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Abstract. Based on the groundbreaking result of Gittins on the multi-
armed bandit problem we provide a characterization of the optimal non-
anticipating scheduling policy in a multi-class single-server queue. We
apply Gittins’ framework to characterize the optimal policy when the ser-
vice time distribution of the various classes belong to the set of Decreas-
ing Hazard Rate (DHR) distributions, like Pareto or hyper-exponential.
When there is only one class it is known that the Least Attained Ser-
vice (LAS) policy is optimal. We show that in the multi-class case the
optimal policy is a priority discipline, where jobs of the various classes
depending on their attained service are classified into several priority
levels. Using a tagged-job approach and the collective mark method we
obtain, for every class, the mean sojourn time conditioned on the service
requirement. Numerical computations show that the performance gain
of Gittins’ policy can be significant.
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1 Introduction

In [7], Gittins considered an M/G/1 queue and proved that the so-called Gittins
index rule minimizes the mean delay. At every moment of time the Gittins rule
calculates, depending on the attained service time of jobs, which job should be
served. Gittins derived this result as a byproduct of his groundbreaking results on
the multi-armed bandit problem. The literature on multi-armed bandit related
papers that build on Gittins’ result is huge (see for example [18, 20, 19, 17, 5,
6, 2]). However, the optimality result of the Gittins index in the context of an
M/G/1 queue has not been fully exploited, and it has not received the attention
it deserves.

⋆ This research work is partially funded by the European Commission through the
ECODE project (INFSO-ICT- 223936) of the European Seventh Framework Pro-
gramme (FP7).
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Gittins’ result generalizes the well-known cµ-rule. We recall that the cµ-rule
is the discipline that gives strict priority in descending order of ckµk, where ck
and µk refer to the holding cost and the inverse of the mean service requirement
of class k jobs, respectively. It is known (see for example [3, 16, 13]) that the cµ-
rule minimizes the weighted mean number of customers in the queue in two main
settings: (i) generally distributed service requirements among all non-preemptive
disciplines and (ii) exponentially distributed service requirements among all pre-
emptive non-anticipating disciplines. In the preemptive case the cµ-rule is only
optimal if the service times are exponentially distributed. On the other hand, by
applying Gittins’ framework to the multi-class queue one can characterize the
optimal policy for arbitrary service time distributions.

In order to get insights into the structure of the optimal policy in the multi-
class case we consider several relevant cases where the service time distributions
are Pareto or hyper-exponential. We have used these distributions due to the
evidence that the file size distributions in the Internet are well modelled with
distributions with a decreasing hazard rate [12, 4, 21]. In particular, we study
the optimal multi-class scheduling in the following cases of the service time
distributions: two Pareto distributions, several Pareto distributions, one hyper-
exponential and one exponential distributions. Using a tagged-job approach and
the collective marks method we obtain, for every class, the mean conditional
sojourn time. This allows us to compare numerically the mean sojourn time
in the system between the Gittins optimal and popular policies like Processor-
Sharing (PS), FCFS and LAS. We find that in the particular case of two classes
and Pareto-type service time distribution the Gittins policy outperforms LAS
by nearly 25%.

From an application point of view, our findings could be applied in Internet
routers. Imagine that incoming packets are classified based on the application or
the source that generated them. Then it is reasonable to expect that the service
time distributions of the various classes may differ from each other. A router in
the Internet does not typically have access to the exact required service time (in
packets) of the TCP connections, but it may have access to the attained service
of each connection. Thus we can apply our theoretical findings in order to obtain
the optimal (from the connection-level performance point of view) scheduler at
the packet level. In [14] we implement the Gittins scheduling policy in the NS-2
simulator and perform experiments to evaluate the achievable performance gain.

The rest of the paper is organized as follows: In Section 2 we review the
Gittins index policy for the multi-class M/G/1 queue. In Section 3, we study the
Gittins index policy for the case of two Pareto distributed classes. In particular,
we derive analytic expressions for the mean conditional sojourn times and study
various properties of the optimal policy. At the end of Section 3 we generalize
the results to multiple Pareto classes. In Section 4 we study the case when one
distribution is exponential and the other distribution is hyper-exponential with
two phases. In Section 5 we present numerical results.
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2 Gittins policy in a multi-class M/G/1 queue

Let Π denote the set of non-anticipating scheduling policies. Popular disciplines
such as PS, FCFS and LAS belong toΠ. Important disciplines that do not belong
to Π are Shortest Remaining Processing First (SRPT) and Shortest Processing
Time First.

Let us consider a multi-class M/G/1 queue. Let Xi denote the service time
with distribution P(Xi ≤ x) = Fi(x) for every class i = 1, . . . , N . The density
is denoted by fi(x) and the complementary distribution by F i(x) = 1 − Fi(x).
Class-i jobs arrive according to a Poisson process with rate λi, and let λ =∑N

i=1 λi denote the total arrival rate.

Definition 1. For any a,∆ ≥ 0, let

Ji(a,∆) =

∫∆

0
fi(a+ t)dt∫∆

0
F i(a+ t)dt

=
F i(a)− F i(a+∆)∫∆

0
F i(a+ t)dt

. (1)

For a class-i job that has attained service a and is assigned ∆ units of service,
equation (1) can be interpreted as the ratio between (i) the probability that the
job will complete its service with a quota of ∆ (interpreted as payoff) and (ii)
the expected processor time that a job with attained service a and service quota
∆ will require from the server (interpreted as investment). Note that for every
a > 0

Ji(a, 0) =
fi(a)

F i(a)
= hi(a),

Ji(a,∞) =
F i(a)∫∞

0
F i(a+ t) dt

= 1/E[Xi − a|Xi > a].

Note further that Ji(a,∆) is continuous with respect to ∆.

Definition 2. The Gittins index function is defined by

Gi(a) = sup
∆≥0

Ji(a,∆), (2)

for any a ≥ 0.

We call Gi(a) the Gittins index after the author of book [7], which handles
various static and dynamic scheduling problems. Independently, Sevcik defined
a corresponding index when considering scheduling problems without arrivals
in [15]. In addition, this index has been dealt with by Yashkov, see [22] and
references therein, in particular the works by Klimov [10, 11].

Definition 3. For any a ≥ 0, let

∆∗
i (a) = sup{∆ ≥ 0 | Ji(a,∆) = Gi(a)}. (3)

By definition, Gi(a) = J(a,∆∗
i (a)) for all a.
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Definition 4. The Gittins index policy πG is the scheduling discipline that at
every instant of time gives service to the job in the system with highest Gi(a),
where i denotes the class and a is the job’s attained service.

We denote by Tπ
i (x) the mean conditional sojourn time for the class-i job of size

x, i = 1, . . . , N . Let T
π

i denote the mean (unconditional) sojourn time for class-i
users, and let T

π
denote the mean sojourn time in the system. It follows that

T
π
=

N∑
i=1

λi

λ
T

π

i .

We can now state the following result:

Theorem 1. [7, Theorem 3.28] The Gittins index policy minimizes the
mean sojourn time in the system among all non-anticipating scheduling policies,
i.e. for any π ∈ Π,

T
πG ≤ T

π
.

Note that by Little’s law the Gittins index policy also minimizes the mean num-
ber of jobs in the system.
Decreasing Hazard Rate. Let the service time distribution of class-i have
a decreasing hazard rate. It is possible to show, see [1], that if hi(x) is non-
increasing, the function Ji(a,∆) is non-increasing in ∆. Thus

Gi(a) = Ji(a, 0) = hi(a). (4)

As a consequence we obtain the following result.

Proposition 1. In a multi-class M/G/1 queue with non-increasing hazard rate
functions hi(x) for every class i = 1, . . . , N , the policy that schedules the job with
highest hi(a), i = 1, . . . , N in the system, where a is the job’s attained service,
is the optimal policy that minimizes the mean sojourn time.

Proof: Follows immediately from the Gittins policy Definition 4, Proposition 1
and equation (4). 2

The policy presented in Proposition 1 is an optimal policy for the multi-class
single-server queue. Let us notice that for the single-class single-server queue
the Gittins policy is equivalent to LAS. When we serve jobs with the Gittins
policy in the multi-class queue to find a job which has to be served next we need
to calculate the hazard rate of every job in the system. The job which has the
maximal value of the hazard rate function is served next.

3 Two Pareto classes

We consider now the case when job sizes are distributed according to Pareto
distribution. We thus consider, for i = 1, 2,

Fi(x) = 1− bcii
(x+ bi)ci

, x ≥ 0. (5)
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It follows that E[Xi] = bi/(ci − 1), i = 1, 2. The density function is given by
fi(x) = bcii ci/(x+ bi)

ci+1, i = 1, 2 and the hazard rate functions are

hi(x) =
ci

(x+ bi)
, i = 1, 2.

The two hazard rate functions cross at the point

a∗∗ =
c2b1 − c1b2
c1 − c2

.

Without loss of generality suppose that c1 > c2. Then the behavior of the hazard
rate functions depends on the values of b1 and b2.

θ g(x) x x

h1(x)

h2(0)

h2(x)

Fig. 1. Two Pareto classes: hazard
rate functions that do not cross

g(x) x x

h1(x)

h2(0)

h2(x)

a∗∗θ∗

h1(0)

Fig. 2. Two Pareto classes: hazard
rate functions cross

Let us first consider the case when the hazard rate function do not cross, so
a∗∗ < 0. This happens when b1/b2 < c1/c2 and it follows h1(x) > h2(x), for all
x ≥ 0. Let θ and g(x) be such that:

h1(x) = h2(g(x)), h1(θ) = h2(0).

We can see that g(θ) = 0. In the case of Pareto service time distributions we
then get that

g(x) =
c2
c1

(x+ b1)− b2, θ =
c1b2 − c2b1

c2
.

We observe that the hazard-rate of a class-1 job with attained service x and the
hazard rate of a class-2 job with attained service g(x) are the same, see Figure 1.

3.1 Optimal policy

Jobs in the system are served in two queues, low and high priority queues. The
class-1 jobs which have attained service a < θ are served in the high priority



6 K.E. Avrachenkov, U. Ayesta, N. Osipova

queue with LAS policy. When the class-1 job achieves θ amount of service it is
moved to the second low priority queue. Class-2 jobs are put immediately in the
low priority queue. The low priority queue is served only when the high priority
queue is empty. In both queues, the job with highest hazard-rate is served.

Let us now derive the expressions of the mean conditional sojourn time for
class-1 and class-2 jobs.

3.2 Mean conditional sojourn times

Let us denote by indices [](1) and [](2) the values for class-1 and class-2, respec-

tively. Let us define as Xn
y

(i)
the n-th moment and ρ

(i)
y be the utilization factor

for the distribution Fi(x) truncated at y for i = 1, 2. The distribution truncated
at y equals F (x) for x ≤ y and 1 when x > y. Let us denote Wx,y the mean
workload in the system which consists only of class-1 jobs with service times
truncated at x and of class-2 jobs with service times truncated at y. According
to the Pollaczek-Khinchin formula we have

Wx,y =
λ1X2

x

(1)
+ λ2X2

y

(2)

2(1− ρ
(1)
x − ρ

(2)
y )

.

Now let us formulate the following Proposition which we prove in the Appendix.

Proposition 2. In the two-class M/G/1 queue where the job size distributions
are Pareto and which is scheduled with the Gittins policy, the mean conditional
sojourn times for class-1 and class-2 jobs are

T1(x) =
x+Wx,0

1− ρ
(1)
x

, x ≤ θ, (6)

T1(x) =
x+Wx,g(x)

1− ρ
(1)
x − ρ

(2)
g(x)

, x > θ, (7)

T2(g(x)) =
g(x) +Wx,g(x)

1− ρ
(1)
x − ρ

(2)
g(x)

, x > θ. (8)

Proof: The proof is given in the appendix. 2

The obtained expressions (6), (7) and (8) can be interpreted using the tagged-
job and mean value approach. Let us consider class-1 jobs. Jobs of size x ≤ θ
are served in the high priority queue according to the LAS policy, and we have
(see [9, Section 4.6]), T1(x) =

x+Wx,0

1−ρ
(1)
x

, x ≤ θ, where Wx,0 is the mean workload

and ρ
(1)
x is the mean load in the system for class-1 jobs with the service time

distribution truncated at x.
For jobs of size x > θ expression (7) can be rewritten as, T1(x) = x+Wx,g(x)+

T1(x)(ρ
(1)
x + ρ

(2)
g(x)), where

– x is the required service time;
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– Wx,g(x) is the mean workload which the tagged job finds in the system and
that has to be served before its service is completed;

– T1(x)(ρ
(1)
x + ρ

(2)
g(x)) is the mean workload that arrives to the system during

the sojourn time of the tagged job and which has to be served before its
service is completed.

The expressions of Wx,g(x), ρ
(1)
x and ρ

(2)
g(x) are given in the appendix. Equa-

tion (8) can be similarly interpreted.

3.3 Properties of the optimal policy

Property 1. When class-2 jobs arrive to the server they are not served immedi-
ately, but wait until the high priority queue is empty. The mean waiting time is
the limit limg(x)→0 T2(g(x)). As limx→θ g(x) = 0, then

lim
g(x)→0

T2(g(x)) =
Wθ,0

1− ρ
(1)
θ

=
λ1X2

θ

(1)

2(1− ρ
(1)
θ )2

.

Let us notice that

lim
g(x)→0

T2(g(x)) ̸= T1(θ) =
θ +Wθ,0

1− ρ
(1)
θ

.

Class-2 jobs wait in the system to be served in the low priority queue, the mean
waiting time is limg(x)→0 T2(g(x)). Class-1 jobs of size more then θ may also
wait in the system to be served in the low priority queue (until the high priority
queue is emptied), the mean waiting time for them is T1(θ). Property 1 shows
that these two mean waiting times are not equal, so class-1 jobs and class-2 jobs
wait different times to start to be served in the low priority queue.

Property 2. Let us consider what happens during a time interval in which no
new job arrives. We concentrate on the low priority queue and we consider that
all class-1 jobs and all class-2 jobs already received the same amount of service.
Let n1 and n2 be the number of jobs in class-1 and class-2 and let x1 and x2 be
the attained services of every job in these classes. Then at any moment

h1(x1) = h2(x2).

Consider a very small time interval of length ∆, then let ∆1 and ∆2 be the
amount of service that each class-1 and class-2 jobs receive. It then follows that

n1∆1 + n2∆2 = ∆. (9)

In addition it follows that h1(x1+∆1) = h2(x2+∆2), and since ∆ is very small
we can then approximate

hi(x+∆i) = hi(x) +∆ih
′
i(x), i = 1, 2,
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and as a consequence ∆1h
′
1(x1) = ∆2h

′
2(x2). Then using (9) we get

∆1

∆
=

h′
2(x2)

n1h′
2(x2) + n2h′

1(x1)
,

∆2

∆
=

h′
1(x1)

n1h′
2(x2) + n2h′

1(x1)
.

In the case of two Pareto distributions this becomes we get:

∆1

∆
=

c1
n1c1 + n2c2

,
∆2

∆
=

c2
n1c1 + n2c2

.

Interestingly, the service rates of class-1 and class-2 jobs do not depend on the
current jobs’ attained services.

Property 3. According to the definition of the function g(x) we can conclude
that the class-1 job of size x and class-2 job of size g(x), if they coincide in the
system, will leave the system at the sime time. However on average, the mean
sojourn times do not coincide, i.e.,

T1(x) ̸= T2(g(x)).

This follows from expressions (7) and (8).

3.4 Two Pareto classes with hazard rate functions that cross

Now let us consider the case when the hazard rate functions cross, namely, when
a∗∗ = (c2b1 − c1b2)/(c1 − c2) ≥ 0, see Figure 2. Assume c1 > c2, then h1(0) <
h2(0) and thus class-2 jobs are served in the high priority queue until they receive
θ∗ = (c2b1 − c1b2)/c1 amount of service. Here θ∗ is such that h2(θ

∗) = h1(0)
and g(θ∗) = 0. Class-2 jobs with attained service than θ and class-1 jobs share
the service. If at any given time, more than one job have the highest hazard
rate, then they will be served in such a way so the hazard rates remain equal.
According to this analysis we have the following corollary of Proposition 2:

Corollary 1. In the two-class M/G/1 queue where the job size distributions
are Pareto, given by (5) such that the hazard rate functions cross, and which is
scheduled with the Gittins optimal policy, the mean conditional sojourn times for
class-1 and class-2 jobs are

T1(x) =
x+Wx,g(x)

1− ρ
(1)
x − ρ

(2)
g(x)

, x ≥ 0,

T2(x) =
x+W0,x

1− ρ
(2)
x

, x ≤ θ∗,

T2(g(x)) =
g(x) +Wx,g(x)

1− ρ
(1)
x − ρ

(2)
g(x)

, x > θ∗.

Proof: The proof is similar to that of Proposition 2 and is omitted. 2



Sojourn time in a multi-class single server 9

3.5 Multiple Pareto classes

We now consider a queue with an arbitrary number of classes. Jobs size distri-
butions are Pareto of the form

Fi(x) = 1− 1

(x+ 1)ci
, i = 1, . . . , N.

Then, the hazard rates

hi(x) =
ci

(x+ 1)
, i = 1, . . . , N,

never cross. Without loss of generality, let us consider that c1 > c2 > . . . > cN .
We define the values of θi,j and gi,j(x), i, j = 1, . . . , N in the following way

hi(θi,j) = hj(0),

hi(x) = hj(gi,j(x)).

Then we get

gi,j(x) =
cj
ci
(x+ 1)− 1, θi,j =

ci
cj

− 1.

We note that θk,i < θk,i+1 and θi,k > θi+1,k, k = 1, . . . , N , i = 1, . . . , N − 1,
i ̸= k, i ̸= k + 1, see Figure 3. Let us denote that θi,i = 0 for i = 1, . . . , N .

x

h1(x)

h2(0)

h1(0)

h2(x)

h3(x)

θ1,2 θ1,3 yg1,2(y)g1,3(y)

Fig. 3. Multiple Pareto classes:
hazard rate functions

µ1

h1

h2(x)

x

h2(x1)

h2(x2)

a∗x1 < a∗ x2 > a∗

Fig. 4.Hazard rate for exponential
and hyperexponential service time
distributions.

Optimal policy. There are N queues in the system. Class-1 jobs arrive to the
system and go to the first-priority queue-1. There they are served according to
the LAS policy until they receive θ1,2 amount of service. Then they are moved
to the queue-2, which is served only when the queue-1 is empty. In the queue-2
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jobs of class-1 are served together with jobs of class-2. Every moment the ser-
vice is given to the job with the highest hi(a), i = 1, 2. When jobs of class-1
attain service θ1,3 they are moved to the queue-3 and similarly when class-2
jobs attain service θ2,3 they are also moved to the queue-3. In queue-3 the jobs
of class-1, class-2 and class-3 are served together. Every moment of time the
service is given to the job with the highest hi(a), i = 1, 2, 3, where a is a jobs
attained service. The policy operates similarly for an arbitrary number of classes.

Conditional Sojourn Time. The mean conditional sojourn time for the tagged
job belonging to class-k consists of the service requirement, the mean workload
in the system upon arrival which has to be served before the tagged job, and the
mean workload which arrives during the sojourn time of the tagged job and has
to be served before it. Let the tagged job belong to class-1 and let x be its size.
Jobs which have the same priority in the system and which have to be served
before the tagged job are: class-1 jobs of size less than x, class-i jobs of size less
than g1,i(x).

For the distribution Fi(x) truncated at y, let Xn
y

(i)
denote the n-th moment

and let ρ
(i)
y denote the utilization factor, respectively. The mean workload in the

system which has to be served before the tagged job finishes its service is then
given with Pollaczek-Khinchin formula and equals to

Wx,g1,2(x),...,g1,N (x) =

∑N
i=1 λiX2

g1,i(x)

(i)

2(1−
∑N

i=1 ρg1,i(x)
(i))

.

We can then state the following result.

Proposition 3. For class-1 jobs of size x such as θ1,p < x < θ1,p+1, p =
1, . . . , N and corresponding class-k jobs with sizes g1,k(x), k = 2, . . . , p the mean
conditional sojourn times are given by

T1(x) =
x+Wx,g1,2(x),...,g1,p(x)

1− ρ
(1)
x − ρ

(2)
g1,2(x)

− · · · − ρ
(p)
g1,p(x)

,

Tk(g1,k(x)) =
g1,k(x) +Wx,g1,2(x),...,g1,p(x)

1− ρ
(1)
x − ρ

(2)
g1,2(x)

− · · · − ρ
(p)
g1,p(x)

.

Here we consider that θi,N+1 = ∞, i = 1, . . . , N .

Proof: The proof, even though notationally cumbersome, is similar to that of
Proposition 2. 2

4 Hyperexponential and exponential service time
distributions

In this section we consider a two class M/G/1 queue. The job size distributions
for class-1 and class-2 jobs are exponential and hyperexponential:

F1(x) = 1−e−µ1x, F2(x) = 1−pe−µ2x−(1− p)e−µ3x. (10)
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The mean service requirement for class-1 and class-2 jobs are 1/µ1 and (µ3p +
(1− p)µ2)/(µ2µ3), respectively.

Note that the hazard rates are

h1(x) = µ1, h2(x) =
pµ2e

−µ2x + (1− p)µ3e
−µ3x

pe−µ2x + (1− p)e−µ3x
, x ≥ 0.

The hazard rate functions are depicted in Figure 4. We note that h2(x) is decreas-
ing in x. As both hazard rate functions are non-increasing the Gittins (optimal)
policy will give service to the job(s) with highest hazard rate.

The possible behaviors of the hazard rate functions, which will depend on
the values of µ1, µ2, µ3 and p, determine the optimal policy in the system. If the
hazard rate functions never cross, the hazard rate of class-1 is higher than the
hazard rate of class-2, then class-1 jobs are served with priority to class-2 jobs.
This happens when h1(x) = µ1 > h2(0). Let us assume that µ2 > µ3, then since
h2(0) = pµ2 + (1− p)µ3, we conclude that if µ1 > µ2 > µ3 then µ1 > h2(0). In
this case the optimal policy is a strict priority policy which serves class-1 jobs
with strict priority.

When µ2 > µ1 > µ3 and µ1 < pµ2 + (1 − p)µ3, then there exists a unique
point, denoted by a∗, of intersection between h2(x) and h1(x). It is easy to see
that

a∗ =
1

µ2 − µ3
ln

(
p(µ2 − µ1)

(1− p)(µ1 − µ3)

)
.

Optimal policy. There are three queues in the system, which are served with
strict priority between them. The second priority queue is served only when the
first priority queue is empty and the third priority queue is served only when the
first and second priority queues are empty. Class-2 jobs arrive to the system are
served in the first priority queue according to LAS they get a∗ units of service.
Afterwards they are moved to the third priority queue. Class-1 jobs arrive to the
system and go to the second priority queue. Since h1(x) = µ1, class-1 jobs can
be served with any non-anticipating scheduling policy.

4.1 Mean conditional sojourn time

Let us recall that the mean workload in the system for class-1 jobs of size less
than x and class-2 jobs of size less than y is Wx,y and is given by (6). We have
the following result:

Proposition 4. In the two-class M/G/1 queue where the job size distributions
are exponential and hyperexponential and which is scheduled with the Gittins
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policy, the mean conditional sojourn times for class-1 and class-2 jobs are:

T1(x) =
x+Wx,a∗

1− ρ
(1)
x − ρ

(2)
a∗

, x ≥ 0, (11)

T2(x) =
x+W0,x

1− ρ
(2)
x

, x ≤ a∗, (12)

T2(x) =
x+W∞,x

1− ρ
(1)
∞ − ρ

(2)
x

, x > a∗. (13)

Proof: The proof is similar to that of Proposition 2 and is therefore omitted. 2

4.2 Pareto and exponential service time distributions

We can apply the same analysis when the service time distribution of one class
is Pareto instead of hyperexponential. Let F1(x) = 1 − e−µ1x and F2(x) =
1− bc22 /(x+ b2)

c2 . Then h1(x) = µ1 and h2(x) = c2/(x+ b2). The crossing point
is a∗ = c2/µ1 − b2. When a∗ ≤ 0 the hazard rate functions do not cross and
then the optimal policy is to give strict priority to class-1 jobs. If a∗ > 0 then
the hazard rate functions cross at one point and the optimal policy is the same
as in the previous section. Then the expressions of the mean conditional sojourn
timed of class-1 and class-2 are also (11), (12) and (13).

5 Numerical results

We consider two classes with Pareto service time distribution and we compare the
mean unconditional sojourn time for various policies. We consider two different
set of parameters, which we call V1 and V2 (see Table 1). The load of class-1 is
kept fixed, and we vary the arrival rate of class-2 in order to change the total
load in the system.

Table 1. Two Pareto classes, parameters

V c1 c2 E[X1] E[X2] ρ1 ρ2 ρ

V1 25.0 2.12 0.04 0.89 0.1 0.4..0.85 0.5..0.95

V2 10.0 1.25 0.05 1.35 0.25 0.25..0.74 0.5..0.99

For the Gittins policy, we calculate the mean unconditional sojourn time
using equations (6), (7) and (8).

In addition to Gittins’ policy, we also consider PS, FCFS and LAS. The mean
unconditional sojourn time for these policies can be found for example in [9].
For PS we have

T
PS

=
ρ/λ

1− ρ
,
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journ times with respect to the load ρ,
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and for FCFS

T
FCFS

= ρ/λ+W∞,∞,

where W∞,∞ means the total mean unfinished work in the system. For LAS we
have

T
LAS

=
1

λ1 + λ2

∫ ∞

0

T
LAS

(x)(λ1f1(x) + λ2f2(x))dx,

where T
LAS

(x) =
x+Wx,x

1−ρ
(1)
x −ρ

(2)
x

.

The mean sojourn times for the parameters sets V1 and V2 are presented
in Figures 5 and 6. For the results of V2 we do not plot the mean sojourn
time for the FCFS policy as class-2 has an infinite second moment. The relative
gains in mean sojourn time between the Gittins and LAS and Gittins and PS

policies are the following. For the set of parameters V1:maxρ2

T
FCFS−T

πG

T
FCFS = 0.99,

maxρ2

T
PS−T

πG

T
PS = 0.78 and maxρ2

T
LAS−T

πG

T
LAS = 0.45. For the set of parameters

V2: maxρ2

T
PS−T

πG

T
PS = 0.98 and maxρ2

T
LAS−T

πG

T
LAS = 0.39. The maximal gain is

achieved when the load in the system is around 0.9. We note that the performance
with PS is significantly worse than with LAS and Gittins.

6 Conclusions

In [7], Gittins considered an M/G/1 queue and proved that the so-called Gittins
index rule minimizes the mean delay. The Gittins rule determines, depending on
the jobs attained service, which job should be served next. Gittins derived this
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result as a by-product of his groundbreaking results on the multi-armed bandit
problem.

In [1], the authors showed that the Gittins policy could be used to charac-
terize the optimal scheduling policy when the hazard rate of the service time
distribution is not monotone. In this paper we have used the Gittins policy in
order to characterize the optimal scheduling discipline in a multi-class queue.
Our results show that, even though all service times have a decreasing hazard
rate, the optimal policy can significantly differ from LAS, which is known to be
optimal in the single-class case.

For several important particular cases we have calculated analytically the
mean conditional sojourn time. Our approach relies on the combination of the
collective mark method and the tagged-job approach pioneered by Kleinrock. Nu-
merical computations show that the optimal multiclass policy can significantly
outperform classical scheduling policies like PS and FCFS.
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Appendix: Proof of Proposition 2

Class-1 jobs of size x ≤ θ are served in the high priority queue with LAS policy,
so the expression for the mean conditional sojourn time for this case is known,
see [9, Section 4.6], as is given by (6).

Let us consider class-1 jobs with sizes x > θ and class-2 jobs, which are served
in the low priority queue. There is a strict priority between the queues and the
low priority queue is served only when the high priority queue is empty. Then
the low priority queue is a queue with batch arrivals. To find the expressions
of the mean conditional sojourn times in the system we carry out an analysis
similar to the one of Kleinrock for Multi-Level Processor-Sharing queue see [9,
Section 4.7].

In the following analysis we consider only class-1 jobs with service require-
ments smaller than x and class-2 jobs with service requirements smaller than
g(x). We have the following Lemma.

Lemma 1. The mean conditional sojourn times for class-1 job of size x > θ
and for class-2 job of size g(x) > 0 is given by

T1(x) =
θ +Wθ,0

1− ρ
(1)
θ

+
α1(x− θ, g(x))

1− ρ
(1)
θ

, (14)

T2(g(x)) =
Wθ,0

1− ρ
(1)
θ

+
α2(x− θ, g(x))

1− ρ
(1)
θ

, (15)
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where α1(x− θ, g(x)) and α2(x− θ, g(x)) are the times spent in the low priority
queue by class-1 and class-2 jobs respectively and equal to

α1(x− θ, g(x)) =
x− θ +A1(x) +Wb

1− ρb
,

α2(x− θ, g(x)) =
g(x) +A2(g(x)) +Wb

1− ρb
,

where Wb is the mean workload in the low priority queue which the tagged batch
sees when arrives to the low priority queue, ρb is the load in the low priority
queue and Ai(x), i = 1, 2 are the mean workload that arrives together with the
tagged job in the batch.

Proof: Let us consider that the tagged job is from class-1 and has a size x > θ.
The time it spends in the system consists of the mean time it spends in the
high priority queue. This time is

θ+Wθ,0

1−ρθ
as it has to be served only with class-1

jobs until it gets θ amount of service. After the tagged job is moved to the low
priority queue after waiting while the high priority queue becomes empty. The
time α1(x − θ) is the time spent by the tagged job in the low priority queue.
This time consists of the time spent to serve the job itself, x − θ, of the mean
workload in the low priority queue which the tagged job finds, Wb, of the mean
work which arrives in the batch with the tagged job, A1(x) and of the mean
work which arrives during the sojourn time of the tagged job, α1(x− θ)ρb.

We use the same analysis for the mean conditional sojourn time of the class-2
job of size g(x). 2

Now let us find the expressions for the Wb, ρb, A1(x) and A2(x). Let us define
the truncated distribution F1,θ,x(y) = F1(y), θ < y < x and F1,θ,x(y) = 0, y <

θ, y > x. Let Xn
θ,x

(i)
be the n-th moment and ρ

(i)
θ,x, i = 1, 2 be the utilization

factor for this truncated distribution. We use this notation because class-1 jobs
that arrive in the batch have already received θ units of service.

Let Ni be the random variable denoting the number of class-i jobs in a batch.

Let X
(1)
θ,x and X

(2)
g(x) denote the service requirement of a class-1 and class-2 jobs

in a batch, respectively. Then

Yb =

N1∑
i=1

X
(1)
i,θ,x +

N2∑
i=1

X
(2)
i,g(x),

is the random variable which denotes the total service requirement in a batch.
Let us denote as λb the batch arrival rate. We know that λb = λ1+λ2. According
to the previous notations we can write

ρb = λbE[Yb],

here E[Yb] is the mean work that a batch brings and by Pollaczek-Khinchin

Wb =
λbE[Y 2

b ]

2(1− ρb)
.
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We note that Wb does not depend on which class the tagged job belongs to.

Since we know the first and the second moments of X
(1)
θ,x, X

(2)
g(x), in order to find

ρb and Wb we need to know the first and the second moments of Ni, i = 1, 2. To
find these values we use the collective marks method see [8, Chapter 7].

Calculation of the Generating Function with the collective mark method.
We propose a two dimensional generating function G(z1, z2), which we obtain
using the collective mark method:

Definition 5. Let us mark jobs in a batch in the following way. We mark a job
of class-1 with probability 1 − z1, then z1 is a probability that a job of class-1
is not marked. Equivalently, class-2 jobs are marked with probability 1− z2. Let
pn1,n2 be the probability that n1 class-1 and n2 class-2 jobs arrive in the batch.
Then the Generating Function

G(z1, z2) =
∑
n1

∑
n2

zn1
1 zn2

2 pn1,n2

gives the probability that there are no marked jobs in the batch.

Let us define as a “starter” or S a tagged job. We distinguish the cases when
the starter S belongs to class-1 or class-2 and denote by G1(z1, z2) and G2(z1, z2)
the probabilities that there are no marked jobs in the batch when the starter
is from the class-1 and class-2, respectively. We consider first the case when
the starter belongs to class 1. We consider two cases depending on whether the
service requirement of the starter is less or larger than θ. Conditioning on which
class the starter belongs to we have:

G(z1, z2) =
λ1

λb
([G1(z1, z2), S ≤ θ] + [G1(z1, z2), S > θ]) +

λ2

λb
G2(z1, z2).

We have the following characterization of G(z1, z2):

Lemma 2. The Generating function satisfies

G(z1, z2) =
λ1

λb
(

∫ θ

0

e−λ1x(1−G1(z1,z2))−λ2x(1−z2)dF1(x) +

+ z1e
−λ1θ(1−G1(z1,z2))−λ2θ(1−z2)F 1(θ)) +

λ2

λb
z2. (16)

Proof: When a class-1 job arrives to the system it creates the busy period.
Until this job does not receive θ amount of service the low priority queue will
not be served. Thus, jobs that arrive to the low priority queue and jobs which
are already in the low priority queue make up the batch. The probability that
there are no marked job in this batch is G1(z1, z2).

Let the class-1 job of size x arrives to the system. Let x ≤ θ. The probability
that k1 class-1 jobs arrive in the period (0, x) is P1(x) = e−λ1x(λ1x)

k1/k1!.
The probability that all the batches generated by these k1 jobs is G1(z1, z2)

k1 ,
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because each of them generates a batch which does not have any marked jobs
with probability G1(z1, z2). During time (0, x) the probability that k2 class-2
jobs arrive to the system is P2(x) = e−λ2x(λ2x)

k2/k2!. The probability that this
jobs are not marked is not included in G1(z1, z2) and equals to zk2

2 . Then we
sum over k1 and k2 and we uncondition on x to get:

[G1(z1, z2), S ≤ θ] =

∫ θ

0

( ∞∑
k1=0

P1(x)G1(z1, z2)
k1P2(x)z

k1
2

)
dF1(x) =

=

∫ θ

0

e−λ1x(1−G1(z1,Z2))−λ2x(1−z2)dF1(x).

Let us consider now the case x > θ. The class-1 job is first served in the high
priority queue until it gets θ of service. Then it is moved to the low priority
queue. The probability that k1 class-1 jobs arrive during the service time (0, θ)
is P1(θ) = e−λ1θ(λ1θ)

k1/k1!. The probability that there are no marked jobs in
all the batches generated by these k1 jobs is G1(z)

k1 . The probability that k2
class-2 jobs arrive to the system during this interval is P2(θ) = e−λ2θ(λ2θ)

k2/k2!,
and the probability that none of these jobs is marked is zk2 .

Finally we have to take into account the “starter” itself. The probability that
the starter is not marked is z1. Then summing over k1 and k2 and unconditioning
on x we get

[G1(z1, z2), S > θ] =

∫ ∞

θ

( ∞∑
k1=0

P1(θ)G1(z1, z2)
k1z1P2(θ)z

k1
2

)
dF1(x) =

= z1e
−λ1θ(1−G1(z1,z2))−λ2θ(1−z2)F 1(θ).

We focus now on G2(z1, z2). When a class-2 job arrives to the system it
generates a batch of size one, then the probability that jobs of this batch are not
marked is simply z2, and thus G2(z1, z2) = z2.

Combining all the expressions we get (16). 2

We can now calculate E[N1], E[N2], and derive the expressions for ρb and
Wb.

Lemma 3.

ρb = 1−
1− ρ

(1)
x − ρ

(2)
g(x)

1− ρ
(1)
θ

,

Wb = Wx,g(x) −Wθ,0(1 + ρb)− θ
ρ
(1)
x − ρ

(1)
θ

1− ρ
(1)
θ

.
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Proof: For i = 1, 2 we have

E[Ni] =
∂G(z1, z2)

∂zi
|1,1,

E[Ni(Ni − 1)] = E[N2
i ]− E[Ni] =

∂2G(z1, z2)

∂z2i
|1,1,

E[N1N2] =
∂2G(z1, z2)

∂z1∂z2
|1,1.

Using bi =
E[N2

i ]
E[Ni]

− 1 and after some straightforward calculations we obtain the

result. 2

Now let us find expressions for A1(x) and A2(x).

Lemma 4. The mean workload that comes with the tagged job of class-1 of size
x in the batch and that has to be served before its service is completed equals:

A1(x) = 2(Wθ,0 + θ)ρb − θ
ρ
(2)
g(x)

1− ρ
(1)
θ

.

Proof: Since the tagged job arrives from class-1 only when the batch is started
by a class-1 job, the calculations now will depend on G1(z1, z2). We denote b1|1
and b2|1 the mean number of jobs of class-1 and class-2 which arrive in the batch
with the tagged job of class-1 when the batch is initiated by a class-1 job. Then

A1(x) = b1|1E[X
(1)
θ,x] + b2|1E[X

(2)
g(x)]− E[X(1)

θ,x].

Here

b1|1 =
∑
n1

n1
n1P(n1)

E[N1|1]
=

E[N2
1|1]

E[N1|1]
,

where N1|1 is the random variable which corresponds to the number of jobs of
class-1 in the batch when the batch is initiated by the class-1 job. So the number

of class-1 jobs that arrive in addition to the tagged job is

(
E[N2

1|1]

E[N1|1]
− 1

)
. Note

that since we condition on the fact that the starter is a class-1 job, N1|1 is now
calculated from G1(z1, z2) so:

E[N1|1] =
∂G1(z1, z2)

∂z1
|1,1,

E[N1|1(N1|1 − 1)] =
∂2G1(z1, z2)

∂z1∂z1
|1,1.

Then we can find (b1|1 − 1). Now we need to calculate b2|1, that is, the mean
number of class-2 jobs that the tagged job of class-1 job see. We have that from
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the Generating function G1(z1, z2) by conditioning on the number of class-1 jobs:

G1(z1, z2) =
∑
n1

∑
n2

zn1
1 zn2

2 pn1,n2 =
∑
n1

∑
n2

zn1
1 zn2

2 pn2|n1
pn1 ,

∂2G1(z1, z2)

∂z1∂z2
|1,1 = E[N1]

∑
n1

∑
n2

n2pn2|n1

n1pn1

E[N1]
= E[N1]b2|1.

Then we can calculate b2|1

b2|1 =
1

E[N1|1]

∂2G1(z1, z2)

∂z1∂z2
|(1,1).

Finally we find the expression for A1(x). 2

Lemma 5. The mean workload that arrives in the batch together with a class-2
job with service requirement g(x), and that has to be served before its service is
completed equals:

A2(g(x)) = 2(Wθ,0 + θ)ρb − θ
ρ
(2)
g(x)

1− ρ
(1)
θ

− θρb.

Proof: When the tagged job arrives from class-2 the batch can be started by a
class-1 or by a class-2 job, so the calculations depend on G(z1, z2). We denote
b1|2 and b2|2 the mean number of jobs of class-1 and class-2 which arrive in the
batch with the tagged job of class-2. Then

A2(g(x)) = b1|2E[X
(1)
θ,x] + b2|2E[X

(2)
g(x)]− E[X(2)

g(x)] =

= b1|2E[X
(1)
θ,x] + (b2|2 − 1)E[X(2)

g(x)].

As the tagged job is from class-2, then b2|2 = b2. We need to find the value of
b1|2. We use the fact that jobs of class-1 and class-2 arrive independently from
each other.

G(z1, z2) =
∑
n1

∑
n2

zn1
1 zn2

2 pn1,n2 =
∑
n1

∑
n2

zn1
1 zn2

2 pn1|n2
pn2

∂2G(z1, z2)

∂z1∂z2
|1,1 = E[N2]

∑
n1

∑
n2

n1pn1|n2

n2pn2

E[N2]
= E[N2]b1|2.

Then

b1|2 =
1

E[N2]

∂2G(z1, z2)

∂z1∂z2
|1,1.

From here we get the expression for A2(g(x)). 2

The result of Proposition 2 now follows by observing that after substitution
of all the terms, (14) and (15) become (7) and (8), respectively.


