
The Effect of the Initial Window Size and Limited Transmit
Algorithm on the Transient Behavior of TCP Transfers

Urtzi Ayesta
France Telecom R&D

905 rue Albert Einstein
06921 Sophia Antipolis Cedex, France

e-mail: Urtzi.Ayesta@francetelecom.com

Konstantin E. Avrachenkov
INRIA Sophia Antipolis

2004 route des Lucioles, B.P.93
06902, Sophia Antipolis Cedex, France
e-mail: k.avrachenkov@sophia.inria.fr

Abstract

We study the impact of the modifications proposed for
TCP in the context of short file transfers. The two most
important proposals are the increment of the initial win-
dow size (IW) [3] and the Limited Transmit algorithm
(LT) [1]. We analyze analytically and by simulations the
effect of these proposals on the TCP latency. We demon-
strate that the LT proposal reduces the TCP latency sim-
ilarly to the IW proposal however LT is less aggressive
than IW. Nevertheless, in the context of short file trans-
fers we point out a scenario, when upon a single packet
loss the sender times out even if IW or LT are enabled.
This harmful scenario happens when the very last pack-
ets of the file transfer are lost. Therefore to avoid this
situation we propose a new modification which is based
on reducing the number of duplicate acknowledgements
TCP reacts to. In order to avoid the potentially harmful
effect of needless retransmissions on the network load we
suggest to implement the new modification only for short
file transfers.

Key words. TCP/IP, short file transfers, Initial Window,
Limited Transmit algorithm.

1 Introduction

It has been observed that TCP loss recovery mechanism
does not work properly when the congestion window of
the TCP sender is small. This can happen either in tran-
sient or steady-state behavior, as for example due to the
limit imposed by the receiver advertised window or be-
cause of the constraints imposed by a connection with a
small bandwidth-delay product link. In order to avoid this
harmful effect several suggestions have been proposed re-
cently. Probably the two most important ones are the in-
crease of the initial congestion window (IW proposal [3])
and the Limited Transmit algorithm (LT proposal [1]). In
both cases the aim is to decrease the probability of the
event that a TCP connection goes into timeout. A time-
out is very harmful for the TCP performance since based
on conservative approach its value is normally set to sev-
eral times greater than the average RTT (round-trip time)
[24], which implies a reduction of the average throughput

in the case of long-live TCP sessions and an increment of
the transfer time in the case of short-live TCP sessions.

So far the same TCP algorithm is used regardless the
size of the file to be transfered. However, it is known
(see, e.g. [15]) that a TCP session typically belongs to
one of the following two kinds: “mice” or “elephants”.
Most TCP sessions are “mice” with a small size, but a
smaller amount of “elephants” (in terms of flows) is re-
sponsible for the largest amount of transfered data (in
terms of bytes). Therefore, it seems to be natural to use
a little bit different TCP modifications for different types
of flows. In the present paper we would like to initiate
the research on this subject. Still we first want to concen-
trate our efforts on short-live TCP transfers. We evaluate
both analytically and by simulations the performance of
the IW and LT proposals. We point out two situations
when upon a single loss event the sender will inevitably
timeout even with the IW and LT proposals. We propose
further modifications in order to decrease the probability
of timeout events. We suggest to use these modifications
only for “mice” type TCP transfers.

The rest of the paper is organized as follows, Section 2
outlines a recursive approach for the calculation of the ex-
pected transfer time for short TCP session. The detailed
version of this approach can be found in [6]. Section 3
provides the performance analysis for IW and LT propos-
als. In section 4 the numerical results are presented and
further possible TCP modifications are discussed.

2 The expected latency of TCP
transfers

In this section we explain the model we use to calculate
the expected time of a TCP file transfer, for a complete ex-
planation we refer the reader to [6]. The expected latency�

is computed conditioning on the number of losses. The
input parameters for the model are the packet loss proba-
bility � , the average round trip time ����� , the document
size to be transfered �� , the initial window size �
	 , the
initial slow start threshold ���
� , the maximum receiver’s
advertised window � and the number of packets the re-
ceiver acknowledges by one ACK � (delAck option). The

fluid model [5] approach is used to represent the evolu-
tion of the congestion window. In particular, this means
that instead of a discrete number of packets, a continuous
volume of data (of course, with the same size) is trans-
fered over the network. It turns out that the fluid model
approach is more analytically tractable than the discrete
one. As in all related previous works [12, 20, 22] the
assumption that packets are lost independently with prob-
ability � is used. Thus the expected latency for a file size
of �� bytes is given by:

��� ���� � 	 � � �
�����
��
	�
 	 �

�
��� �� � � 	 � ���� � 	 � � � ��� � (1)

where
� 	 � ���� � 	 � �
�
��� is the conditional expected la-

tency given that exactly
�

losses happened during the file
transfer.

� 	 � ���� � 	 � �
�
���������� latency
� � � ����� � ���� � 	 � � �
� � loss no. � �����

In the case of no losses,
� 	 can be easily calculated from

the analysis of the TCP congestion window evolution. We
calculate

� 	 � ���� � 	 � � �
� � using the recursive approach
as outlined below.

First we calculate � ����� �� � which is the probability of
having

�
retransmission when �� bytes are transmitted [6].

� �
��� �� �������� "!$#%'&
)(�
��* �
+�� ��-, �
�/.10 � �32425�6� 	��7

The parameter
+

corresponds to the amount of data suc-
cessfully transmitted between two consecutive losses.
Given that packets are lost in an independent fashion the
number of packets successfully sent between two consec-
utive losses has a geometric distribution. To adapt this as-
sumption to the fluid model, the standard approximation
of the geometric distribution by an exponential distribu-
tion is used. Therefore the parameter

+
of the exponential

distribution can be determined from the following relation8
 ����� transmitted bytes
between two consecutive losses

� � (� �9 �
The model is based on the TCP NewReno and SACK

versions. Under this assumptions both flavors of TCP
would behave in similar way. Let us define as :�;
�=< the
number of duplicate ACKs the sender must receive in or-
der to infer a loss has occurred1 and start running fast
recovery and fast retransmission algorithms. It is impor-
tant to remark that :�;
� < does not depend on � , since the
receiver acknowledges every packet received out of order.
Hence upon a packet loss event the number of ACKs the
TCP sender will receive does not depend on � .

In general when a loss occurs, the congestion window
of the sender will continue sliding forward until the lost
packet gets to the left most position. If the value of the

1 >�?'@BA is commonly set to three.

Wf (y,W0,Wss)
y <yto

y −y+MSS,

W0

L0(y,W0, Wss) RT0

y−y+MSSy

L (0
,1/RTT,2/RTT)

Figure 1: Sending rate evolution when a packet is lost
before � <DC bytes are sent

congestion window is less than
0 , :�;
� < the TCP ses-

sion will timeout. Given the initial settings of a TCP
session we define the parameter � <DC as the amount of
bytes sent until this value is reached. Therefore the
value for � <DC is simply given by the amount of bytes
sent ��E up to the final sending rate � E reaches the value�60 , :�;
� < � �32F2�G ����� . However, if the initial window
size is greater or equal to

0 , :�;
� < the sender will not
timeout. Thus, we have

� <DC � � E �6�H0 , :I; � < � �32F2�G ����� � � 	 � � �
� �0BJ � 	LK �60 , :�;
� < � �32F2�G �����-M
There is yet another situation when the sender will in-
evitably timeout. Namely, if a loss occurs when the re-
maining amount of data is less than :�;
� < �32F2 , no matter
what the actual value of the sending rate is, the sender will
not receive three duplicate ACKs and will have to rely on
a timeout to detect the loss.

These two scenarios can be very harmful from the per-
formance point of view. The TCP retransmission time
���ON is based on measured round-trip times between
sender and receiver as specified in [24] and therefore to
avoid retransmissions of packets that are only delayed
and not lost the minimum � �PN is conservatively chosen
to be 1 second. For computational purposes we substi-
tute the value of the timeout � �PN with the expression
�RQ�S �H0�� T �6U�V �����W� as suggested in [14]. Anyhow at
some future point it might be suggested that a smaller
value minimum leads TCP to a better performance [24].

Let us analyze what can happen during the transmis-
sion of a file when a packet is lost. We consider three
scenarios depending the amount of bytes � sent before
the loss occurs, see (Figures 1, 2 and 3). In Figure 1 we
observe that when �YX � <DC bytes are sent, the total trans-
fer time will be equal to the sum of the time required to
send � bytes, the retransmission time ���ON and the time
required to send �� . �-, �32F2 bytes. In the second sce-
nario, Figure 2, the TCP sender will detect the loss event
upon the reception of three duplicate ACKs. In this case
the TCP sender will halve its sending rate � E and it will
transmit � E � � �ZG�[. �32F2 new bytes in addition to the
lost �32F2 . In the next round upon the reception of all

Wf (y,W0,Wss)

Wf /2−MSS/RTT

to
y <y<y−dup MSSt

W0

L0(y,W0, Wss) L (0 f f /2−MSS/RTT)y −y ,W /2 −MSS/ RTT, W

y −y
y

Figure 2: Sending rate evolution when a packet is lost
when � � � <DCLK � K �� . :�;
� < �32F25� bytes are sent

Wss

Wf (y,W0,Wss)

L (y,W ,W)0 0 ss

y−dup MSS<yt

W0

y

RTT

MSS

RT0

Figure 3: Sending rate evolution when a packet is lost
when � � �� . :�;
� < �3242 K � � bytes are sent

the ACKs it will transmit � E ������GB[new bytes. For the
sake of simplicity, in the fluid model we consider that the
remaining data is �� . � and the new sending rate is set to
� E GB[. �32F2�G � � � . This approximation on the remain-
ing data allows us to keep exact track of the evolution of
the sending rate. In this scenario the total transfer time
will be equal to the sum of the time required to send �
bytes with the initial parameters and the time required to
send �� . � after the loss event with the new TCP settings
(� 	 and � �
�). The third scenario, Figure 3, corresponds
to the situation when a loss occurs and the amount of data
remaining is less than :I; � < �3242 . In this case the trans-
fer time will be equal to the sum of the time required to
send � bytes, the retransmission time � �PN and the time
required to send the last packet (around one �����).

After a timeout, the value of �
	 and � �
� are changed
according to [2]. In particular, the value of � 	 , regardless
the value of the sending rate just before the timeout � E ,
must be set to no more than 1 packet and the new value
for the slow-start threshold is

� �
� ������� � � E G�[� [�32F2�G �����W� �
Next, let us define

� � ��� � � �� � as the density function of
the amount of data � that is sent before the first loss occurs
given that

�
loss events happened during the transmission

of �� data. This density is related to the uniform distri-

bution, namely, the distribution of the amount of bytes
sent before the first loss � is the minimum of

�
indepen-

dent uniformly distributed random variables [13]. Thus
the corresponding density function is given by

� � ��� � � �� ��� � � � � 	
#% �

� ��� �
��

 0Z. �

����
	
�
8

Putting together all above results and using the recursive
approach the expected conditional latency of a TCP file
transfer can be calculated by

� 	 � ���� � 	 � � �
�����
��
������ ! 	�� ����� ! %���� � #% ���� 9�� (�
��* *	 � � 	 � �=� � 	 � � �
��� ,, ���ON , � 	

�
8 � �� . �L, �32F2 � (�
�!#"$" �&%(') �+*� � ��� � � �� �
: � ,,
������ ! 	�� #% ���� 9 � (�
��*�,�-� ! 	�� ����� ! %.�/� � #% ���� 9�� (�
��* * � � 	 � ��� � 	 � � �
��� ,, � 	

�
8 � �� . ���0% ') . (�
�!#"#" �&% ') . (�
�!#"#" �1*� � ��� � � �� �
: �,
 #%�,�-� ! 	�� #% ���� 9 � (�
��* � � 	 � 8 � ��� � 	 � � �
� � , � �PN ,� 	

�
8 � �32F2 � (�
�!#"#" � %(') � * � � ��� � � �� ��: �

Now knowing the expected conditional latency� 	 � ���� � 	 � �
�
��� and the probabilities � ����� �� � one can cal-
culate the expected latency by formula (1).

The validation of this result and its comparison with
formulas derived in [12, 20] is given in [6]. One of the
distinct features of our approach is the fact that it is capa-
ble to model accurately and easily the situations when the
sender timeouts.

2.1 Modeling IW and LT modifications

Our model permits to study the impact of the initial win-
dow parameter in a straightforward manner since it is
one of the input parameters. Some adaptation is however
needed to model the limited transmit algorithm. This al-
gorithm is described in detail in [1]. The basic idea is to
make TCP react to two duplicate ACKs instead of three
duplicate ACKs in an attempt to avoid timeout events
without making TCP more aggressive. With LT algorithm
the TCP sender will send two new packets upon the ar-
rival of two duplicate ACKs and eventually it will receive
a third duplicate which will trigger off fast retransmission
and fast recovery phases. Let us define as :I;
�32 " 2 the
number of ACKs the sender running LT must receive in
order to send new data

It is important to note that this modification decreases
the value of � <DC 3 and hence the performance of TCP im-
proves. On the other hand LT does not help avoiding
timeouts due to the “no enough data” effect since upon
reception of two duplicate ACKs LT only transmits new

2The recommended value for > ?'@5476 is two in [1].
3Under the assumption there is enough data left, upon reception of> ?'@8476 duplicate ACKs the sender will end up receiving a third one and

therefore avoiding timing out.

data and it does not take the decision to retransmit any
packet till :I; � < packets are received.

Further, if the TCP sender’s congestion window does
not allow to receive two duplicate ACKs (� E K �H0 ,
:I;
� 2 " � �32F2�G �����) it will timeout upon a loss event,
if its congestion window allows it to receive two dupli-
cate ACKs (� E � �60 , :�;
� 2 " � �32F2�G �����) the lim-
ited transmit algorithm will take over and eventually the
sender will get into fast retransmission, and finally we
have the scenario when upon a loss event the sender
will receive three duplicate ACKs from the beginning
(� E�� �H0 , :I;
�#2 " � �32F2�G �����).

For the sake of simplicity in our model we consider two
different possibilities, where either the sender will time-
out or it will get into fast retransmission directly upon the
reception of :I;
� 2 " duplicate ACKs. For this purpose it is
enough to redefine the parameter � <DC and to use the model
described in Section 2. In the case the initial window is
less than three packets the value of � <DC is given by

� <DC � ��E �H�60 , :�;
�#2 " � �32F2�G ����� � � 	 � � �
���0�J � 	 K �H0 , :I; ��2 " � �32F2�G � � �WM

3 Performance Analysis and Pro-
posed TCP modifications

In the previous section we have introduced a model to
calculate the TCP latency and we have explained under
which circumstances a single lost packet will make the
TCP sender timeout. This model provides several inter-
esting and useful conclusions. For instance, calculating
with the theoretic model the expected conditional latency,
we have observed a very interesting phenomena – the non
monotonicity of the expected conditional latencies, see
Figure 4.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

file size (bytes)

la
te

nc
y

(s
ec

)

Theoretic latency k=0
Theoretic latency k=1
Simulated latency k=0
Simulated latency k=1

FileSize
min

Figure 4: Expected conditional transfer time obtained by
simulation and theoretic model for � 	 � [, � �
���
� ��� T , �3242 ��� TIT�� �	� �
 and �Z� [.

This behavior is due to the conservative value of the
retransmission timer, see Section 1. In fact, there ex-
ists a threshold of the file size �
��� � 2���� � ����� , such that
if the file size is less than this threshold a loss will in-
evitably lead to a timeout. The value of �
��� � 2���� � ����� is
given by the sum of � <DC and :I; � < �3242 (see Figure 5).
In the previous example, we observe in Figure 4 that
the maximum conditional latency given one packet is
lost corresponds to �
��� � 2���� � ����� . In this particular case
�
��� � 2���� � ����� ��� � � ��
 . This value corresponds to the
sum of � <DC/� [and :�;
� <O��� (see values of � <DC for pa-
rameters � 	O� [, � ��[and Slow-Start phase in Table 2).

 yto

FileSize min

tdup MSS

Figure 5: Graphic illustration of the value of
�
��� � 2���� � �����

Let us analyze how much and in which way the two
proposed modifications help narrowing these two inter-
vals. The value of � <DC , as explained in Section 2, is
equal to the sum of bytes sent when upon reception of
all ACKs due to previous packets the congestion win-
dow is smaller than

�H0 , :I;
� < � �32F2 . For example, let
us calculate its value in a particular case. Let � 	 � 0

,
� � � ��� T and � � [and let us consider the sender is
not running the LT algorithm. The evolution of the con-
gestion window (in bytes) at each round follows ������: �
�32F2 � [�32F2 � � �3242 � � �32F2 � � � and since the threshold
on the congestion window is given by

0 , :I; �=< � U �32F2
the value of � <DC is U �32F2 . To justify this result we have to
explain that the last segment who provokes the sender to
timeout corresponds to the first one of the congestion win-
dow of size � �32F2 . It is clear that if this segment is lost a
timeout will happen since the sender will only receive two
duplicate ACKs. If this segment is sent successfully and
the next one is lost, the sender will send two new packets
upon reception of the ACK corresponding to the success-
fully transmitted segment. The receiver will receive three
out of order packets and thus it will send back three dupli-
cate ACKs who will make the sender enter fast recovery
and avoid a timeout. Of course the analysis of delAck
is much more complicated in reality and there are many
phenomena that have not been taken into account in this
simple derivation.

In Tables 1 and 2 we present the values obtained for
� <DC for different initial windows and with/without LT al-
gorithm for the cases of �Z� 0 � [. For the sake of simplic-
ity we consider that the sender stays either in slow-start

Slow-Start Congestion Avoidance
No LT Alg. With LT Alg No LT Alg. With LT Alg

� 	O� 0
3 2 6 3

� 	 � [2 1 5 2
� 	O� � 1 0 3 1
� 	 � U 0 0 1 0

Table 1: Numerical results for � <DC in the case of � � 0
Slow-Start Congestion Avoidance

No LT Alg. With LT Alg No LT Alg. With LT Alg
� 	 � 0

4 2 11 5
� 	 � [3 1 10 4
� 	O� � 1 0 6 1
� 	 � U 0 0 1 0

Table 2: Numerical results for � <DC in the case of � ��[
phase4 or congestion avoidance phase5. In reality mixed
situations are possible but we believe these two situations
are enough to get an idea of the impact of the parameter.
From the values presented in Tables 1 and 2 it is clear that
the value of � <DC is not negligible. Considering typical val-
ues of � 	 ��[and � � 0 6 we see that �
��� � 2���� � ����� is U if
we use LT algorithm and � if we do not. If consider � � [
�
��� � 2���� � ����� is U and

�
respectively. From the user’s

point of view, if he wants to transmit a small file and the
session experiences no loss the time required to transmit
it will be considered as “instantaneous” (few ����� on av-
erage) and modifications of TCP such as increasing the
initial window do not provide a tremendous benefit. On
contrary if the session does experience a loss, it will time
out and the performance degrades notably. Thus we think
that in the context of short TCP transfers the modification
of :I; � < and :�;
� 2 " could be considered.

3.1 Proposed Modification

In actual TCP implementation the value of :I;
� < is set to
three so TCP will avoid spurious retransmissions. With
LT algorithm we improve the performance of TCP with-
out being more aggressive since no packet is retransmit-
ted till three duplicate ACKs are received. In the context
of short TCP file transfers the sender faces two differ-
ent harmful scenarios. The first scenario corresponds to
the situation when the size of the congestion window size
does not allow the sender to receive :�;
� < duplicate ACKs
(:I; � 2 " in the case of LT) and the second scenario when

4For example in the beginning of the transmission, or after timeouts
where initial window is set to 1 packet and the slow-start threshold is set
to the half of the current congestion size

5For example when upon a loss event the TCP sender enters into
fast-recovery or after certain timeouts when the initial window is set to
1 packets and the Slow-Start threshold to 2

6Some systems use an adaptive implementation for very short flows
than can be modeled well with b=1 [12].

any packet lost out of the last :�;
� < packets will make the
sender timeout.

In the case of short files the occurrence of a timeout
deteriorates severely the performance since the retrans-
mission timer is typically much greater than the aver-
age ����� . Therefore it is necessary to introduce some
changes to improve the transfer of short files. Thus we
propose to modify TCP for short file transfers as follows:

� In order the reduce the probability of timeouts be-
cause of small congestion window size we propose
to use the LT algorithm with parameter :�;
�32 " � 0

.
This implies that considering a initial value for the
window size of � 	 �R[or greater TCP will be able
always, regardless the value of � , to recover from a
single loss without having to rely on a timeout.

� If the sender receives a duplicate ACK correspond-
ing to one of the last :I;
��< packets, we propose that
TCP retransmits immediately the lost packet. With
this modification only the very last packet of the file
will provoke a timeout.

In order to allow retransmissions upon reception of a sin-
gle duplicate ACK it is mandatory to have a small proba-
bility of packet reordering in the network. Recent studies
[23] point out 2/3’s of the Internet paths had routes per-
sisting for either days or weeks.

4 Numerical Results

In this section we use the theoretic model to evaluate
the benefit obtained using the different proposals and we
validate the results with NS simulations. Let us con-
sider the simple topology a single link with capacity
� � 0 TIT � � �
 , propagation delay : � � T��
 and in-
dependent packet loss probability � � T � 0

. The value
for the parameters

�
and : are chosen in such a way so

we can model TCP behavior in terms of “rounds”, where
a round starts with the transmission of the first packet of
the congestion window and ends when the sender receives
the last acknowledgment. In order for this assumption to
hold, the Bandwidth-Delay product has to be greater than
the maximum window size. This assumption is the re-
sponsible of the stair case pattern for the simulated con-
ditional latency in the case of no losses since all the file
sizes that need the same number of “rounds” will require
the same amount of time to be transfered.

4.1 Increasing the IW

Increasing the initial window has several advantages [3],
as for example avoiding timeouts due to not enough
ACKs at the beginning of the transfer, elimination of up to
three �����
 , elimination of a delayed ACK timeout and
hence it reduces in general the transmission time. When
the � � is increased TCP becomes more aggressive and it
has been observed that under certain conditions TCP ses-
sions would have performed better starting with a small
initial window. In the context of short TCP transfers the
beneficial effect of increasing the initial window is clear
from the observation of Tables 1 and 2 and it is related to
the reduction of � <DC . However it does not have a beneficial
effect on reducing timeouts at the end of transmission.
Observing Tables 1 and 2 for � � 0 � [we see that the
similar benefit can be achieved using the LT algorithm,
which is less aggressive modification than IW.

4.2 Limited Transmit Algorithm

Let us study to what extent LT is beneficial. In Figures 6 7
we depict the conditional latency with and without LT al-
gorithm. We observe that the utilization of LT algorithm
does not solve completely the problem of timeouts and
the value of �
��� � 2���� � ����� is similar in both cases, � us-
ing LT in Figure 6 and U without LT in Figure 7.

Concerning short TCP transfers, the drawback of the
LT algorithm is the same as the one in the case of increas-
ing the initial window. It reduces the value of � <DC but it
produces no benefit in respecting the last :I; �=< packets.
However, as we will show later, LT algorithm will benefit
long-live TCP sessions reducing notably timeout proba-
bility.

4.3 Reduction of �������	� and ������

We have shown that the two proposed modifications does
not quite achieve their aim in the case of short TCP trans-
fers, since they reduce the value of � <DC but do not succeed
avoiding timeouts at the end of the transmission. Propos-
als which intend to improve the performance of TCP in
the case of small transfered files should consider both in-
tervals � <DC and :�;
� < �32F2 equally important. In Figure 8
we plot the results for conditional latency obtained in the
case when TCP sender adopts the modifications explained

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

file size (bytes)

la
te

nc
y

(s
ec

)

Theoretic latency k=0
Theoretic latency k=1
Theoretic latency k=2
Simulated latency k=0
Simulated latency k=1
Simulated latency k=2

Figure 6: Expected conditional transfer time obtained by
simulation and theoretic model for � 	 � [, � � � �
� � � T , �32F2 � � TIT�� � � �
 , � � 0

and without LT
algorithm.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

file size (bytes)

la
te

nc
y

(s
ec

)

Theoretic latency k=0
Theoretic latency k=1
Theoretic latency k=2
Simulated latency k=0
Simulated latency k=1
Simulated latency k=2

Figure 7: Expected conditional transfer time obtained by
simulation and theoretic model for � 	 � [, � � � �
� � � T , �3242 � � T�T � �	� �
 , � � 0

and running LT
algorithm.

in Section 3.1. As one can see the transfer time of a file
is significantly reduced in the case when the loss event
happens during the transfer.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

file size (bytes)

la
te

nc
y

(s
ec

)
Theoretic latency k=0
Theoretic latency k=1
Theoretic latency k=2
Simulated latency k=0
Simulated latency k=1
Simulated latency k=2

Figure 8: Expected conditional transfer time obtained by
simulation and theoretic model when TCP retransmits a
packet upon reception of one duplicate acknowledgment.
� 	 � [, � �
� � � � � T , �32F2 ��� TIT�� �	� �
 , � � 0

In Figures 9 we depict the expected transfer time for
TCP NewReno, LT algorithm and our proposal. For
our proposal we differentiate between sessions greater
and smaller than

0)TI�	� � � �
 . For sessions smaller than0)TI�	� �	� �
 we consider LT with parameter :I; � 2 " � 0
and in the case when one of the last :�;
� < packets is lost
the sender would retransmit immediately upon reception
of one duplicate ACK. For sessions greater than

0 T�� � �	� �
packets we use the standard LT algorithm. From Fig-
ure 9 one can conclude that LT reduces the latency sig-
nificantly, and furthermore, our proposal reduces further
the expected transfer time of short TCP transfers.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

file size (bytes)

la
te

nc
y

(s
ec

)

TCP NewReno
Proposed TCP modification
Limited Transmit Algorithm

Figure 9: Expected transfer time running different ver-
sions of TCP and � 	���[, � �
� � � � � T , �3242 �
� T�T � �	� �
 , �Z� 0

Finally we would like to note that our proposal brings
a dramatic improvement of the TCP latency given the file
transfer experiences a loss. For instance, one can see from
Figure 10 that, given the file size experiences a loss, the
LT proposal decreases the transfer time of a U �	� �	� �
 file
by

0 T��
and our proposal by U T�� .

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0

5

10

15

20

25

30

35

40

45

50

file size (bytes)

T
C

P
 la

te
nc

y
re

la
tiv

e
im

pr
ov

em
en

t (
%

)

Limited Transmit Algorithm
Proposed TCP modification

Figure 10: Relative reduction of the conditional TCP la-
tency using LT and our TCP modification for � 	 � [,
� � � � � � � T , �32F2 ��� T�T � �	� �
 , � � 0

5 Conclusion

In this paper we carry out the analysis of IW and LT pro-
posals which aim to improve the performance of TCP. We
demonstrate that the LT proposal brings similar benefits
as the IW proposal but it is less aggressive. Then we show
neither of these proposals completely achieve their goal
in the context of short TCP transfers. In particular, this
is because of the fact that they do not take into account
the losses at the end of the file transfers which lead in-
evitably to timeouts. This deficiency could be corrected
by reducing the number of duplicate acknowledgments
which allow the packet loss detection. In particular, this
modification reduces significantly the TCP latency given
the file transfer experiences a packet loss. Of course, our
proposal is a more aggressive modification than IW and
LT, since it might result in unnecessary packet retrans-
missions. However, if one uses this modification only for
the transfer of short files, it will not lead to a large addi-
tional network load. We recall that the total contribution
of the short-live TCP transfers to the Internet traffic is
small in terms of bytes [15]. For instance, in this work
we have considered as short, sessions which are smaller
than

0)TI�	� �	� �
 . The effect of this proposal on the overall
network performance is a subject for future research.

References

[1] M. Allman, H. Balakrishnan, S. Floyd, “RFC3042:
Enhancing TCP’s Loss Recovery Using Limited
Transmit”, January 2001.

[2] M. Allman, V. Paxon, W. Stevens, “RFC2581: TCP
Congestion Control”, April 1999.

[3] M. Allman, S. Floyd, C. Partridge, “Increasing
TCP’s Initial Window”, September 1998.

[4] E. Altman, K.E. Avrachenkov and C. Barakat, “Im-
pact of bursty losses on TCP performance”, Perfor-
mance Evaluation, v.42, no.2-3, pp.129-147, Octo-
ber 2000.

[5] E. Altman, K.E. Avrachenkov and C. Barakat, “A
stochastic model of TCP/IP with stationary random
losses”, ACM SIGCOMM 2000, Stockholm, Swe-
den, also in Computer Communication Review, v.30,
no.4, pp.231-242, 2000.

[6] U.Ayesta, K.E. Avrachenkov, E. Altman, C.
Barakat, P. Dube, “Modelling short TCP transfers”,
INRIA Technical Report.

[7] C. Barakat, P. Thiran, G. Iannaccone, C. Diot and P.
Owezarski, ”A flow-based model for Internet back-
bone traffic”, Technical Report EPFL/DSC/01/44,
Jul. 2001. Also a shorter version appears in ACM
SIGMETRICS 2002.

[8] J-C. Bolot, “End-to-end packet delay and loss be-
havior in the Internet”, Proc. ACM Sigcomm ’93, pp.
289-298, San Francisco, CA, Sept. 1993.

[9] O. J. Boxma, “Sojourn times in cyclic queues – the
influence of the slowest server”, Computer Perfor-
mance and Reliability, G. Iazeolla, P. J. Courtois and
O. J. Boxma (Editors), Elsevier Science Publishers
B.V. (North-Holland), pp. 13-24, 1988.

[10] T. Bu and D. Towsley, “Fixed point approximation
for TCP behaviour in an AQM network”, in Pro-
ceedings of SIGMETRICS’2001 conference.

[11] The web site of the Cooperative Associ-
ation for Internet Data Analysis (CAIDA):
http://www.caida.org/.

[12] N. Cardwell, S. Savage, and T. Anderson, “Model-
ing TCP latency”, IEEE INFOCOM, pp.1742-1751,
Tel Aviv, Israel, March 2000.

[13] E. Cinlar, “Introduction to stochastic processes”,
Prentice-Hall, 1975.

[14] S. Dawkins, G. Montenegro, M. Kojo, V. Magret,
N. Vaidya, “End-to-end Performance Implications
of Links with Errors”, August 2001.

[15] S. Ben Fredj, T. Bonald, A. Proutiere, G. Regnie,
J. Roberts, “Statistical Bandwidth Sharing: A Study
of Congestion at Flow Level”, SIGCOMM 2001.

[16] J. Heidemann, “Performance Interactions Between
P-HTTP and TCP Implementations” , ACM Com-
puter Communication Review, 27 2, 65-73, April,
1997.

[17] A.A.Kherani, A. Kumar, ”Performance Analysis of
TCP with Nonpersistent Sessions,” Workshop on
Modeling of Flow and Congestion Control, INRIA,
Ecole Normale Superieure, Paris, September 4-6,
2000.

[18] T.V. Lakshman and U. Madhow, “The performance
of TCP/IP for networks with high bandwidth-delay
products and random loss”, IEEE/ACM Transac-
tions on Networking, Jun 1997.

[19] M. Mathis, J. Semke, J. Mahdavi, and T. Ott,
“The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm”, ACM Computer Communi-
cation Review, Jul 1997.

[20] B. Sikdar, S. Kalyanaraman and K. S. Vastola, “An
Integrated Model for the Latency and Steady-State
Throughput of TCP Connections”, Performance
Evaluation, v.46, no.2-3, pp.139-154, September
2001.

[21] The web site of the National Laboratory
for Applied Network Research (NLANR):
http://www.nlanr.net/.

[22] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose,
“Modeling TCP throughput: A simple model and its
empirical validation”, ACM SIGCOMM, Sep 1998.

[23] V. Paxson, “End-to-End Routing Behavior in the
Internet”, IEEE/ACM Transactions on Networking
5(5) pp. 601-615.

[24] V.Paxson, M. Allman, “RFC2988: Computing
TCP’s Retransmission Timer”, November 2000.

[25] K. Poduri, K. Nichols, B. Networks, “Simulation
Studies of Increased Initial TCP Window Size”,
September 1998.

[26] S. Savari and E. Telatar, ”The Behavior of Certain
Stochastic Processes Arising in Window Protocols”,
IEEE GLOBECOM, Dec 1999.

