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Abstract—In a bus transportation system the time gap between
two successive buses is called headway. When the headways
are small (high-frequency bus routes), any perturbation (e.g., in
the number of passengers using the facility, traffic conditions,
etc.) makes the system unstable, and the headway variance
tends to increase along the route. Eventually, buses end up
bunching, i.e, they start travelling together. Bus bunching results
in an inefficient and unreliable bus service and is one of the
critical problems faced by bus agencies. Another important
aspect is the expected time that a typical passenger has to wait
before the arrival of its bus. The bunching phenomenon might
reduce if one increases the headway, however this can result in
unacceptable waiting times for the passengers. We precisely study
this inherent trade-off and derive a bus schedule optimal for a
joint cost which is a convex combination of the two performance
measures. We assume that the passengers arrive according to a
fluid process, board at a fluid rate and using gate service, to
derive the performance. We derive the stationary as well as the
transient performance. Further using Monte-Carlo simulations,
we demonstrate that the performance of the system with Poisson
arrivals can be well approximated by that of the fluid model.

We make the following interesting observations regarding the
optimal operating frequency of the buses. If the randomness
in the traffic (variance in travel times) increases, it is optimal
to reduce the bus frequency. More interestingly even with the
increase in load (passenger arrival rates), it is optimal to reduce
the bus frequency. This is true in the low load regimes, while for
high loads it is optimal to increase the frequency with increase
in load. I. INTRODUCTION

In daily life, majority of people in a city rely on public
transport and benefit from affordable service due to subsidized
rates from the government. However, significant percentage of
people are shifting towards private transport due to unreliable,
inefficient service provided by the public systems. This is
leading to undesirable issues like traffic congestion, pollution
etc. To keep cities green, government and city planners need
to enhance the efficiency and reliability of the public transport.

Typically, most popular bus routes have high frequency of
buses and buses keep circulating around the route. It is well-
known that such transit routes without any intervention or
control are unstable ([5]). Any perturbation, typically, in the
number of passengers arriving (demand) at the bus stops or
in traffic conditions, can cause bus bunching. That is, two (or
sometimes more) buses arrive at a bus stop simultaneously
and start travelling together. Such a perturbation and hence
bus bunching is inevitable and needs to be controlled using
some intervention strategy.

Headway can be defined as the time gap between two
consecutive buses. This headway is predetermined at the depot
(where the buses start their journey) and hence is known.

However the headways at the other bus-stops, encountered on
the route, have random fluctuations as discussed. When a bus
is delayed for a long period at a particular stop (due to larger
demand and or larger transit times from previous stops), it
has to cater to the increased number of passengers at the next
stop. Hence it gets further delayed. Whereas, the following
bus observes less passengers than anticipated, as the time gap
between the buses is reduced. Hence it further speeds up due
to lesser dwell times (the boarding and de-boarding time).
Eventually, the headway becomes zero at a certain point along
the route and both the buses travel together. This phenomenon
is called ‘Bus bunching’. Thus, the headway varies as the buses
circulate along their path. As a result, passengers waiting at
various bus stops experience large variance in their waiting
times leading to an unreliable transport service. Further, this
results in an inefficient usage of resources (as bunched buses
run empty) even for bus operators. Thus efficient control of
bunching of buses is important from the perspective of both
the public using the service, as well as the operator.

Bus bunching is a critical issue faced by bus agencies and
this problem has been thoroughly investigated over past few
decades. However, it is still an active area of research as it
is challenging to provide a generic, practical, and effective
solution. Existing control strategies are based on ideas like
skipping the forthcoming bus stops (e.g., [1], [4], [6]), limited
boarding (e.g., [2], [3]), holding buses at specific locations
(e.g., [1], [7], [2]) etc. Holding control applied at intermediate
bus-stops and or skipping of stops may not be comfortable
from the perspective of the passengers travelling in the bus.
Hence our focus is on the holding control strategy only at
depot. Further in papers like [2], [3], [7] etc., authors discuss
and control the eventual variance of the error between the ideal
schedule and the schedule considering random fluctuations,
when the number of stops and buses converges to infinity.
They assume no bunching. However in many scenarios it is
not possible to completely avoid bunching. Further when the
randomness is very high, it is almost impossible to adhere to
the ideal schedules. In such scenarios, it is rather important to
reduce the probability of bunching, and we precisely consider
this probability. For such highly random scenarios, it is also
important to consider the passenger waiting times. Further in
all scenarios the number of stops and the number of trips is
finite, hence such a modelling more realistic. In [1], authors
consider finite number of buses looping continuously in the
circular path and covering finite number of stops. However
they work with expected value of the squared difference



between the actual headway and the supposed headway, and
not with the probability of bunching. Further the average
passenger waiting times are defined as the expected value of
the product of the headway and the number of passengers
arrived during the headway. This definition does not consider
the influence of passenger arrivals spread over the entire (bus
inter-arrival) interval. We consider (customer) average of the
waiting times of the passengers, the time gaps between their
arrival epoch to the stop and the arrival epoch of the bus
that they board. We derive theoretical expression for fluid
arrivals, we also demonstrate through simulations that the
derived expressions well approximate that corresponding to
Poisson arrivals.

The main goal of this work is to derive optimal headway be-
tween the buses at depot, that minimizes a convex combination
of two costs: a) the average passenger waiting times; and b)
the probability of bunching. Using our results one can obtain
a bus frequency optimal for stationary performance as well as
the one that optimizes the performance for finite number of
trips. Both the optimizers are the same once the number of
trips is greater than the number of stops.

II. SYSTEM MODEL

We consider buses moving on a single route and this route
has M number of stops Q1, Q2, . . . , QM . Each stop has
infinite waiting capacity. Any bus starts at the depot (Q0)
and travels along a predefined cyclic path, while boarding/de-
boarding passengers at the encountered bus stops. Passengers
arrive independently of others in each stop Qi according to
a fluid process with rate λ. We also consider Poisson arrivals
and show that the fluid model can well approximate the system
with Poisson arrivals, using simulations. The passengers board
the bus at ‘fluid’ rate. That is, the time taken to board x
number of passengers equals bx, where b is the boarding time
per passenger at any stop. Let Si

k be the time taken by k-
th bus to travel from (i − 1)- th stop Qi−1 to i-th stop Qi.
These random travel times, {Si

k}k (for each stop Qi), are
independent and identically distributed (IID). The buses start
at the depot after fixed headway times (interval between two
successive buses) and traverse through the M stops before
concluding their trip. The main purpose of this paper is to
obtain this depot-headway optimally. We further make the
following assumptions to model the problem:
R.1) Surplus number of buses: the next bus can start at any
specified headway in the depot, without having to wait for the
return of the previous bus.
R.2) Parallel boarding and de-boarding: and the time taken for
de-boarding is smaller with probability one.
R.3) Gated service: Only the passengers that arrived before
the arrival of the bus can board the bus. Passengers arrived
during the boarding process, will wait for the next bus.
R.4) If buses are bunched at any stop then the second bus will
wait till the previous bus departs, before it starts boarding its
passengers. Thus overtaking of buses does not happen.
R.5) There is no constraint on the capacity of the buses.

In most of the cities the buses have two doors, boarding and
de-boarding happens in parallel and hence one can neglect the

de-boarding times. Boarding times are negligible compared
to bus travel times. Thus we will have negligible number
of arrivals during a boarding time, and hence gated service
is a reasonable assumption. Assumption R.1 simplifies the
model sufficiently and is instrumental in deriving closed-form
expressions for performance measures of this kind of a com-
plicated system. Without this assumption one would have to
take care of looping effects. Assumption of availability of few
extra buses can easily ensure this assumption is satisfied. Even
availability of one extra bus can ensure such a condition is
satisfied with sufficiently large probability, and is often a well
practised method. The remaining assumptions are mentioned
as and when required.
Bunching: Because of variability in demand and travelling
times, some buses are delayed with respect to the scheduled
times. Delay of the bus results in more number of passengers
to be boarded, and hence longer dwell time at the stop. Thus it
gets delayed further. This would also imply smaller dwell time
for the following bus at the same stop, as it has to board lesser
number of passengers. This can continue for the following
bus-stops, the bus-stop headway times (time gap between
two consequent buses at the same stop) become smaller and
can eventually become zero. This phenomenon is called Bus
bunching. We define bunching probability as the probability
of occurrence of this event. Bunching probability for the k-
th trip at i-th stop, bik, is defined as the probability that the
dwell time of (k − 1)-th bus at stop Qi is greater than the
inter arrival time between (k− 1) and k-th buses to the same
stop.
Waiting times: Passengers wait for the bus at every bus stop.
When a bus is delayed their waiting time increases. If the delay
results in bunching, the waiting times can be longer. Further
the waiting times also depend upon the depot-headway time.
The larger this headway is, the longer are the waiting times.
We define the (passenger) waiting times as the time difference
between their arrival instance and the arrival instance of the
bus in which they board. Let W i

n be the waiting time of the
n-th passenger that arrived to bus stop Qi. We define the
customer average of these waiting times specific to stop Qi

by:

w̄i := lim
N→∞

1

N

∑
n≤N

W i
n. (1)

When the depot-headway increases bunching happens less
often. However the passengers have to wait longer. We pre-
cisely study this trade-off. We derive the required performance
measures, and, obtain headway times that optimize a convex
combination of the two performance measures.

III. SYSTEM DYNAMICS

Dwell time is the amount of time spent by a bus in the stop.
By R.1, it equals total boarding time of passengers waiting at
the bus stop. Let Xi

k be the number of passengers waiting at
stop Qi, at the arrival instance of k-th bus. Because of gated
service and fluid boarding at rate b the dwell time equals:

V i
k = Xi

kb. (2)



By our assumption R.4, the buses serve one after the other.
That is, even in the event of bunching, the trailing bus starts
boarding its customers only after the preceding one departs.
In such events the dwell times would be bigger than Xi

kb.
However practically one design systems with small bunching
chances (typically less than 10%) and hence we neglect the
influence of these extra terms in the dwell times.

A. Bus inter-arrival times

Let N i(I) be the number of passengers that arrived in an
interval of length I at Qi for any i ≤ M . For fluid arrivals
this equals N i(I) = λI , while, for Poisson arrivals N i(I) is
Poisson distributed with parameter λI .

Recall by definition that Xi
k passengers wait at Qi and are

served by the k-th bus. Also, note that the passengers that
arrived during the dwell time (V i

k = Xi
kb) of k-th bus would

be served by (k+1)-th bus. We begin with stop Q1. Recall S1
k

represents the travel time between depot and stop Q1 for the
k-th bus. Further the k-th bus departs the depot after (k− 1)-
th bus, with a time gap equal to the (depot) headway time h.
Thus the inter arrival time between (k − 1)-th bus and k-th
bus at Q1 equals, I1k = h + S1

k − S1
k−1. Thus the number of

passengers served by k-th bus at Q1 equals, X1
k = N 1(I1k).

It is clear that the k-th bus takes,
∑

j≤i S
j
k +

∑
j<i V

j
k time,

to reach stop Qi after its departure at depot, and the time gap
between departures of k-th and (k−1)-th buses at depot equals
h. Thus the inter-arrival time between k-th and k−1-th buses
at stop Qi,

Iik = h+
∑
j≤i

Sjk+
∑
j<i

V jk −
∑
j≤i

Sjk−1−
∑
j<i

V jk−1. (3)

Hence the number of passengers waiting at stop Qi at the
arrival instance of k-bus equals, Xi

k = N i(Iik).

There are random variations in travel times. We model these
variations by Gaussian random variables. To be precise we
assume the travel time by k-th bus between i and (i − 1)-th
bus stop to be Si

k = si +N i
k, where {N i

k}i,k are IID Gaussian
random variables with mean zero and variance ε2 and {si}i
are constants. For fluid arrivals and Gaussian travel times, the
inter arrival times from equation (3) are (with ρ := λb):

Iik = h+
∑
j≤i

N j
k +

∑
j<i

V jk −
∑
j≤i

N j
k−1 −

∑
j<i

V jk−1

= h+
∑
j≤i

N j
k + ρ

∑
j<i

(
Ijk − I

j
k−1

)
−
∑
j≤i

N j
k−1. (4)

In the above, by notation, we set N i
k = 0 for all k ≤ 0. Thus

even with independent travel times (and passenger arrivals),
the bus inter-arrival times and hence the dwell times are
correlated. One needs to study these correlations to obtain the
performance, and we begin with the following:

Lemma 1. Define the following Gaussian vectors:

Nk := [N1
k , N

2
k , · · · , NM

k ] and Nkl := [Nk,Nk−1, · · · ,Nl] .

Then from (4), Iik for any i, k can be expressed as:

Iik = Iik(Nkk−i) = h+N i
k −N i

k−1 +

i−1∑
s=1

[
(1 + ρ)sN i−s

k

+

s+1∑
r=1

(−1)rN i−s
k−r

i−r∑
l=0

(
s

l + r − 1

)(
l + r

r

)
ρl+r−1

]
.

Thus for any stop Qi, bus inter-arrival times {Iik} are
Gaussian random variables with common mean h and common
variance σ2

a,i once1 k > i, with (
(
n
r

)
= 0 if n < r),

σ2
a,i = E[Iik − h]2 = 2ε2 + ε2

i−1∑
s=1

[
(1 + ρ)2s +

s+1∑
r=1(

i−r∑
l=0

(
s

l + r − 1

)(
l + r

r

)
ρl+r−1

)2 ]
.

Proof: is in Appendix A. �

B. Transience, Stationarity and Time (Trip) averages

The bus inter-arrival times {Iik}k, for any given stop Qi, are
not independent as seen from equation (4). Nevertheless by
Lemma 1 inter-arrival times of a trip, Ik := [I1k , I

2
k , · · · , IMk ],

depend only upon Nk
k−M and so the sampled inter-arrival times

{Iij+kl}k≥1 = I1l+j , I
l
2l+j · · · ( for any stop Qi),

with l > M+1 and for any 0 ≤ j ≤ l−1 form an IID sequence.
Thus one of the important aspects that is clear from Lemma

1 is that the system is in transience only for the first M
trips. After the M -th trip, the trips (are not independent, but)
are identical. Thus stationarity is reached within M trips. To
be precise, any expected performance measure related to a
single trip is the same for all trips other than the first M
trips. Thus the transient performance after M trips equals the
stationary performance. Passenger waiting times related to
a trip can be one such example performance measure (more
details to follow). On the other hand for performance measures
like bunching probability, which depend upon two consecutive
trips (details to follow), stationarity is reached after M + 1
trips. Hence again the bunching probability of k-th trip equals
stationary bunching probability, for all k > M + 1.

One can also derive the time (trip) average of any perfor-
mance measure, using the above ‘block’ IID characteristics.
By Law of large numbers, for any (integrable) performance f
that depends (for example) upon one trip (almost surely (a.s.)):

f̄ := lim
K→∞

1

K

K∑
k=1

f(Ik) (5)

= lim
K→∞

1

K(M + 1)

M+1∑
j=1

K∑
k=1

f(Ij+k(M+1))
a.s.
= E[f(IM+1)].

In the above the expectation is with respect to the Gaussian
measure of Lemma 1. Thus the time average performance also
equals (a.s.) the stationary as well as the transient performance
(with trips > M ). One can derive trip average of the perfor-
mance measures that depend upon finite number of consecutive
trips (e.g., bunching probability) in a similar way.

1The variance for smaller k is different but can easily be computed, if
required.



IV. PERFORMANCE AND OPTIMIZATION

A. Passenger waiting times

As already mentioned, waiting times are the times for which
a typical passenger waits before its bus arrives. We first discuss
the trip-wise passenger waiting times. Towards this we first
gather together the waiting times of the passengers that arrived
during one (bus) inter-arrival time. Recall Xi

k is the number of
passengers that arrived during k-th trip, i.e., during the inter
arrival time between the k-th and (k− 1)-th buses at Qi, and
let the sum of the waiting times of the passengers that arrived
during this trip be:

W̄ i
k ,

Xi
k∑

n=1

W i
n.

For fluid arrivals, customers are assumed to arrive at regular
intervals (of length 1/λ) and if the time duration for this
arrivals is large in comparison with 1/λ then Xi

k ≈ λIik
and the sum of the waiting times2, W̄ i

k ≈ λ(Iik)2/2. For
Poisson arrivals, due to memoryless property, the conditional
expectation (see [8]) E

[
W̄ i
k

∣∣∣Iik] = λ(Iik)2/2.

In all, the sum of waiting times of passengers of stop Qi in
the k-trip equals E[W̄ i

k] = λE[(Iik)2]/2.
Customer average: This performance is important from the

perspective of passengers and hence it is more appropriate to
consider the ‘passenger’ average of the waiting times ({w̄i})
defined in (1). For fluid arrivals, the trip-wise sum waiting
times equal (in the limit) W̄ i

k ≈ λ(Iik)2/2, and using this we
obtain:

Lemma 2. For any stop Qi, with W̄ i
k = λ(Iik)2/2:

w̄i = lim
K→∞

K∑K
k=1X

i
k

∑K
k=1 W̄

i
k

K

a.s.
=

E[(Iik)2]

2E[Iik]
=
σ2
a,i + h2

2h
, (7)

for any k > M.

Proof: is in Appendix A. �
We would like to give equal importance to passengers of
all stops. Hence we consider the following for optimization
purposes:

w̄ =

M∑
i=1

w̄i =

M∑
i=1

σ2
a,i + h2

2h
. (8)

B. Bunching probability

Bunching occurs at a stop when two buses meet at the
stop, i.e., when the headway time (time gap between buses)
of consequent buses becomes zero. Bunching probability, bik,
of k-th bus at i-th stop is the probability that the dwell time
(equation (2)) of (k−1)-th bus is greater than the inter arrival

2The waiting time of first passenger during that period is approximately
Iik , that of the second passenger is approximately Iik − 1/λ and so on. As
λ→∞, the following Riemann sum converges as below:

W̄ i
k

λ
=

1

λ

λIik∑
i=0

(
Iik −

i

λ

)
→
∫ Iik

0
(Iik − x)dx =

(Iik)2

2
. (6)

In the above the residual passenger waiting time at the bus-arrival epoch is
neglected and this also becomes negligible with λ → ∞. Thus for large λ,
W̄ i
k ≈ λ(Iik)2/2.

time (equation (4)) between (k − 1) and k-th buses. Thus for
fluid arrivals:

bik = P (N i(Iik−1)b > Iik) = P (Iik − ρIik−1 < 0). (9)

The above expression is true because of assumption R.4. Thus
we require the (marginal) distribution of (Iik − ρIik−1) for
computing the bunching probability at any stop i. Hence we
consider the analysis of Iik − ρIik−1 in the lemma below.

Lemma 3. The term Iik − ρIik−1 is Gaussian and can be
expressed as:

Iik − ρIik−1 =h(1− ρ) +N i
k − (1 + ρ)N i

k−1 + ρN i
k−2

+

i−1∑
r=1

{
(1 + ρ)rN i−r

k +

r+2∑
l=1

(−1)lN i−r
k−l

[(
r + 1

l − 1

)

ρl−1(1 + ρ)(r+1)−(l−1) +

(
r

l

)
ρl(1 + ρ)(r+1)−(l+1)

]}
.

Thus the mean and variance of Iik−ρIik−1 (with k > M +1)
are given respectively by E[Iik − ρIik−1] = h(1− ρ) and

σ2
b,i = ε2 + ε2(1 + ρ)2 + ε2ρ2 + ε2

i−1∑
r=1

{
(1 + ρ)2r

+

r+2∑
l=1

[(
r + 1

l − 1

)
ρl−1(1 + ρ)(r+1)−(l−1) +(

r

l

)
ρl(1 + ρ)(r+1)−(l+1)

]2}
.

Proof: is in Appendix A. �

As already discussed, various trips can be correlated, how-
ever the bunching probabilities in different trips remains the
same. This is because the bunching probabilities depend only
upon Iik − ρIik−1 and because these are identically distributed
for all k > M + 1. For all such trips the bunching probability
of a stop in a trip is the same and equals,

bik = 1− Φ

(
h(1− ρ)

σb,i

)
, (10)

where Φ is the standard Gaussian cumulative distribution:

Φ(x) :=

∫ x

−∞

1√
2π

exp

(
−t2

2

)
dt.

As mentioned already, this also represents the bunching
probability of a trip under stationarity. Note that the bunching
probabilities of initial trips can be different, and these can be
computed in a similar way if required.

C. Total cost and optimization

Our aim is to minimize a joint cost that considers both the
factors (8) and (10). Towards this we consider a weighted
average of the two costs with α and {βi}i representing the
weights for various components as below:

T =
M∑
i=1

{
σ2
a,i + h2

2h
+ αβi

(
1− Φ

(
h(1− ρ)

σb,i

))}
. (11)

Here α is the trade-off parameter between bunching proba-
bility and waiting times, while {βi}i determine the trade-off
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Fig. 1. Bunching probability, Waiting time and Total cost vs headway

for bunching probabilities of various stops3. Let h∗ be the
minimizer for total cost (11). The total cost is a differentiable
function and hence h∗ is the zero of the following derivative
(obtained using Leibniz rule):

dT (h)

dh
=
M

2
−
M∑
i=1

(
σ2
a,i

2h2
+
αβi√

2π
exp

(
−h2(1− ρ)2

2σ2
b,i

)
1− ρ
σb,i

)
. (12)

Also, one can easily verify that d2T (h)/dh2 > 0 for all h,
and hence that h∗ is the unique minimizer.

We consider the special case with βM = 1 and βm = 0 for
all m 6= M to obtain a good approximation for the above
optimizer. Under suitable conditions (e.g., when the depot
headway time is large ) one can neglect the second term in
the derivative to obtain approximate h∗ as below:

h∗ ≈
√
− log(C1)

C2
, C1 =

M
√

2πσb,M
2α(1− ρ)

, C2 =
(1− ρ)2

2σ2
b,M

. (13)

Remarks: It is immediately clear that the optimal bus
frequency (inverse of h∗) decreases as the number of stops
increase. This is in fact true even for the general case, as seen
from (12). Similarly, the optimal frequency decreases with in-
crease in traffic variability factor ε (see (13)). We compute the
optimizers for remaining cases using numerical computations
in the next section to derive some more interesting inferences.
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V. SIMULATIONS

In this section, we verify the derived performance measures
of the proposed model through Monte-Carlo simulations. We
emulate the buses travelling on a single route with 8 bus
stops, boarding a random number of passengers using gated

3Note that the bunching probability is low at initial stops and increases
with stop number (see Lemma 3) and hence the need for different {βi}i.

service and avoiding parallel boarding (into two or more
buses simultaneously) of passengers at any stop. The travelling
times between stops are perturbed by normally distributed
noise with zero mean and variance ε2. Passenger arrivals are
either due to fluid arrivals or due to Poisson arrivals, and
we consider fluid boarding. We conduct the simulations with
M = 8, λ = 200, ρ = 0.3, s = 50 and α = 150 in Figure 1.

In Figure 1, we compared the theoretical quantities with
the ones estimated through simulations. We plot bunching
probability, average passenger waiting times and total cost
respectively as a function of headway. We find a good match
between theory (curves without markers) and simulations
considering Poisson arrivals (curves with circular markers).
We also conducted simulations using fluid arrivals. The sim-
ulation results with fluid arrivals better match the theoretical
counterparts. We included the simulation based results for fluid
arrivals (curves with diamond markers) in the third sub-figure,
i.e., for total cost. We notice a good match between (both) the
simulated quantities and the theoretical expressions in majority
of the cases. These observations affirm the theory derived.

From the sub-figures of Figure 1, we observe that the bunch-
ing probability improves (decreases) with depot-headway (h),
while, the passenger waiting times degrade (increase). This is
the inherent trade-off that needs to be considered to design
an efficient system. We plot optimal depot-headways for some
examples in Figures 2-3, which are estimated using numerical
simulations (dashed curves with circular markers). We also
plot the approximate h∗ given by (13) in the same figures
(solid curves). We notice that the approximate optimizer well
matches the ones estimated using numerical simulations, for
small load factors (ρ) and or small traffic variability (ε).
When variability increases the first factor in waiting times
(8) becomes significant and then the theoretical h∗ (13) is
no more a good approximation (for load factors bigger than
0.5 in Figure 2 and traffic variance ε > 5 in Figure 3).

As the load factor increases, or equivalently when the cus-
tomer arrival rates increase, one would anticipate an increased
bus-frequency to be optimal. On the contrary we notice that
the optimal headway increases (initially) with increase in load-
factor in Figure 2. This is because the passenger waiting times
for any given headway h, approximately equal h/2 when
the variability components ({σa,i}i due to traffic and or load



conditions) are negligible (see equation 8). Thus with increase
in load factor, the bunching probabilities increase sharply,
while waiting times are less influenced and hence an increase
in optimal depot-headway. However as seen in the same figure,
when load increases beyond 0.5, the variability components in
waiting times also become significant and now we notice that
the optimal depot-headways are smaller. To summarize, the
optimal frequency of the buses decreases initially with increase
in load and for higher range of load factors it increases with
load.

On the other hand, with increase in traffic variability factor
ε, we notice that the optimal depot-headway always increases
(see Figure 3). Thus it is optimal to decrease the frequency of
buses, when traffic variability increases. These results are true
as long as the buses have sufficient capacity (to board all the
customers).

CONCLUSIONS

We modelled the bus bunching problem with Gaussian bus
travel times and fluid arrivals. We studied the related perfor-
mance measures. We discussed stationary as well as transient
(suitable for finite trip problems) performance measures. Using
numerical simulations, we showed that the performance of
the system with Poisson arrivals can be well approximated
with the derived theoretical expressions, when the arrival rates
are large. We obtained the optimal depot headway time, i.e.,
the optimal bus frequency as a function of parameters like
load conditions (passenger arrival rates), number of bus stops,
traffic variability conditions (variance of the travel times) etc.
We made the following observations using the theoretical as
well as numerical study: a) When bus frequency decreases,
bunching probability decreases and passenger waiting times
increase; b) Optimal bus frequency decreases with increase in
traffic variability and load conditions; and c) If the load is
significantly larger, then the optimal bus frequency actually
increases with load.

These are just initial results and we have many future
directions. Previously in literature the focus mostly has been
on ensuring that the bus schedules adhere as closely as possible
to the ideal schedules. Towards this they consider optimal
holding of buses at various stops and or skipping of stops. But
the passengers might be uncomfortable with such strategies.
Further our focus is on systems where bunching can’t be
avoided completely. Thus our focus has been on reducing the
bunching probability by (static) controlling only the depot-
headway times. In future we would like to consider dynamic
policies which control the bus frequency based on the state of
the system. We would also like to derive the performance for
non-stationary (Markov modulated) Poisson arrivals or even
for the renewal arrival process.
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APPENDIX A: PROOFS

Proof of Lemma 1: The proof is based on mathematical
induction. We can easily verify that it is true for i = 1,

I1k = h+N1
k −N1

k−1.

It is also true for i = 2,

I2k = h+N2
k −N2

k−1 + (1 + ρ)N1
k −N1

k−1(1 + 2ρ) + ρN1
k−2.

Assuming that the result is true for i = m, we prove it for
i = m+ 1. We begin by observing a simple relation as below
(see equation (4)):

Im+1
k = Nm+1

k −Nm+1
k−1 + (1 + ρ)Imk − ρImk−1.

The rest of the proof is in [8]. �
Proof of Lemma 2: By law of large numbers and the block
IID structure described in section IV-A,

lim
K→∞

∑K
k=1 W̄

i
k

K
→ E[W̄ i

k] and lim
K→∞

Xi
K

K
→ λE[Iik].

Hence,
w̄i =

E[(Iik)2]

2E[Iik]
. �

Proof of Lemma 3: The proof is again based on mathematical
induction. We can easily verify that it is true for i = 1,

I1k − ρI1k−1 = h(1− ρ) +N1
k − (1 + ρ)N1

k−1 + ρN1
k−2.

It is also true for i = 2,

I1k − ρI1k−1 =h(1− ρ) +N2
k − (1 + ρ)N2

k−1 + ρN2
k−2 +N1

k

(1 + ρ)−N1
k−1(1 + 3ρ+ ρ2) +N1

k−2(2ρ+ 2ρ2)−N1
k−3ρ

2.

Assuming that the result is true for i = m, we prove it
for i = m + 1. Again the proof is based on the following
observation:

Im+1
k − ρIm+1

k−1 = Nm+1
k − (1 + ρ)Nm+1

k−1 + ρNm+1
k−2 +

(1 + ρ)(Imk − ρImk−1)− ρ(Imk−1 − ρImk−2).

The rest of the proof is in [8]. �


