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Abstract

This paper considers networks operating under α-fair bandwidth sharing. When imposing
a peak rate (i.e., an upper bound on the users' transmission rates, which could be thought
of as access rates), the equilibrium point of the �uid limit is explicitly identi�ed, for both
the single-node network as well as the linear network. More speci�cally, a criterion is
derived that indicates, for each speci�c class, whether or not it is essentially transmitting
at peak rate. Knowing the equilibrium point of the �uid limit, the steady-state behavior
under a diffusion scaling is determined. This allows an explicit characterization of the
correlations between the number of �ows of the various classes.
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Over the past decade, bandwidth-sharing models have been proposed for describing the
�ow-level performance of elastic jobs competing for resources. The framework presented
by Massoulié and Roberts (2002) covers a broad range of interesting allocations � see also
the class of α-fair sharing policies introduced by Mo and Walrand (2000); by varying a single
parameter (i.e., α ∈ (0,∞)), one retrieves for instance max-min fairness and proportional fair-
ness as special cases. Interestingly, for single-hop scenarios these policies reduce to discrimi-
natory processor sharing (which is an important generalization of the traditional, egalitarian
processor sharing discipline). For multi-hop scenarios, the interaction between the �ows
(with different routes through the network, and the �ows along each route have their own
speci�c stochastic characteristics, such as the �ow arrival-rate and �ow-size distribution) is
intrinsically more complex.
It is not straightforward to evaluate the performance of networks operating under α-fair
bandwidth sharing. A �rst key result was obtained by Bonald and Massoulié (2001), who use
�uid-limit techniques [Dai (1996)] to show that these networks are stable under the (plausi-
ble) condition that, on each link, the load imposed is strictly smaller than the link capacity.
A limited number of results is available on the (joint) distribution of the number of �ows
present on each route; in this respect we mention the bounds found by Bonald and Prouti�ere
(2004), relying on the balanced-fairness concept [Bonald and Prouti�ere (2003)], as well as the
approximations of Kelly and Williams (2004) for the regime in which at least one resource
is critically loaded. The latter study considers the case of Poisson arrival of �ows and ex-
ponentially distributed �ow sizes (which are quite common assumptions in the literature on
α-fair networks), whereas the bounds of Bonald and Prouti�ere (2004) are insensitive (i.e, they
apply for any �ow-size distribution with the same mean). Partial results and approximations
for (mean) �ow-level delays have been reported for instance in Lieshout, Borst and Mandjes
(2006).
The framework of α-fair sharing policies is often used to describe �ow-level behavior in com-
munication networks, for instance those operating under TCP (take α = 2). The approach
assumes that there is a separation of timescales, in that the transmission rates adapt instantly
as soon as the network population changes. Packet-level effects are not taken into account,
but one could do so by relying on throughput models for TCP [Abendroth, van den Berg and
Mandjes (2006), Gibbens et al. (2000)].

As the critically loaded regime that was considered in Kelly and Williams (2004) is not always
realistic, one may wonder whether any analysis is possible when relaxing this assumption.
Under exponentiality assumptions, the network population follows a Markov chain, but an
explicit solution of its equilibrium distribution is not known. Therefore, a natural next step
is to �nd out whether analysis of some speci�c asymptotic regime is possible; one could
for instance study a so-called �uid scaling in which the arrival as well as service processes
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is sped up by a factor L (corresponding to multiplying the Poisson arrival rate as well as
the link capacities by L), where L is some large number. At �rst glance, however, this �uid
scaling does not look very promising for analyzing α-fair networks, as can be illustrated by
the easiest example possible: a single node used by a single route. Then the model reduces
to a M/M/1 queue operating under processor sharing (PS); the �ow arrival rate is Lλ, the
�ows have sizes that are i.i.d. samples from an exponential distribution with mean µ−1, and
the link has capacity LC (where we assume that % := λ/µ < C). The number of �ows present
is a Markov chain, with rate Lλ upwards and rate LµC downwards. Popularly speaking,
the equilibrium of the �uid limit corresponds to the state of the Markov chain in which the
upward rate and the downward rate match, which obviously does not happen for this model:
for any state there is a net drift downwards. (To compare, consider also the M/M/∞ queue
under the same scaling. Then the rate upwards is Lλ, and the rate downwards, from state
n, is Lnµ. This yields the equilibrium point n? = λ/µ, as could be expected from the well-
known fact that the number of �ows present has, in equilibrium, a Poisson distribution with
mean Lλ/µ. In other words: in the case of the M/M/∞ system the �uid limit approach gives
more meaningful information than for M/M/1-PS).

There is, however, an interesting remedy to the shortcomings of the �uid-limit approach.
The fact that in the above example (of a single M/M/1-PS queue) no equilibrium point of
the �uid limit exists is a direct consequence of the unlimited service rate that each user can
potentially claim; when there is just one �ow present in the system, it is served at the full rate
LC. Suppose, however, that the transmission rate of a single user is restricted to some rate r

(which could be thought of as an access rate), the equilibrium of the �uid limit follows from
the equation Lλ = µ min{LC, Lrn}, which has solution n? = λ/(rµ). Informally, this means
that the average number of �ows present is about Ln?. We observe that imposing a maxi-
mum access rate (a `peak rate') has the effect that the the equilibrium point of the �uid limit
becomes well-de�ned. It is noted that, from a more practical point of view, the assumption
of �nite access rates is very natural; in fact, the possibility of a single user claiming the entire
link capacity was a less realistic feature of standard α-fair networks.
One of the main contributions of the present paper is the characterization of the equilibrium
point for the �uid limit, for the situation in which all the routes are imposed a peak rate. For
the case of a single node, we prove the existence and uniqueness of the equilibrium point and
we explicitly characterize it. For the important class of linear networks, we prove existence
of the equilibrium point. In the above example, with a single node used by a single route, the
equilibrium point of the �uid limit does not depend on the link capacity C. When considering
a scenario with multiple routes, however, our results indicate that for some routes the link
capacity does not play a role (the `peak-rate constrained routes'), while for others it does.
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Having identi�ed the equilibrium point of the �uid limit, a next step is to analyze the devia-
tions around it. The general procedure is to consider the so-called diffusion scaling: consider
the sped-up Markov chain, subtract L times the equilibrium point of the �uid limit, and di-
vide by

√
L. One expects from central-limit type of arguments that the resulting process has

a stationary distribution that converges to a multivariate Normal distribution (with mean
0, and a certain covariance matrix) when L grows large. A second signi�cant contribution
of our paper is that, for the models mentioned above (single node and linear network), we
explicitly calculate the corresponding covariance matrix.
Knowledge of the covariance matrix provides the answer to several intriguing questions.
Consider for instance a linear network with two nodes shared by three routes: route 0 goes
through both, while route i uses just resources at node i, i = 1, 2. Suppose we observe that
many �ows are present on route 1, and we wonder what this says about the number of �ows
on route 2. One possible line of reasoning is: the fact that there are many �ows on route 1 is
a consequence of an unusually large number of route-0 �ows, and therefore the number of
route-2 �ows will be large as well. One could also argue, however, that the fact that there are
many route-1 �ows implies that the route-0 �ows obtain less resources than usual at node
1, and consequently also at node 2, which is bene�cial for route 2 and leads to a relatively
low number of route-2 �ows. The results of this paper show which of these two effects is
dominant.
Fluid limits and the diffusion scaling have been used extensively before, also in the context
of the performance analysis of communication networks; we mention, for example, studies
on the interaction between elastic and streaming traf�c [Bonald and Massoulié (2001), Kelly
and Williams (2004), Kumar and Massoulié (2005)] and also (measurement-based) admission
control schemes [Key and Massoulié (2003)].

The rest of the paper is organized as follows. In Section 1 we present the general method-
ology for the single-link case with different access rates. More speci�cally, we identify the
equilibrium point of the �uid limit, and determine the covariance matrix corresponding to
the diffusion scaling. We also derive an explicit criterion that reveals which routes are peak-
rate constrained and which are not. In Section 2 we answer the same set of questions for
a linear network. We also shed light on the question raised above on the correlations in a
two-node network shared by three routes. Section 3 concludes the paper.

1 Single node
In this section we consider a single network resource of capacity C shared by M routes; as we
are focusing on a single node, the word `route' is perhaps somewhat unnatural, and therefore
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we will use `class' instead. We �rst introduce the model without peak rates, which turns
out to be equivalent to discriminatory processor sharing, and then impose the access rate
limitations.
Let Ni(t) be the number of class-i jobs present at time t, for t ≥ 0 and i = 1, . . . , M . Flows of
class i arrive according to a Poisson process with rate λi, i = 1, . . . , M . The transfer sizes are
exponentially distributed with mean µ−1

i , i = 1, . . . , M . The α-fair allocation at time t follows
from, for α ∈ (0,∞) and weights ḡ1, . . . , ḡM > 0,

max
~y

M∑

i=1

Ni(t)ḡi
y1−α

i

1− α
, under

M∑

i=1

Ni(t)yi ≤ C; (1)

here yi is the amount of bandwidth allocated to a single �ow of class i (for α = 1 we optimize∑M
i=1 Ni(t)ḡi log yi). The solution of the optimization problem is the allocation

yi =
ḡ
1/α
i C

∑M
j=1 ḡ

1/α
j Nj(t)

.

We observe that we can equivalent say that the resource is shared according to a vector of
weights gi > 0, i = 1, . . . , M in a discriminatory-processor-sharing fashion [Kleinrock (1967),
Fayolle, Mitrani and Iasnogorodski (1980)], with gi = ḡ

1/α
i . In other words, the total capacity

attributed to a class-i transfer is

Ci(t) =
giC∑M

j=1 gjNj(t)
,

at time t; without loss of generality we assume ∑M
j=1 gj = 1. Hence, such a discriminatory-

processor-sharing model could correspond to the interaction of �ows of several classes in
one router of a network. It is noted that this model could for instance be used to examine
the impact of heterogeneous round-trip-times on bandwidth sharing [Altman, Jimenez and
Kofman (2004)]: in TCP the classes with lower round-trip-times obtain a higher share of the
bandwidth, which could be modelled by granting them a higher weight.
As argued in the introduction, the above rate-allocation mechanism has some �aws, at least
from a practical perspective: in principle any source can grab the entire bandwidth C, while in
practice access rates impose an upper bound on the rate allocated to a single �ow. Therefore,
we suppose that in addition the rate of each class-i job is constrained by an access-link rate
limitation ri = 1, . . . , M . As a consequence, the effective rate of a class-i transfer becomes

Ci(t) = min

{
giC∑M

j=1 gjNj(t)
, ri

}
, (2)

i = 1, . . . , M .
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Let %i := λ/(µiC) denote the load imposed by class i. We assume that the total load is smaller
than the resource capacity, i.e., ∑M

i=1 %i < 1. The process

~N ≡ ( ~N(t))t≥0 = (N1(t), . . . , NM (t))t≥0

is a continuous-time Markov chain with state space NM , equipped with transition rates
{

( ~N(t)) → ( ~N(t) + ~ei) : λi,

( ~N(t)) → ( ~N(t)− ~ei) : µiNi(t)Ci(t), if Ni(t) ≥ 1,

where ~ei denotes the unit vector with 1 in component i, and 0 otherwise, i = 1, . . . ,M .

Remark 1.1 It is noted that ∑M
i=1 %i < 1 implies that the continuous-time Markov chain

( ~N(t))t≥0 is ergodic. This can be shown by using the result that states that if the transition
probabilities of an ergodic Markov chain are modi�ed on a �nite subset, then the resulting
Markov chain remains ergodic; this `folk theorem' was rigorously proved by Leskelä (2004)
(in his Lemma 3), but see also Meyn and Tweedie (1993). Note that

giNi(t)∑M
j=1 gjNj(t)

≤ 1,

i = 1, . . . , M , thus from (2) it follows that if ni > C/ri, class-i will not be peak-rate limited;
conclude that the transition rates differ from the DPS rates only on a �nite set of states. Since
the single-server DPS system is stable if ∑M

i=1 %i < 1, it follows that the peak-rate limited
system will be stable as well under the same condition on the loads.
Similarly, for any peak-rate limited variant of an α-fair network it can be shown that there is
stability as long as per node the load imposed is smaller than the available link capacity. For
the system without peak-rate limitation this was proved by Bonald and Massoulié (2001),
and given the fact that peak-rate limitation corresponds to the modi�cation of the rates on
a �nite subset of the state space, the result in Leskelä (2006) entails stability of the peak-rate
constrained system. In particular, the linear network discussed in Section 3 is stable under
the `usual' condition.

Remark 1.2 The peak-rate restriction can be imposed in several ways. Above we �rst com-
puted the optimal allocation (in that the objective function in (1) was maximized), and then
truncated the resulting rates at the access rates ri. An alternative, for instance, is to determine
the rates by solving

max
~y

M∑

i=1

Ni(t)ḡi
y1−α

i

1− α
, under

M∑

i=1

Ni(t)yi ≤ C, yi ∈ [0, ri], i = 1, . . . , M. (3)

We note that the allocation (3) will waste resources only if ∑M
i=1 Ni(t)ri ≤ C, whereas alloca-

tion (1) may waste resources even when ∑M
i=1 Ni(t)ri > C. Therefore, allocation (3) is Pareto
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ef�cient, while (1) is not. In this paper we chose to use (1) rather than (3); it is not in the scope
of the paper to verify which of these alternatives is closest to reality. For instance, is not clear
whether algorithms such as TCP work in a Pareto-ef�cient manner. Below we will see that
the system under criterion (1) allows fairly explicit analysis; this turns out to be considerably
harder under (3).

1.1 Fluid scaling
When considering the �uid scaling process, one essentially speeds up time. In our case it
means that the arrivals of �ows occur more frequently, but at the same time the link rate be-
comes faster, thus maintaining the same load. More concretely, we replace the arrival rates λi

by Lλi, and the service rate is sped up in the same way, i.e., C is replaced by LC. Calling the re-
sulting Markov chain ( ~N (L)(t))t≥0, we assume that the normalized process (L−1 · ~N (L)(t))t≥0

converges to a deterministic limit, characterized by the differential equations, i = 1, . . . , M ,

n′i(t) = λi − φi(~n(t)), where φi(~n) := µi min

{
giniC∑M
j=1 gjnj

, rini

}
; (4)

see Hunt and Kurtz (1991) and Kumar and Massoulié (2005) for further background. There-
fore, the `equilibrium point', i.e., the vector ~n? that solves λi = φi(~n) for all i = 1, . . . ,M ,
is the long-run limit (with probability 1). Our �rst goal is to prove that there is one such a
vector.
As mentioned above, the equilibrium point of the �uid limit solves λi = φi(~n), for i =
1, . . . , M . First observe that this system of equations is equivalent to, for i = 1, . . . , M ,

ni = max





%i

gi

M∑

j=1

gjnj ,
λi

riµi



 . (5)

De�ne γk := gk/rk, k = 1, . . . , M . Without loss of generality, we relabel the classes in a
nondecreasing way with respect to γk, that is, γ1 ≥ γ2 ≥ . . . ≥ γM .
We call a class i peak-rate constrained if the vector ~n? is such that

giC∑M
j=1 gjn?

j

> ri.

Let S denote the subset of classes that are peak-rate constrained and let SC denote the other
classes. In Proposition 1.3 we show that there is a unique solution to the system of equa-
tions (5), and, interestingly, that the classes with the highest γi are the candidates for being
peak-rate constrained.
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Proposition 1.3 There exists a unique s ∈ {1, . . . ,M} such that S = {1, . . . , s}. The solution to
the system of equations (5) is unique and is given by ~n? = (n?

1, n
?
2, . . . , n

?
M ), where for i ∈ S ,

n?
i ≡ n?

i (s) = λi/(riµi),

and for i ∈ SC,

n?
i ≡ n?

i (s) =
%i

gi

(
1

1−∑M
j=s+1 %j

) 


s∑

j=1

gjλj

rjµj


 . (6)

Proof We prove the result in three steps.
Step 1. We �rst show that if there is a solution to (5), then S is non-empty. Suppose that this
would not hold, i.e., for all i = 1, . . . , M ,

gin
?
i∑

j gjn?
j

=
λi

µiC = %i.

Summing the left-most terms over i = 1, . . . , M , we obviously obtain 1, whereas the right-
most terms sum to a value strictly smaller than 1 (which is due to the stability constraint∑

i %i < 1). We thus obtain a contradiction. we conclude that at least one class is peak-rate
constrained.
Step 2. Suppose for the moment that S is of the form {1, . . . , s}, for some s ∈ {1, . . . , M}.
Then, for any i ∈ S it is easy to see that n?

i (s) = λi/(riµi). For i ∈ SC, we have that gin
?
i =

%i

∑M
j=1 gjn

?
j . Now summing over all i ∈ SC yields

M∑

i=s+1

gin
?
i =

M∑

i=s+1

%i




M∑

j=1

gjn
?
j


 =

M∑

i=s+1

%i




M∑

j=s+1

gjn
?
j +

s∑

j=1

gjλj

rjµj


 .

This immediately implies that

M∑

i=s+1

gin
?
i =

( ∑M
j=s+1 %j

1−∑M
j=s+1 %j

)


s∑

j=1

gjλj

rjµj


 .

Then equation (6) follows from n?
i = (%i/gi)

∑M
j=1 gjn

?
j , for all i ∈ SC.

Step 3. Now it remains to prove that S is indeed of the form {1, . . . , s} for a unique s ∈
{1, . . . , M}. We do this by showing that there is unique s for which, for all i ∈ {1, . . . , s} and
j ∈ {s + 1, . . . ,M},

γi >

∑M
k=1 gkn?

k(s)
C > γj ; (7)
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if s = M , then evidently only the �rst inequality needs to be met. Using equation (6), we
have that

∑M
j=1 gjn

?
j (s)

C =

∑s
j=1 %jγj

1−∑M
j=s+1 %j

. (8)

Because the γi are non-increasing in i, and in view of identity (8), requirement (7) is equivalent
to proving that there is a unique s ∈ {1, . . . , M} such that

γs

(i)
>

∑s
j=1 %jγj

1−∑M
j=s+1 %j

(ii)
> γs+1;

again, if s = M , then only inequality (i) needs to be met. Inequality (i) can be rewritten as

γs


1−

M∑

j=s

%j


 >

s−1∑

j=1

%jγj ,

whereas inequality (ii) obviously reads

γs+1


1−

M∑

j=s+1

%j


 <

s∑

j=1

%jγj .

In other words, if we denote, for given s, condition (i) by C(s) (so C(s) ∈ {TRUE, FALSE}),
then condition (ii) corresponds to ¬C(s + 1). In other words: we have to prove that there is a
unique s such that both C(s) and ¬C(s + 1).
To this end, �rst observe that C(1) reduces to the condition γ1%1 < γ1(1 −

∑M
j=2 %j), which

is true due to the stability condition. This means that C(1) holds, but this could be expected
as we already proved that S is non-empty. Now we show that ¬C(s) implies ¬C(s + 1). If
¬C(s), then, by de�nition, γs(1−

∑M
j=s %j) <

∑s−1
j=1 %jγj . This implies that

γs


1−

M∑

j=s

%j


 + %sγs <

s∑

j=1

%jγj .

Now ¬C(s + 1) follows immediately from γs+1 ≤ γs.

The above arguments imply that there cannot be more than just one s for which C(s) and
¬C(s + 1), which concludes the proof of the uniqueness. 2

Interestingly, the above result entails that the order in which classes are candidate for becom-
ing peak-rate constrained is exclusively determined by the γi, i.e., the ratio of the weight and
access rate. In other words: we �nd the (at �rst glance perhaps somewhat surprising) result
that neither the arrival rates nor the mean �ow-size plays a role here.

9



We now prove that the process returns to ~n? when it is suf�ciently close to the equilibrium
point. We rely on the concept of the `linearized system'. The idea is that we linearize the
system n′i(t) = λi − φi(~n(t)) around ~n?, and argue that the process returns to ~n? after small
perturbations. We introduce the M -dimensional function ~m(t) = ~n(t)− ~n?, and determine a
matrix P ≡ (pij)M

i,j=1 such that

~m′(t) = −P ~m(t). (9)

By linearizing ~n(t) we obtain

m′
i(t) = −

M∑

j=1

mj(t)pij = −
M∑

j=1

mj(t)
∂φi(~n)
∂nj

∣∣∣∣∣∣
~n:=~n?

.

(Throughout we assume, for i = 1, . . . , M , that giC/
∑

j gjn
?
j 6= ri, so that this derivative is

well-de�ned.) We have that for i ∈ S ,

∂φi

∂ni
= riµi ;

∂φi

∂nj
= 0 for j 6= i. (10)

Similarly, for i ∈ SC we get

∂φi

∂ni
=

(
gi∑

j gjnj
− g2

i ni

(
∑

j gjnj)2

)
µiC ,

and
∂φi

∂nj
= − gigjni

(
∑

j gjnj)2
µiC for j 6= i.

Using that, for i ∈ SC, it holds that that %i

∑M
j=1 gjn

?
j = gin

?
i , we obtain i ∈ SC

∂φi

∂ni

∣∣∣∣
~n:=~n?

=
λi(1− %i)

n?
i

;
∂φi

∂nj

∣∣∣∣
~n:=~n?

= −gj

gi

λi%i

n?
i

. (11)

Notice that the diagonal elements of P are positive. In the next proposition we show that
all the eigenvalues of the matrix P are positive (or, more precisely, have a positive real part),
which in particular implies the stability of the linearized system (9) [Khalil, (2001)]. As a
consequence of this stability, the dynamics of the linearized system will converge towards
0, and thus ~n(t) will converge towards the unique solution ~n? identi�ed in Proposition 1.3.
We note that it generally does not imply stability of the original system, but that we already
established in another way in Remark 2.1.

Proposition 1.4 All eigenvalues of P have a positive real part.

10



Proof Recall that S is of the form {1, . . . , s} and that SC = {s + 1, . . . , M}. First observe that
riµi are eigenvalues (real and positive) for i = 1, . . . , s. From the structure of P it immediately
follows that the other eigenvalues are the eigenvalues of P (N) = (p(N)

ij )N
i,j=1, where N :=

M − s, with

p
(N)
ij :=

{
λi(1− %i)/n?

i for i = j;
−(gj/gi)λi%i/n?

i for i 6= j.

Consider the eigenvalues of this matrix. They solve

θxi = −
∑

j 6=i

gj

gi

λi%i

n?
i

xj +
λi(1− %i)

n?
i

xi

= −
N∑

j=1

gj

gi

λi%i

n?
i

xj +
λi

n?
i

xi,

where ~x is the eigenvector corresponding to eigenvalue θ. Now multiply with gi. Then it
follows that θ is also eigenvalue of P̄ (N) = (p̄(N)

ij )N
i,j=1, where

p̄
(N)
ij :=

{
λi(1− %i)/n?

i for i = j;
−λi%i/n?

i for i 6= j.

with eigenvector ~y satisfying gjxj = yj . Hence we have to verify that all eigenvalues of P̄ (N)

have a positive real part.
The matrix P̄ (N) equals DQ, where

Q :=




1− %1 −%1 . . . −%1

−%2 1− %2 . . . −%2

...
...

...
−%N −%N . . . 1− %N




,

and

D := diag
{

λ1

n?
1

, . . . ,
λN

n?
N

}
.

Now note that det(DQ − θI) = det(D) det(Q − θD−1) = det(QD − θI). Thus it follows that
we have to check whether the real part of the eigenvalues of QD, or, equivalently, (QD)T,
is positive. The latter matrix is (strictly) diagonally dominant due to the stability condition.
As a consequence of Ger�sgorin's circle theorem [p.344, Horn and Johnson (1985)], it has only
eigenvalues with a positive real part; more precisely, each eigenvalue of (QD)T (and hence
also of QD) is in at least one of the N disks



z ∈ C :

∣∣∣∣z −
λi(1− %i)

n?
i

∣∣∣∣ <
λi

n?
i

∑

j 6=i

%j



 ,
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and hence all eigenvalues are in the right half plane. This proves the stated. 2

Example 1.5 We consider a single server with two classes. For class 1 we choose λ1 = 0.75,
µ1 = 2, g1 = 2, and r1 = 0.1, while for class 2 we have λ2 = 1.5, µ2 = 4, g2 = 1 and r2 = 0.8.
Note that γ1 = 20 and γ2 = 1.25. Furthermore, observe that C should be at least 0.75 to ensure
stability.
We saw that in the equilibrium point of the �uid limit always at least one class is peak-
rate constrained, and this is the class i with the highest γi; in this case class 1 is apparently
peak-rate constrained, and n?

1 = λ1/(r1µ1) = 15
4 = 3.75, irrespective of C. The value of n?

2,
however, does depend on C. It can be calculated (for instance by equating, for i = 2, the two
terms between the brackets in (4), with n?

1 = 3.75) that for C < 51
8 = 6.375, we have that class

2 is not peak-rate constrained, and

n?
2(C) =

45
16C − 6

;

for C > 6.375 both classes are peak-rate constrained, and n?
2 = λ2/(r2µ2) = 3

8 = 0.375.

1.2 Diffusion scaling
In this subsection we develop the diffusion approximation for the steady-state distribution
of the normalized process (L−1 · ~N (L)(t))t≥0 around the equilibrium point of the �uid limits
~n?. Interestingly, the diffusion scaling allows us to determine the correlations between the
number of �ows present of different classes.

To motivate our diffusion approach, we �rst return to the example mentioned in the intro-
duction: a one-dimensional birth death process with birth rate Lλ and death rate (when the
network occupancy is k) min{LC, rk}; assume for ease that k? := L · C/r ∈ N. It is easily
veri�ed that the probability distribution of the steady-state the number of jobs in the system,
say N (L), is

P(N (L) = k) =: πk =
(

λL

µr

)k 1
k!
· π0

for 0 ≤ k ≤ k?, and

πk =
(

λ

µC
)k 1

(k?)!

(CL
r

)k?

· π0

for k > k?, where π0 is obtained through normalization. We mentioned in the introduction
that most of the probability mass is around L · λ/(rµ). This can be made precise, in the sense
that it can be veri�ed that EN (L)/L → λ/(rµ) as L → ∞; notice that under % < C we have
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that the equilibrium point is smaller than k?. Similarly, through direct arguments it can be
seen that

Y (L) :=
1√
L

(N (L) − L · λ/(rµ))

converges to a Normally distributed random variable Y with mean 0 and variance λ/(rµ)
as L → ∞. The important conclusion here is that, in this scaling, the distribution of Y is
essentially determined by the system dynamics around the `equilibrium point' λ/(rµ). Also,
the larger L, the less frequent the process will attain values larger than k?.

Let us now return to our model, and see how to translate the above properties for the one-
dimensional case into our multi-dimensional setting. We �rst introduce the perturbation
process

~Y (L)(t) :=
1√
L

( ~N (L)(t)− L · ~n(t)),

where ~n(t) is the solution of (4). We are particularly interested in the steady-state version
(t →∞).
Based on the above considerations for the one-dimensional case, we expect this process to
have a diffusion limit as L →∞. With the matrix P as de�ned above, as L →∞, this limiting
process, say ~Y (t), approximately satis�es the following stochastic differential equation:

d~Y (t) = −P ~Y (t)dt + d ~W (t),

where ~W (t) = A~B(t), with ~B(t) being an M -dimensional vector of independent standard
Brownian motions, and A a diagonal matrix with, for i = 1, . . . ,M ,

Aii :=
√

λi + φi(~n?) =
√

2λi;

cf. for instance [Section II.C, Key and Massoulié (2003)] and Kelly, Maulloo and Tan (1998).This
is an M -dimensional Ornstein-Uhlenbeck process; we note that the process ~Y (t) is a Gauss-
Markov process [Section 5.6, Karatzas and Shreve (1991)] and obeys the alternative represen-
tation ~Y (t) = − ∫ t

−∞ e−P (t−s)Ad ~B(s).
Let us consider the steady-state version of ~Y (t), i.e., ~Y := limt→∞ ~Y (t). The covariance matrix
is then given by [Equation (6.19), Karatzas and Shreve (1991)]

E(~Y ~Y T) = Σ :=
∫ ∞

0

e−PtAATe−PTtdt;

where AAT = 2diag{~λ}.
We now compute the matrix Σ for M = 2; for higher dimensions the formulas are less clean.
First, recall that S = ∅ does not occur. On the other hand, the case S = {1, 2} is trivial: Σ =
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diag{λ1/(r1µ1), λ2/(r2µ2)}. We therefore concentrate on the more challenging case S = {1}.
Hence, from Proposition 1.3 we have that n?

1 = λ1/(r1µ1), and n?
2 = λ1/(r1µ1) · (ρ2/(1− ρ2)) ·

(g1/g2). Then applying equations (10) and (11) the P -matrix reads

P =

(
p11 0
p21 p22

)
, with

p11 := r1µ1, p21 := −(1− %2) · r1µ1

λ1
· λ2, p22 := (1− %2)2

r1µ1

λ1
· µ2C · g2

g1
.

where obviously p11 and p22 are positive, and p21 is negative. Straightforward algebra yields

P k =

(
pk
11 0∑k−1

i=0 pi
11p21p

k−i−1
22 pk

22

)
,

for k ≥ 1. Thus, we have that (e−Pt)11 = e−p11t, (e−Pt)22 = e−p22t, and

(e−Pt)21 =
∞∑

k=1

k−1∑

i=0

pi
11p21p

k−i−1
22

(−t)k

k!
=

p21

p22 − p11

(
e−p22t − e−p11t

)
.

We note that the matrix e−Pt could also be calculated by the eigendecomposition of the matrix
P ; see for example [Equation (A.19), Asmussen (2000)]. We note that e−PTt = (e−Pt)T and
that AAT = diag {2λ1, 2λ2} . Let Σ̄(t) denote the symmetric matrix Σ̄(t) := e−PtAATe−PTt:

Σ̄11(t) = 2λ1e
−2p11t, Σ̄12(t) = 2λ1

p21

p22 − p11

(
e−p22t−p11t − e−2p11t

)
,

Σ̄22(t) = 2λ1

(
p21

p22 − p11

)2 (
e−p11t − 2e−p22t−p11t + e−2p22t

)
+ 2λ2e

−2p22t.

After integrating Σ̄(t) over t (componentwise), we eventually obtain:

Σ11 =
λ1

p11
=

λ1

r1µ1
, Σ21 = Σ12 = − λ1p21

p11(p11 + p22)
, Σ22 =

λ1p
2
21

p11p22(p11 + p22)
+

λ2

p22
. (12)

Observe that Σ12 > 0, as expected; we conclude that there is a positive correlation between
the numbers of �ows of class 1 and 2. It can be expected that for higher dimensions the
correlation between two arbitrary classes will be positive as well.

Example 1.6 Return to the parameters of Example 1.5. We here specialize to C = 21/16 =
1.3125, and consider the `L-sped up model' (i.e., arrival rate and service rate multiplied by
L). Then n?

2 = 3, whereas n?
1 equals, as before, 3.75. Recall that ~Y := limt→∞ ~Y (t), with

~Y (t) :=
1√
L

( ~N (L)(t)− L · ~n?),

converges to a zero-mean bivariate Normal random variable, with covariance matrix given
by (12). Informally, one could say that ~N (L) := limt→∞ ~N (L)(t) is approximately distributed
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as a bivariate Normal random variable with mean L · ~n? and covariance matrix L · Σ. It can
be veri�ed that in this case

P =

(
1
5 0
− 2

7
5
14

)
; Σ =

(
15
4

25
13

25
13

2011
455

)
≈

(
3.75 1.92
1.92 4.42

)
.

As we have remarked in Example 1.5, in the �uid-limit regime class 1 is peak-rate con-
strained, and class 2 is not. Suppose that at some point in time there are ni �ows of type
i present (i = 1, 2), then �ows of type i are transmitting at peak rate if g1n1 + g2n2 < γiLC. It
could be expected that most of the time the process is in a regime in which class 1 is peak-rate
constrained, and class 2 is not, as

g1n1 + g2n2 < γ1LC and g1n1 + g2n2 > γ2LC.

To verify this, suppose the diffusion approximation is accurate. Observe that this implies that
Var(g1N

(L)
1 +g2N

(L)
2 ) = L·(g2

1Σ11+2g1g2Σ12+g2
2Σ22). The fraction of time that both classes are

transmitting at peak rate is roughly, with N (µ, σ2) denoting a Normally distributed random
variable with mean µ and variance σ2,

P
(
g1N

(L)
1 + g2N

(L)
2 < γ2LC

)
≈ P

(
N

(
21
2
· L,

10586
455

· L
)

<
105
64

· L
)

≈ P (N (10.5 · L, 23.3 · L) < 1.64 · L) .

It is easily veri�ed that this probability equals, with Φ(·) denoting the standard Normal cu-
mulative distribution function, Φ(−1.84 · √L). For instance, if we choose L = 10, then
this gives a probability in the order of 4 · 10−9. Conversely, one can estimate the fraction
of time that both classes are transmitting at a rate higher than their access rate by computing
P(g1N

(L)
1 + g2N

(L)
2 > γ1LC), which approximately equals 1 − Φ(3.27 · √L), which is also

extremely small already for moderate values of L. Hence we can safely conclude that the
process is, virtually all the time, in a regime in which class 1 transmits at peak rate, while
class 2 is transmitting at a rate higher than its peak rate.

2 Linear network
In this section we consider so-called linear networks. These consist of multiple nodes, say
M , which we assume to have equal capacity C. There are M + 1 classes sharing these nodes.
There is one `common class': class 0 goes through all nodes and gets served simultaneously
at all of them (at the same rate). Then there are M `crossing classes': class i, i = 1, . . . ,M ,
goes just through node i. This type of networks has been widely studied in the past; in the
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setting of Mo and Walrand (2000), one needs to solve

max
~y

M∑

i=0

Ni(t)gi
y1−α

i

1− α
, under N0(t)y0 + Ni(t)yi ≤ C, i = 1, . . . , M,

if at time t the network population is ~N(t). It is readily veri�ed that the solution to the above
optimization problem is

y0 =
g0

g0N0(t) + Sα( ~N(t))
, where Sα(~n) :=




M∑

j=1

gjn
α
j




1/α

;

the value of yi can be readily obtained from the capacity constraint.
The setting above does not involve limitations by access rates. When taking these into ac-
count, one could argue that the service rate attributed to a �ow of class 0 at time t is approxi-
mately

C0(t) = min

{
g0C

g0N0(t) + Sα( ~N(t))
, r0

}
,

whereas the allocation to a class i, i = 1, . . . ,M is (for Ni(t) > 0)

Ci(t) =
1

Ni(t)
min

{
Sα( ~N(t))C

g0N0(t) + Sα( ~N(t))
, riNi(t)

}
. (13)

These service rates give rise to a continuous-time Markov chain in a natural way if one as-
sumes Poisson arrivals and exponentially distributed �ows; we impose the stability condi-
tion %0 + %i < 1, for all i = 1, . . . , M , with %i := λi/(µiC), for i = 0, . . . , M . To identify the
equilibrium point of the �uid limit, we have to solve the system λi = φi(~n), i = 0, . . . , M,

with

φ0(~n) := µ0 min
{

g0n0C
g0n0 + Sα(~n)

, r0n0

}
;

φi(~n) := µi min
{

Sα(~n)C
g0n0 + Sα(~n)

, rini

}

for i = 1, . . . , M. As in the single link case, we can show that there is a unique �xed point
~n?. Interestingly, imposing the (weak) additional assumption that all %i are different, for
i = 1, . . . , M , we can also see that the solution can have just three speci�c forms.

Proposition 2.1 Assume that %i 6= %j for all i 6= j and i, j = 1, . . . , M . Then the solution to the
system of equations λi = φi(~n), i = 0, . . . , M, has three possible forms:
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• A `crossing class' is binding: SC = {i?} for some i? ∈ {1, . . . , M} and S = {0, 1, . . . , M}\ i?.
We have that for i ∈ S

n?
i = λi/(riµi),

and for i = i?

n?
i? =


 %i?

(1− %i?)gi?

(
g0λ0

r0µ0

)α

− 1
gi?

M∑

i=1,i 6=i?

giλi

riµi




1/α

.

• The `common class' is binding: SC = {0} and S = {1, . . . ,M}. Then for i = 1, . . . ,M

n?
i = λi/(riµi),

and

n?
0 =

η0

g0




M∑

j=1

gj

(
λj

rjµj

)α



1/α

.

• All classes are peak-rate constrained: n?
i = λi/(riµi), for all i = 0, . . . , M.

Proof We �rst show that i? ∈ SC implies that the other classes are in S. We have that

%i? =
Sα(~n)

g0n0 + Sα(~n)
.

It is now immediate from %0 + %i? < 1 that 0 ∈ S . Also, the fact that %i 6= %i? for i = 1, . . . ,M ,
i 6= i? implies that

%i 6= Sα(~n)
g0n0 + Sα(~n)

for these i, and hence they are also in S. The expressions for n?
i , i = 0, . . . ,M are obtained

directly from the system of equations λi = φi(~n), i = 0, . . . ,M,.
Similarly, we now show that 0 ∈ SC implies that the other classes are in S. Directly from
%0 + %i < 1, we have that if 0 ∈ SC, then 1, . . . , M ∈ S . The expressions for n?

i , i = 0, . . . ,M

are obtained from the system of equations λi = φi(~n), i = 0, . . . , M,.
The third case is straightforward. 2

In the next subsections we consider the �rst two possible solutions of Proposition 2.1 sep-
arately; in particular, as we did for the single-server case, we analyze the system under a
diffusion scaling. More particularly, we explicitly compute the covariance matrix. In the
third possibility, the classes behave essentially independently.
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2.1 A `crossing class' is binding
In this subsection we consider the case SC = {i?}. As we did for the single-node case, we can
consider the network population under a diffusion scaling: speed up time with a factor L,
subtract L times the equilibrium point (as determined in the �rst part of this section), divide
by

√
L, and let L go to ∞. We thus obtain a random vector ~Y , being Normally distributed

with zero mean. To compute the corresponding covariance matrix Σ, we �rst consider the
linearized system by constructing the matrix P , just as we did in the single-node case. Evi-
dently, for i 6= i?,

∂φi

∂ni
= riµi ;

∂φi

∂nj
= 0 for j 6= i.

whereas for i = i?,

∂φi?

∂n0
= −µi?C Sα(~n)

(g0n0 + Sα(~n))2
g0 < 0,

and for i 6= 0

∂φi?

∂ni
= µi?C g0n0

(g0n0 + Sα(~n))2
· ∂Sα(~n)

∂ni

= µi?C g0n0

(g0n0 + Sα(~n))2
· gi

(
Sα(~n)

ni

)1−α

> 0.

It trivially follows that P ≡ (pij)M
i,j=0 has only positive eigenvalues (in fact, the eigenvalues

are the diagonal elements). As a consequence the system will return in the direction of the
equilibrium point ~n? after small perturbations.
Our goal is to study the correlation between the number of �ows in two classes that do not
share a path. The next proposition establishes that the correlation between the crossing class
and any other class is negative.

Proposition 2.2 In the case SC = {i?}, the correlations between n?
i and n?

j for all i 6= j and i, j =
1, . . . , M are negative.

Proof Let us calculate the covariance matrix Σ. Straightforward computations yield that
(e−Pt)ii = e−piit, and, for i 6= i?,

(e−Pt)ii? =
pii?

pi?i? − pii

(
e−pi?i? t − e−piit

)
;

all the other entries are 0. This leads to the following covariance matrix:

Σi?0 = − λ0pi?0

p00(p00 + pi?i?)
> 0, Σi?i? =

λi?

pi?i?

+
M∑

i=0,i6=i?

λip
2
i?i

piipi?i?(pii + pi?i?)
,
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Σi?i = − λipi?i

pii(pii + pi?i?)
< 0, for i 6= 0, i?, and Σii =

λi

pii
, for i 6= i?;

the other covariances are 0. 2

Intuitively, the negative correlation can be explained by the fact that when there are many
�ows of class i?, they `push down' the bandwidth allocated to the common class, which
turns out to be bene�cial for the other crossing classes. This answers the question posed in
the introduction: apparently it is bene�cial for a speci�c crossing class if there is an unusually
high number of �ows of another crossing class. The other argumentation mentioned in the
introduction (the number of �ows of the crossing class is high, because the number of �ows
of the common class is high, and therefore also the numbers of �ows of the other crossing
classes will be high, which would suggest positive correlation) is apparently not valid.

2.2 The `common class' is binding
Let us now consider the situation S = {0}. Again we �rst construct the matrix P . For i 6= 0,

∂φi

∂ni
= riµi ;

∂φi

∂nj
= 0 for j 6= i.

whereas for i = 0,

∂φ0

∂n0
= µ0C Sα(~n)

(g0n0 + Sα(~n))2
g0 > 0,

∂φ0

∂ni
= −µ0C g0n0

(g0n0 + Sα(~n))2
· gi

(
Sα(~n)

ni

)1−α

< 0, for i 6= 0.

It is readily seen that P ≡ (pij)M
i,j=0 has only positive eigenvalues. The covariance matrix

turns out to be, for i 6= 0,

Σ00 =
λ0

p00
+

M∑

i=1

λip
2
0i

p00pii(p00 + pii)
, Σ0i = − λip0i

pii(p00 + pii)
> 0, Σii =

λi

pii
.

The other covariances are 0. We obtain the following, plausible, result.

Proposition 2.3 In the case SC = {0}, all correlations are positive.

3 Concluding remarks
In this paper we have considered bandwidth-sharing networks under a diffusion scaling,
with a focus on the single node and linear networks. As we have seen, imposing a (natural)
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peak-rate restriction, a equilibrium point of the �uid limit exists. By following a diffusion ap-
proach, we have succeeded in characterizing the covariances between the numbers of �ows
of the various classes.

Future research may include the following subjects.

(1) Extension to general networks operating under α-fair bandwidth sharing. So far, we
have concentrated on single nodes and linear networks, as for these the rate allocation
is explicitly known. As a �rst step we could focus on other topologies for which this is
the case (cyclic networks, for instance), or on linear networks with unequal service rates.

(2) Veri�cation of the accuracy of the diffusion approximation: for which L does the diffu-
sion reliably predict the steady-state distribution of our Markov chain?

(3) Veri�cation of the approximation for networks with TCP traf�c. The bandwidth alloca-
tion obtained with TCP can be approximated by an α-fair allocation with α = 2 [Kelly,
Maulloo and Tan (1998)]. Thus, it would be interesting to see how well the results of
this paper match estimates obtained through simulation of the actual system (i.e., of the
IP network, not of the Markov model; this could be done for instance by relying NS2).

(4) Analyze the impact of access rates, cf. also Ben Fredj et al. (2001). Our theory gives a
handle on assessing the impact of the access rate. As we have seen in the single-node
case, for classes that are not peak-rate constrained, the number of �ows present of that
class is not affected by its access rate, and hence upgrading the access rate is not very
bene�cial. For peak-rate constrained classes such an upgrade leads to performance
improvements, but may also lead to a performance degradation for the other classes. It
is interesting to characterize these sensitivities.

(5) Approximations of the distribution away from the equilibrium point of the �uid limit.
Results obtained by a diffusion scaling are typically accurate around the equilibrium
point of the �uid limit L · ~n?, but may be rather inaccurate away from the equilibrium
point. In this region one may come up with other (large-deviations based) approxima-
tions; alternatively, one could devise importance-sampling simulation procedures for
estimating the probabilities of such rare events.
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[23] Massoulié, L. and J. Roberts. (2002). �Bandwidth sharing: objectives and algorithms.�
IEEE/ACM Transactions on Networking, Vol. 10, pp. 320-328.

[24] Mo, J. and J. Walrand. (2000). �Fair end-to-end window-based congestion control.�
IEEE/ACM Transactions on Networking, Vol. 8, pp. 556-567.

[25] Meyn, S.P. and R.L. Tweedie. (1993). Markov chains and stochastic stability. Springer-
Verlag, London.

22


