19)

The redundancy-d c.o.c. system has already been extensively studied by Gardner et al [6, 7] and hence we
do not analyze this any further. The main purpose of Proposition 7 is to illustrate the unifying framework
for redundancy models via Visschers et al [1] and an adaptation of its generalization. To recall the main
results from [7], the normalizing constant π(0) in Proposition 7 is given by

π(0) =

K
∏

i=d

(

1−
(

i−1
d−1

)

(

K−1
d−1

)ρ

)

,

and the mean number of customers in the system E(N) is

E[N ] =

K
∑

i=d

ρ

(K−1

d−1 )
(i−1

d−1)
− ρ

. (20)

Since our state space representation for analyzing c.o.c. is different from that used in [6, 7], a direct
comparison between Proposition 7 and [7, Theorem 2] is cumbersome. However one can compare certain
states of the system to show that the stationary probabilities obtained from Proposition 7 and [7, Theorem
2] are indeed the same. For example, consider a state with m customers, all belonging to the same type.
Such a state in our representation is denoted by (m−1, Oc) and we have i = 1 and F1(s) = d in Proposition
7. This gives us

π((m− 1, Oc)) = π(0)

(

λtype

dµ

)m

.

This is the same as the steady state probability given in [7, Theorem 2]. Similarly, consider a state with m
customers all from distinct types. In our representation, such a state is represented by (Ocm , . . . , Oc1) and
from Proposition 7,

π((Ocm , . . . , Oc1)) = π(0)

(

λtype

dµ

)m

.

Again, this coincides with [7, Theorem 2].
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8. Numerical Results

In this section we present numerical results to further analyze the redundancy-d model considered in this
paper. In Section 8.1 we numerically compare the performance between redundancy-d systems with c.o.s.
and c.o.c. and study the impact of independence assumption made in the analysis of c.o.c.. In Section 8.2,
we provide some more numerical results for redundancy-d c.o.s. This is followed by numerical results for the
mean-field regime in Section 8.3.

8.1. Comparing c.o.c. and c.o.s., impact of independence assumption

In this section we compare the performance of both systems and in particular assess the impact of the
independence assumption (as made in c.o.c.) on the performance. Recall that due to cancellation on start,
the analysis for co.s. with or without the independence assumption remains the same. We saw in Example 1
that while the c.o.c. model with the independence assumption significantly outperforms the c.o.s. model for
d = K, the performance degrades severely when this assumption is dropped. In the rest of this section, we
numerically analyze the impact of the independence assumption for arbitrary values of d.

We first compare the mean number of customers (E(N)) in the system under c.o.s. and c.o.c.. The mean
number of customers E(N) in the c.o.c. system is given by Eq. (20), as derived in [7]. Consider c.o.c. and
c.o.s. systems with parameters K = 10, ρ = 0.35 and 0.7. For varying values of d, Fig. 2 compares E(N)
for the two systems. The case d = 1 for both models is equivalent to Bernoulli routing to K servers in
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Figure 2: E(N) for c.o.c. and c.o.s. for ρ = 0.35, 0.7 and K = 10.

which case we have E(N) = Kρ
1−ρ

. The case, d = K for the c.o.c. model coincides with an M/M/1 server

with arrival rate of λ and service rate of Kµ and hence E(N) = ρ
1−ρ

. On the other hand, d = K for c.o.s.

corresponds to an M/M/K system with arrival rate λ and K servers each with a service rate 1. Naturally
as expected, E(N) for the M/M/K system is larger than that of the M/M/1 system associated with d = K
for c.o.c. For 1 < d < K, we see that E(N) for the c.o.c. model is lower than that of the c.o.s. model and
this is true for any value of ρ (illustrated in Fig. 2 for ρ = 0.35 and 0.7.) What is also noticeable from the
figure is that the proportion of reduction in E(N) from having an extra copy (d = 2) in both the redundancy
models depends on the load ρ in the system.

To elaborate on this, in Table 1, we compare E(N) for c.o.s. and c.o.c. when increasing the redundancy
parameter from d = 1 to d = 2. We fix K = 10 and µ = 1 and take varying values of ρ. Note from the
discussion after Proposition 1 that the stationary distribution for the c.o.s. system is merely a function of
ρ,K and d. This is also the case for the c.o.c. system (see Proposition 7) and this justifies the choice of ρ
as a parameter for this table. Table 1 indicates that E(N) for c.o.c. system is lower than that of the c.o.s.
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system for various values of ρ. We also quantify the percentage reduction in E(N) when increasing the
redundancy parameter from d = 1 to d = 2.

A key observation from the table is the fact that for low values of ρ, the reduction with c.o.s. is smaller
than that obtained with c.o.c.. This is due to the independence assumption: at low loads, an arriving job
will likely find the system empty. Under c.o.c., the job will then get an instantaneous service rate of 2µ,
which explains the reduction of the order of 50% in the table. However, with c.o.s., even if the system is
empty, an arriving job will only get served in one server. However, for higher values of ρ, the gain obtained
with c.o.s. becomes comparable to that obtained with c.o.c.. In this case, the common feature that helps
improve the performance with both systems is that by sending redundant copies, they can more efficiently
use the capacity of the system.

ρ d = 1 % decrease in % decrease in
E(N) E(N) for c.o.s. E(N) for c.o.c.

with d = 2 with d = 2
0.1 1.11 9.5 51.56
0.2 2.5 18.17 53.3
0.3 4.28 26.25 55.26
0.4 6.66 33.94 57.5
0.5 10 41.44 60.09
0.6 15 48.95 63.17
0.7 23.33 56.75 66.95
0.8 40 65.28 71.79
0.9 90 75.44 78.56

Table 1: Reduction in the mean number of jobs with c.o.c. and c.o.s. for K = 10, when increasing the redundancy parameter
from d = 1 to d = 2.

In Figure 3 we compare the mean sojourn time. We observe that almost up to ρ = 0.7, the mean
sojourn time with c.o.c. is below 1. Since the mean service time here is 1 (µ = 1), this will not happen in
most situations in practice. On the other hand, with c.o.s., the mean sojourn time is always larger than 1.
From the examples above, one is tempted to conclude the superiority of c.o.c. over c.o.s. This might seem
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Figure 3: E(T ) for c.o.c. and c.o.s. with K = 10.
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Figure 4: Pw for c.o.c. and c.o.s. with K = 10, ρ = 0.7.
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counter-intuitive at first, since in the c.o.c. model redundant copies can be served simultaneously, which
implies extra work for the servers. The superiority of c.o.c. system over c.o.s. is primarily because of the
independence assumption as made in c.o.c. (see also the example in Section 3.)

In Figure 4 we plot the metric Pw, the probability that an arriving job has to wait with K = 10, ρ = 0.7
and for various values of d. We use Equation (5) from Gardner et. al. [7] to obtain the numerical values
for p(i) in c.o.c. The probability an arriving job has to wait under c.o.c. can then be calculated using
Equation (13) with j = d. With c.o.s. the probability that an arriving customer has to wait is lower than
that for the c.o.c. system. The probability to wait under c.o.s. decreases with d, which is expected since as
d increases, resources are more efficiently pooled together. With c.o.c., for large values of d, the probability
of waiting increases because multiple servers serve a single job and hence an arriving job is more likely to
have its feasible servers to be busy. In spite of this, the performance of c.o.c. is superior in terms of sojourn
time (see Figure 3), because as d increases, the system gets closer to being a single super-server (see also
the discussion on d = K in Section 3.)

8.2. Performance of redundancy-d with c.o.s.

In Figure 5 we plot the metric p(i) (the probability that i servers are busy) for parameters K = 10,
ρ = 0.7 and for different values of d. We observe from Figure 5 that p(K) increases in d. This is because a
larger d implies a better utilization of all the servers and increases the probability of all servers being busy.
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Figure 5: p(i) for different d when K = 10, ρ = 0.7.
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Figure 6: Pw, 1− p̂(0) and p(K) for K = 10 and ρ = 0.7.

This is however not the case in general for p(i), for 2 ≤ i < K. In fact, p(i) is increasing with d for
lower values of i, (typically i ≤ 5) and p(i) is decreasing with d for higher values of i ( 5 < i < 10.) The
effect reverses again for i = K and we have p(K) increasing in d. To explain this, let us consider the case
d = 10. When i < K, p(i) corresponds to having exactly i jobs present in the system. However, p(10) is
the probability that the number of jobs is equal or larger than 10, that is, it corresponds to the tail of the
distribution. A similar reason holds for other values of d.

In Figure 6, we examine the metrics Pw, 1− p̂(0) and p(K) for the c.o.s. system with parameters K = 10
and ρ = 0.7 and for various values of d. While Pw denotes the probability that an arriving customer
has to wait, 1 − p̂(0) denotes the probability that the system has waiting customers. Note that p̂(0) =
∑d−1

i=0 p(i) +
∑K

l=d p(l, 0). Fig. 6 illustrates the difference in the two quantities as a function of d. In fact,
Pw < 1 − p̂(0) for d < 5, Pw > 1 − p̂(0) for d > 5 and Pw = 1 − p̂(0) for d = 5. From the figure, we also
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observe that for all d, p(K) ≤ Pw (with an equality when d = K). A justification for this is the fact that
all servers being busy implies that an arriving customer has to wait. When d = K, an arriving customer
having to wait implies that all servers are busy (M/M/K system) and hence the equality.

8.3. Asymptotic regimes

In this section we focus on the mean-field regime. That is, we set λ = λ̂K, for a fixed λ̂, and let K → ∞.
In other words, the load per server is kept constant, while taking the number of servers to infinity. In Fig. 7
we plot Pw as a function of K and for different values of d. As expected, due to the asymptotic independence

of the servers, Pw converges to ρ̂d where ρ̂ = λ̂
µ
(see Proposition 5).
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Figure 7: limK→∞ Pw = ρ̂d for λ̂ = 0.5 and fixed d.
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Figure 8: Asymptotic optimality of d(K) = ⌊
√
K⌋ for ρ̂ = 0.45.

Recall that for d = K, the models JSW , redundancy-d c.o.s., and M/M/K are all the same. It is
known for the M/M/K system (and hence for JSW , see for example [21]) that in the mean field regime, the
probability of waiting and the mean waiting time vanish in the limit. The same holds for the well-known
JSQ dispatching policy. In a recent work, Mukherjee et al. [22] have shown that JSQ(d(K)) with d = o(K)
can be asymptotically optimal in the sense that the probability of waiting and the mean waiting time are
both equal to zero in the limit. The latter implies that JSQ(d(K)) yields the same asymptotic performance
as JSQ, but with a considerably smaller amount of overhead in terms of signaling (See the survey paper [23]
for more details). Getting back to our model, an interesting question is then how big d needs to be, in order
for c.o.s. and JSW (d), to be asymptotically optimal with respect to the waiting probability. In Figure 8 we
consider the case d(K) = ⌊

√
K⌋, for ρ̂ = 0.45. This figure indicates that c.o.s. might also be asymptotically

optimal for an appropriate scaling of the redundancy parameter. A formal proof is left for future work.
Finally, we look at the asymptotic value of E(N)/K for redundancy-d system with c.o.s and c.o.c. This

is illustrated in Figure 9. We can derive a simple approximation for the mean sojourn time under c.o.s. and
hence for the mean number of jobs in the system. If an incoming job does not need to wait, its sojourn time
will be 1/µ. If it has to wait, then its sojourn time will be its waiting time plus its service time 1/µ. To
calculate the waiting time in the latter case, we assume that there are no other jobs (with feasible servers in
common) waiting in front of the job. Hence, the waiting time will be equal to the minimum of d exponential
service times, i.e. 1/(µd). Now, recalling that the probability of waiting in the limit is ρ̂d (Proposition 5),
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Figure 9: Asymptotics for E(N)/K for c.o.s and c.o.c. system with λ̂ = 0.45 and various values of d.

and using Little’s law, the mean number of jobs for K sufficiently large can be approximated by:

E(N) ≈ λ̂K

(

(1− Pw)
1

µ
+ Pw(

1

µd
+

1

µ
)

)

= ρ̂K

(

1 +
ρ̂d

d

)

.

For the values of Figure 9, for d = 2 the approximation yields 0.496 whereas the value from the plots are
0.504, and for d = 4 these values are 0.4646 and 0.4553, respectively. For sufficiently large K, we expect
the approximation to get more accurate as the load decreases and as the parameter d increases, since then
the probability of waiting decreases. Indeed, as K → ∞ in the mean-field regime, the above approximation
coincides with the first order approximation of the corresponding mean-field result for JSW (d) given by
Theorem 5.4 in [19].

9. Concluding remarks

We have obtained a unifying framework to investigate the steady state distribution of c.o.s. and c.o.c.
redundancy models. In the literature there are already several studies for the c.o.c. model, but to the best
of our knowledge, we are the first to give an exact analysis of c.o.s. for any 1 ≤ d ≤ K. In addition, due to
the equivalence between c.o.s. and JSW (d), our approach provides a first exact analysis of workload-based
load balancing schemes.

There are several interesting research problems that stem from our work. An important extension is
to investigate c.o.s. with heterogeneous servers and class-based models. Our approach based on the multi-
type multi-server queue will still be valid, however, the routing discipline that will satisfy the assignment
condition, see Equation (5), needs to be determined. In this paper we have mostly focused on the queue
length and related performance metrics. Obviously, the waiting time and the sojourn time distribution are
very relevant metrics as well. A good approach would be to extend the central queue approach to study the
waiting time distribution of both c.o.s. and c.o.c. models. Another research path pertains with a thorough
analysis of c.o.s. model in the mean- field regime. The proof for asymptotic optimality of JSW(d(K)) is
part of future work. Last but not least, the analysis of c.o.c. without the independence assumption is a very
relevant problem, and it would be of interest to study whether this model can be analyzed through a similar
approach as the one developed in this paper.
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Appendix

A: Proof of Lemma 1

Assuming the uniform assignment rule, we will prove that for every subset {Mi, . . . ,M1} of M of size
i and for every j (1 ≤ j ≤ i) we have λMj

({M1, . . .Mj−1}) = λM̄j
({M̄1, . . . M̄j−1}) for every permutation

M̄1, . . . M̄i of M1, . . .Mi. This will imply the assignment condition.
To characterize λMj

({M1, . . . ,Mj−1}) (the activation rate of server Mj , when the set of active servers is
{M1, . . . ,Mj−1}), we will require the number of types that can activate server Mj when servers M1 to Mj−1

are busy. This can be obtained by first counting the number of types that can activate server Mj while
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having exactly α of its d feasible servers already busy (and hence among M1 to Mj−1) and then summing
over α.

Now let C(mi) denote the set of types which have mi as a feasible server. Likewise, C(Mi) would denote
the same for a generic server Mi. Recall that Sc denotes the set of d feasible servers for type c jobs. Now
when the system has exactly j − 1 busy servers denoted by {M1, . . . ,Mj−1} and when Mj is an idle server,
define

Cα
Mj

({M1, . . . ,Mj−1}) := {c ∈ C(Mj) : |Sc ∩ {M1, . . . ,Mj−1}| = α}
as the set of types that have the idle server Mj as feasible and have exactly α out of their d feasible servers in
the set {M1, . . . ,Mj−1}. Hence for any type c ∈ Cα

Mj
({M1, . . . ,Mj−1}), there are exactly d− α idle servers

(which include server Mj) and due to the uniform assignment rule, an arriving customer of this type will
activate server Mj with probability 1

d−α
. Now it can be seen that

|Cα
Mj

({M1, . . .Mj−1})| =
(

j − 1

α

)(

K − j

d− α− 1

)

.

Here
(

j−1
α

)

is the number of ways of choosing α servers out of {M1, . . .Mj−1}. For a particular choice of α
servers say {M1, . . .Mα}, and given Mj , the number of types that have these particular α + 1 servers as

feasible servers is
(

K−j
d−α−1

)

. This explains the value of |Cα
Mj

({M1, . . .Mj−1})|. Note additionally that this
cardinality depends only on the number of busy servers j − 1 and not on the label of the servers that are
actually busy. This implies that for any permutation M̄1, . . . M̄i of M1, . . .Mi and for 0 ≤ j ≤ i, we have

|Cα
Mj

({M1, . . .Mj−1})| = |Cα
M̄j

({M̄1, . . . M̄j−1})|. (21)

Here {M̄1, . . . M̄j−1} is the first j servers from the permutation M̄1, . . . M̄i of M1, . . .Mi for 0 ≤ j ≤ i. Now
note that

λMj
({M1, . . .Mj−1})

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

∑

c∈Cα
Mj

({M1,...Mj−1})

λtype

d− α

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

λtype|Cα
Mj

({M1, . . .Mj−1})|
d− α

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

λtype|Cα
M̄j

({M̄1, . . . M̄j−1})|
d− α

= λM̄j
({M̄1, . . . M̄j−1})

where {M̄1, . . . M̄j−1} is the first j servers from the permutation M̄1, . . . M̄i of M1, . . .Mi for 0 ≤ j ≤ i.

Here the range of α in the index of the summation is so chosen that the quantity
(

j−1
α

)(

K−j
d−α−1

)

is property
defined. The first equality above follows from the fact the each type c ∈ Cα

Mj
({M1, . . .Mj−1}) activates its

idle feasible server Mj with rate
λtype

d−α
and the total activation rate for Mj is obtained by summing over all

such types and then over all α. The third equality follows from Eq. (21) and the last equality in fact follows
from the first. From this, it is easy to see that for i = 1 . . . K,

i
∏

j=1

λMj
({M1, . . .Mj−1}) =

i
∏

j=1

λM̄j
({M̄1, . . . M̄j−1}) (22)

for every permutation M̄1, . . . M̄i of M1, . . .Mi. This completes the proof.
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B: Proof of Proposition 1

For a redundancy-d system with c.o.s, first recall that if less than d servers are busy, then the number of
waiting copies (in the traditional parallel server representation) is zero. This is because a waiting copy implies
that all the other d− 1 copies are also waiting for service; this is possible when at least d servers are busy in
the system. Therefore for any feasible state s = (ni,Mi, . . . , n1,M1) we have n1 = n2 = . . .−nd−1 = 0. Since
the redundancy-d system with c.o.s can be seen as a multi-type job and server model and since the uniform
assignment rule satisfies the assignment condition (Lemma 1), we can apply Theorem 1. The steady state
distribution for any state s = (ni,Mi, . . . , n1,M1) with i < d and n1 = . . . = nd−1 = 0 is now given by

π(s) =
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0)

and for i ≥ d and n1 = . . . = nd−1 = 0 by

π(s) = αi
ni . . . αd

nd
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0).

Here

Πλ({M1, . . . ,Mi}) =

i
∏

j=1

λMj
({M1, . . .Mj−1})

Πµ(Mi, . . . ,M1) =

i
∏

j=1

µ{M1,...Mj}

αj =
λU({M1,...,Mj})

µ{M1,...Mj}
for 1 ≤ j ≤ i.

For the redundancy-d system with c.o.s, the departure rate from any state with active servers {M1, . . .Mj}
is given by µ{M1, . . .Mj} = jµ and hence

Πµ(Mi, . . . ,M1) = µii!.

Recall from the preliminaries that λU({M1,...,Mj}) denotes the arrival rate of types that can be served only at

servers {M1, . . . ,Mj}. The number of such types is
(

j
d

)

and the arrival rate of each such type is λtype =
λ

(Kd )
.

Therefore

λU({M1,...,Mj}) = λ

(

j
d

)

(

K
d

) .

Now using the fact that

λMj
({M1, . . .Mj−1})

= λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

|Cα
Mj

({M1, . . .Mj−1})|
d− α

= λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
,

we have

Πλ({M1, . . . ,Mi}) =

i
∏

j=1

λMj
({M1, . . .Mj−1})

=

i
∏

j=1

λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α
.
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Now define

Gj(K, d) := λtype

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

(

j−1
α

)(

K−j
d−α−1

)

d− α

=

min(j−1,d−1)
∑

α=max(0,j−1+d−K)

λ
(

j−1
α

)(

K−j
d−α−1

)

(d− α)
(

K
d

)

Gi(K, d) :=

i
∏

j=1

Gj(K, d) and

ri :=

(

λ

(

i
d

)

iµ
(

K
d

)

)

Using these definitions, the statement of the theorem follows. This completes the proof.

C: Proof of Lemma 2

When i < d it is easy to see that

p(i) =

(

K

i

)

i!π(s)

where s is any state of the form s = (0,Mi, 0,Mi−1, . . . , 0,M1) (since the servers are homogeneous, π(s) for
all such states is the same). The i busy servers can be chosen in

(

K
i

)

ways and there are i! ways to arrange
the servers leading to the above expression.

Recall that ri = ρr̄i. Since ρ < 1, and r̄i =
(i−1

d−1)
(K−1

d−1 )
< 1, it directly follows that ri < 1. The probability of

having i busy servers, p(i), for i ≥ d is now given by

p(i) =

(

K

i

)

i!
∑

ni

. . .
∑

nd

π(ni,Mi, . . . , n
d,Md, . . . , 0,M1)

=

(

K

i

)

i!
∑

ni

. . .
∑

nd

ri
ni . . . rd

ndGi(K, d)
π(0)

i!µ

=

(

K

i

)(

1

1− ri

)

. . .

(

1

1− rd

)

Gi(K, d)
π(0)

µi
.

Therefore we have

p(i) =

{(

K
i

)

Gi(K, d)π(0)
µi for i < d

(

K
i

)

(

1
1−ri

)

. . .
(

1
1−rd

)

Gi(K, d)π(0)
µi for i ≥ d.

Recall that
(

K
i

)

Gi(K,d)
µi =

(

K
i

)

Ḡi(K, d)ρi and hence p̄(i) given in the statement now follows. Using the fact

that
∑K

i=0 p(i) = 1 and p(i) = p̄(i)π(0), one can see that

π(0) =

(

1 +

K
∑

i=1

p̄(i)

)−1

.
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D: Proof of Proposition 2

We first analyze li(m) and try to obtain a recursive form for it. First note that for i = d, we have
ld(m) = rmd for m ≥ 0. Now for i > d,

li(m) =
∑

{ni...nd:∑i
l=d

nl=m}

rni

i . . . rnd

d

=

∞
∑

ni=0

rni

i

∑

{ni−1...nd:∑i−1

l=d
nl=m−ni}

r
ni−1

i−1 . . . rnd

d

=

m
∑

ni=0

rni

i li−1(m− ni)

= (hi ⋆ li−1)(m)

where hi(j) := rji and ⋆ represents the convolution operator. We will now obtain the expression for Pi(z),
the P.G.F. for p(i,m). Let Hi(z) and Li(z) be the P.G.F.’s for hi(·) and li(·) respectively. When there are
i < d servers busy, there are no jobs waiting. Hence, we directly have Pi(z) = p(i), for i < d.

Let

f i(K, d) =

(

K

i

)

Ḡi(K, d)ρi.

For i ≥ d, we have p(i,m) = π(0)f i(K, d)li(m). Further note when i ≥ d, we have

Hi(z) =
1

1− riz

Li+1(z) = Hi+1(z)Li(z) and

Pi(z) = π(0)f i(K, d)Li(z),

and since ld(m) = rmd , we have Ld(z) = Hd(z). We therefore have for i ≥ d,

Pi(z) = π(0)f i(K, d)





i
∏

j=d

Hj(z)



 , (23)

where π(0) is given by Eq. (12). Now define

Geomrj (z) :=
1− rj
1− rjz

.

Geomrj (z) denotes the P.G.F. of a geometric random variableXj with parameter rj . (Xj has the distribution
P (Xj = n) = (1− rj)r

n
j .). Together with Lemma 2, we then have for i ≥ d

Pi(z) = π(0)f i(K, d)





i
∏

j=d

Hj(z)





= p(i)





i
∏

j=d

Geomrj (z)



 . (24)

The P.G.F. for the number of waiting jobs is then given by

P̂ (z) =
K
∑

i=1

Pi(z) =
d−1
∑

i=0

p(i) +
K
∑

i=d

Pi(z).

26



The required P.G.F. in the statement of the theorem now follows from Eq. (24).

The expected number of waiting jobs is given by
∑K

i=1
dPi(z)

dz

∣

∣

∣

z=1
. Note that dPi(z)

dz
= 0 when i < d.

When i ≥ d,

dPi(z)

dz

∣

∣

∣

z=1
= p(i)





i
∏

j=d

Geomrj (z)





∣

∣

∣

z=1





i
∑

j=d

rj
1− rj





= p(i)





i
∑

j=d

rj
1− rj



 .

(The second equality is because
(

∏i

j=d Geomrj (z)
) ∣

∣

∣

z=1
= 1) The expected number of waiting jobs in the

system (E(Q)) is hence given by

E(Q) =

K
∑

i=d

p(i)





i
∑

j=d

rj
1− rj





where p(i) is given by Eq. (10) and (12). Since the mean number of jobs at the servers is same as the mean
number of busy servers we have E(N) = E(Q) +Kρ.

E: Special cases; d = 1 and d = K

In this appendix, we will discuss the special cases for the c.o.s. model corresponding to d = 1 and d = K.
When d = 1, both c.o.s. and c.o.c. system are equivalent to a system with Bernoulli routing to the K

servers. The queue length process of each server is independent and each server represents an M/M/1 queue
with arrival rate λ

K
and service rate µ. It is easy to check from our analysis of Section 4 that when d = 1,

we have Gj(K, d) = λ
K
, Gi(K, d) =

(

λ
K

)i
and ri = ρ. Using the notation that ρ = λ

Kµ
(the load per M/M/1

queue), the steady-state probability from Eq (7) for any state s = (ni,Mi, . . . , n1,M1) for i ≥ 0 is given by

π(s) = π(0)
ρ(i+

∑i
j=1

nj)

i!
.

p(i) is given by p̄(i)π(0) where from Eq. (11) we have p̄(i) =
(

K
i

)

(

ρ
1−ρ

)i

. From Eq. (12), the normalizing

constant is obtained as

π(0) =

(

1 +
K
∑

i=1

(

K

i

)(

ρ

1− ρ

)i
)−1

=

(

(

1 +
ρ

1− ρ

)K
)−1

= (1− ρ)
K
.

Since π(0) is also the probability that the system of K independent M/M/1 queues is empty, this justifies

π(0) = (1− ρ)
K
. Using this, p(i) can be simplified to p(i) =

(

K
i

)

ρi(1− ρ)
K−i

. Now using Proposition 2, it
is easy to see that the P.G.F. for the number of waiting jobs in the redundancy-1 system is given by

P̂ (z) =

(

1 + ρ− ρz

1− ρz

)K

(1− ρ)
K
.

Further, the mean number of waiting jobs and the total number of jobs in the system is given by E(Q) = Kρ2

1−ρ

and E(N) = K ρ
1−ρ

.
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We now analyze the redundancy-K system with c.o.s.. The redundancy-K system is same as an
M/M/K system with arrival rate of λ and K servers each with rate µ. For this case, substituting d = K in

our analysis of Section 4 gives us Gj(K,K) = λ
K−j+1 , G

i(K,K) = λi(K−i)!
K! and rK = ρ. Again, by simple

substitution, the probability of i busy servers p(i) is given by p(i) = π(0)p̄(i) where

p̄(i) =







(Kρ)i

i! for i < K
(

1
1−ρ

)

(Kρ)K

K! for i = K.

The normalizing constant π(0) is given by

π(0) =

(

K−1
∑

i=0

(Kρ)
i

i!
+

(

1

1− ρ

)

(Kρ)
K

K!

)−1

which coincides with the normalizing constant of an M/M/K system (see page 260, [18]). Note that p(K),
the probability that all servers are busy corresponds to the blocking probability of the M/M/K system. In
fact, we obtain

p(K) = π(0)

(

1

1− ρ

)

(Kρ)
K

K!

which as expected coincides with the celebrated Erlang-C formula. Based on substituting d = K in Propo-
sition 2, we see that the P.G.F. for the number of waiting jobs in the redundancy-K system is given by

P̂ (z) =

K−1
∑

i=0

p(i) + p(K)Geomρ(z).

Further, the mean number of waiting jobs and total number of jobs in the system is given by E(Q) = p(K) ρ
1−ρ

and E(N) = p(K) ρ
1−ρ

+ λ
µ
. These expressions verify with the corresponding quantities for the M/M/K

system (see [18]).

F: Transition rates and global balance

In this appendix, we will outline the state transitions and the global balance equations for the multi-type
job and server model of [1]. In Section 7.1, we consider a generalized multi-type job and server model that
differs from the model of [1] only in its departure set function. The state transitions and the global balance
equations described below hold for this generalized model as well.

The transitions from an arbitrary state are of the following type.
Arrivals: When in state s = (ni,Mi, . . . , n1,M1), the total arrival rate is λ. An arriving job either finds
no feasible server to be idle or is picked for service by a feasible idle server. In case of multiple feasible idle
server, the assignment rule will determine which of the feasible and idle server will serve this arrival. The
arrival rate of jobs that find no feasible server to be idle is given by λU({M1,...,Mi}). The arrival rate of jobs
that activate a feasible server (according to the assignment rule) is λ−λU({M1,...,Mi}) respectively. We have

λ− λU({M1,...,Mi}) =
∑

M∈M\{M1,...,Mi}

λM ({M1, . . . ,Mi}). (25)

Departures: On departure of a job in service, either the server serving this job become idle or the server
serving this job picks some waiting job. These two cases are defined by the following two events that describe
transition rates associated with a departure leading into state s .

• { Rate P } : the average rate of transition into state s due to a departure such that the server serving
the departing job becomes idle.
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• { Rate Q } : the average rate of transition into state s due to a departure such that the server serving
the departing job picks a waiting job.

The global balance equations for any state s = (ni,Mi, . . . , n1,M1) are as follows. When ni > 0, we have
π(s)

(

λ+ µ{M1,...Mi}

)

= { Rate P }+ { Rate Q } (26)

+ λU({M1,...,Mi})
π(ni − 1,Mi, . . . , n1,M1).

When ni = 0, we have
π(s)

(

λ+ µ{M1,...Mi}

)

= { Rate P }+ { Rate Q } (27)

+ λMi
({M1, . . . ,Mi−1})π(ni−1,Mi−1, . . . , n1,M1).

We will now characterize Rate P and Q in detail. As in [1], we denote the state (ni,Mi, . . . , l,M, nk −
l,Mk, . . . , n1,M1) by
insertMkl (s) and the state

(ni,Mi, . . . , nj+1,Mj+1, nj + nj−1 + 1,Mj−1, . . . ,

. . . ,Mk+1, l,Mj , nk − l,Mk, . . . , n1,M1)

by swap
Mj

kl (s). Note that in state insertMkl (s) (resp. swap
Mj

kl (s)), the departure rate of server M (resp. Mj)
in our system is given by

µ{M1,...,Mk,M} − µ{M1,...,Mk}(resp.µ{M1,...,Mk,Mj} − µ{M1,...,Mk}).

Define

δj(M) :=
λU({M1...Mj})

λU({M1...Mj ,M})
, j = 1 . . . i.

Let pMkl (s) (resp. q
Mj

kl (s)) denote the probability of transition from state insertMkl (s) (resp. swap
Mj

kl (s)) to
state s due to departure of server M (resp. Mj). Therefore pMkl (s) is the probability that after departure
of server M, the state insertMkl (s) is such that there are no waiting jobs in the system that are feasible to

server M. Similarly, q
Mj

kl (s) is the probability that after departure of server Mj , the state swap
Mj

kl (s) is such
that after departure of server Mj , the next feasible job for this server is the nj−1+1st job after server Mj−1.
Therefore we have,

pMkl (s) = δk(M)
l
δk+1(M)

nk+1 . . . δi(M)
ni

and

q
Mj

kl (s) = δk(Mj)
l
δk+1(Mj)

nk+1 . . . δj−1(Mj)
nj−1(1− δj−1(Mj)).

The rates P and Q can be quantified as below:

{ Rate P } =
∑

M∈M\{M1,...,Mi}

PM (s)

{ Rate Q } =
i
∑

j=1

QMj
(s)

where

PM (s) =

i
∑

k=1

nk
∑

l=0

µ̂M (insertMkl (s))p
M
kl (s)π(insert

M
kl (s))

+ µ̂M (s , 0,M)pM00(s)π(s , 0,M),

QMj
(s) =

j−1
∑

k=1

nk
∑

l=0

µ̂Mj
(swap

Mj

kl (s))q
Mj

kl (s)π(swap
Mj

kl (s))

+ µ̂Mj
(swap

Mj

00 (s)q
Mj

00 (s)π(swap
Mj

00 (s)).

Here, for the model of [1], we have µ̂M (insertMkl (s)) = µM and µ̂Mj
(swap

Mj

kl (s)) = µMj
. For the generalized

model of Section 7.1, µ̂·(·) is given by Eq. (16).
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G: Proof outline of Proposition 6

The proof outline is as follows. We first note that the state transitions and the global balance equation
of Appendix F also hold for the generalized multi-type job and server model with a departure set function
µ{}. Note the subtle difference between our definition of PM (s),QMj

(s) given in the appendix above and
that in [1]. Unlike [1], we have subsumed the departure rates inside the definition of PM (s),QMj

(s)to be
able to consider more general departure set functions for the generalization. Now as in [1] we shall identify
the partial balance equations that need to be satisfied by our guess for the stationary distribution given in
the statement of the theorem. Using the conditions in the definition of the generalized model, we show that
the stationary distribution from the theorem indeed satisfies the partial balance resulting in a product-form.

Partial Balance: Now as in the proof of Theorem 2, [1], the aim is to prove that the expression for
π(s) in the statement of the theorem satisfies the following 4 partial balance equation. For ni > 0

π(s)µ{M1,...Mi} = λU({M1,...,Mi})π(ni − 1,Mi, . . . , n1,M1) (28)

and for ni = 0,

π(s)µ{M1,...Mi} =

λMi
({M1, . . . ,Mi−i})π(ni−1,Mi−1, . . . , n1,M1). (29)

π(s)λU({M1,...,Mi}) = { Rate Q }

=
i
∑

j=1

QMj
(s) (30)

π(s)λM ({M1, . . . ,Mi}) = PM (s). (31)

Here we have made use of Eq (25) to replace λ in the global balance equations (26) and (27). Firstly, it is easy
to see that Eq. (6) satisfies Eq. (28) and (29). Hence to complete the proof, it is sufficient to prove that Eq.
(6) satisfies Eq. (30) and Eq. (31). Let us first prove that Eq. (6) satisfies Eq. (31). We proceed exactly as in
the proof of Theorem 2 in [1] and divide each term in the summation of PM (s) by π(s)λM ({M1, . . . ,Mi}). In
the corresponding part of the proof of Theorem 2 in [1], we have µM instead of µ̂M (insertMkl (s)). Proceeding
in the same way and using the fact that µ̂M (insertMkl (s)) = µ{M1,...Mk,M}−µ{M1,...Mk} it can be shown that

µ̂M (insertMkl (s))p
M
kl (s)

π(insertMkl (s))

π(s)λM ({M1, . . . ,Mi})
= (1− βk)(βk)

l(βk+1)
nk+1+1 . . . (βi)

ni+1

where
βj =

µ{M1,...Mj}

µ{M1,...Mj ,M}
1 ≤ j ≤ i.

A similar procedure for the boundary state gives us

µ̂M (s , 0,M)pM1n1
(s)

π(s , 0,M)

π(s)λM ({M1, . . . ,Mi})
=

i
∏

j=1

(βj)
nj+1.

Now as in [1], this implies that

PM (s)

π(s)λM ({M1, . . . ,Mi})
=





i
∏

j=1

(βj)
nj+1 +

i
∑

k=1

nk
∑

l=0

(1− βk)(βk)
l

i
∏

h=k+1

(βh)
nh+1





= 1.
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To prove, that Eq. (6) satisfies Eq. (30), as in the proof of Theorem 2 in [1], divide each term in the

summation of QMj
(s) by π(s). Since the departure rate µ̂Mj

(swap
Mj

kl (s)) in state swap
Mj

kl (s) is given by
µ{M1,...,Mk,Mj} − µ{M1,...,Mk}, we can follow the exact steps in the proof of Theorem 2 in [1] to obtain

µ̂Mj
(swap

Mj

kl (s))q
Mj

kl (s)
π(swap

Mj

kl (s))

π(s)

=
(

λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

× (1− βk,j)(βk,j)
l(βk+1,j)

nk+1+1 . . . (βj−1,j)
nj−1+1

where
βh,j =

µ{M1,...Mh}

µ{M1,...Mh,Mj}
, 1 ≤ h ≤ j − 1.

For the boundary states, we can show

µ̂Mj
(swap

Mj

00 (s))q
Mj

1,n1
(s)

π(swap
Mj

00 (s))

π(s)
=

(

λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

j−1
∏

h=1

(βh,j)
nh+1

and that for 1 ≤ j ≤ i, adding terms over k and l we would get

QMj
(s) = π(s)

(

λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

.

Summing over all j we have

π(s)λU({M1,...,Mi}) =

i
∑

j=1

QMj
(s)

which is same as Eq. (30). This completes the proof outline.

H: Proof of Proposition 7

From Section 3, recall that the steady state exists for any ρ < 1. Since the redundancy-d c.o.cmodel can be
viewed as a generalized multi-type job and server model with state space representation (ni, Oci , . . . , n1, Oc1),
we are in position to invoke Proposition 6 for this model. Therefore the steady state distribution in state
s = (ni, Oci , . . . , n1, Oc1) is given by

π(s) = αi
ni . . . α1

n1
Πλ({Oc1 , . . . , Oci})
Πµ(Oci , . . . , Oc1)

π(0) (32)

where

Πλ({Oc1 , . . . , Oci}) =

i
∏

j=1

λOcj
({Oc1 , . . . Ocj−1

}),

Πµ(Oci , . . . , Oc1) =
i
∏

j=1

µ{Oc1
,...Ocj

},

αj =
λU({Oc1

,...,Ocj
})

µ{Oc1
,...Ocj

}
.
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Now for the redundancy-d c.o.cmodel, we have λOcj
({Oc1 , . . . Ocj−1

}) = λcj = λtype. Further λU({Oc1
,...,Ocj

}) =
∑j

l=1 λcl = jλtype. Therefore we have,

Πλ({Oc1 , . . . , Oci}) =
i
∏

j=1

λtype,

αj =

(

jλtype

µ|Fj(s)|

)

.

After rearranging the terms and bit of algebra, the steady state distribution for state s = (ni, Oci , . . . , n1, Oc1)
is given by

π(s) =
π(0)

i!

i
∏

j=1

(

jλtype

µ|Fj(s)|

)nj+1

(33)
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