
Load Balancing in Processor Sharing Systems

E. Altman1, U. Ayesta2,3 , B.J. Prabhu2

1 INRIA Sophia Antipolis, France, email: altman@sophia.inria.fr
2 LAAS-CNRS, Université de Toulouse, France. e-mail: {urtzi,bjprabhu}@laas.fr

3 BCAM - Basque Center for Applied Mathematics, Derio, Spain

May 26, 2009

Abstract

We investigate optimal load balancing strategies for a multi-class multi-server processor-sharing system

with a Poisson input stream, heterogeneous service rates, and a server-dependent holding cost per unit

time. Specifically, we study (i) the centralized setting in which a dispatcher routes incoming jobs based on

their service time requirements so as to minimize the weighted mean sojourn time in the system; and (ii)

the decentralized, distributed non-cooperative setting in which each job, aware of its service time, selects a

server with the objective of minimizing its weighted mean sojourn time in the system. For the decentralized

setting we show the existence of a potential function, which allows us to transform the non-cooperative

game into a standard convex optimization problem.

For the two aforementioned settings, we characterize the set of optimal routing policies and obtain a

closed form expression for the load on each server under any such policy. Furthermore, we show the existence

of an optimal policy that routes a job independently of its service time requirement. We also show that the

set of servers used in the decentralized setting is a subset of set of servers used in the centralized setting.

Finally, we compare the performance perceived by jobs in the two settings by studying the so-called Price

of Anarchy (PoA), that is, the ratio between the decentralized and the optimal centralized solutions. When

the holding cost per unit time is the same for all servers, it is known that the PoA is upper bounded by the

number of servers in the system. Interestingly, we show that the PoA for our system can be unbounded. In

particular this indicates that in our system, the performance of selfish routing can be extremely inefficient.

keywords: Load balancing, M/G/1 processor-sharing queues, server farms, potential game, Price of Anarchy.

1 Introduction

Communication services such as web server-farms, database systems and grid computing clusters, routinely

employ multi-server systems to provide a range of services to their customers. An important issue in such

systems is to determine the server to which an incoming request should be routed to in order to optimize a

given performance criterion. From the service provider’s perspective, this choice of the strategy (centralized

or decentralized) and the service discipline (Processor Sharing (PS), First-Come-First-Served (FCFS), etc.)

determines the amount of resources it needs to deploy in order to guarantee a certain Quality-of-Service (QoS)

to its customers. Thus, an investigation of load balancing or routing strategies in multi-server systems can

give guidelines to the service provider on dimensioning its system.

In this paper we study the optimal load balancing in a multi-server processor-sharing system with heteroge-

neous service capacities. This configuration is also known as processor-sharing server-farms, and is a popular

architecture in computing centers, used for example in the Cisco Local Director, IBM Network Dispatcher and

1



Microsoft Sharepoint (see [5] for a recent survey). This configuration can also be used to model a web server

farm, where requests for files (or HTTP pages) arrive to a dispatcher are dispatched immediately to one of

the servers in the farm for processing. With each server, we associate a service capacity (i.e., some servers

could be faster than the others) and a holding cost per unit time. We assume that requests arrive as a Poisson

process, and that the service requirement of each request has finite support. For such a multi-server system,

we investigate load balancing in which the service requirements of each arrival are known to the dispatcher

in two different settings: (i) the centralized setting in which a dispatcher assigns the server to an incoming

request with the objective of minimizing the weighted mean sojourn time of jobs in the system, and (ii) the

distributed non-cooperative setting in which an incoming request selects a server in order to minimize its own

weighted mean sojourn time in the system. In both cases we assume that the only information available to the

decision maker (the dispatcher or the request itself) is the service time requirement of the request. This might

be the case, for example, in situations where not all the servers are in the same location and it may be costly

to gather information on the current queue lengths at the various servers. An important real life application is

provided by the so-called Source Code Repositories on the Internet. In Figure 1 we depict a typical interface

of a source code repository. The user can choose from which server he wishes to download the piece of code.

The only information available is the location of the server. The user can either select a server based on this

information, or let the central unit decide which one is the best. Since downloads progress in parallel it is

reasonable to assume that the service discipline at the session level can be modeled by a Processor-Sharing

model.

x x
Figure 1: Interface of SourceForge (http://sourceforge.net/), a popular source code repository.

The main contributions of the present work are as follows. For both settings, we characterize the set of optimal

routing policies, and give closed-form expressions for the load on each server under any optimal policy. It is

worthwhile to note that for the distributed non-cooperative setting this is done by showing the existence of a

potential function, which allows us to transform the non-cooperative game into a standard convex optimization

problem. We then give an optimal policy in which an incoming request is routed to a server with a probability

that is independent of the service requirement of the request. This property of the PS discipline could be useful

in systems in which the service requirement of requests is not known a priori and it illustrates an important

difference between the optimal load balancing policy in a PS server-farm and FCFS server-farm, since in the

case of a FCFS server-farm it has been shown that the optimal load balancing does use information on the

service requirement of each request [11, 9]. Further, we show that higher the ratio of the holding cost per unit

time to the service capacity of a server the lighter is the load on it, thus defining an index to order the servers.

For certain input parameters (i.e., an arrival process, service time distribution, available service capacities,

holding cost per unit time), it is thus possible that some of the servers will not be processing any requests. We

2



show that the set of servers processing requests in the decentralized setting is a subset of that in the centralized

setting. Thus, there is a trade-off in the performance gains and cost of servers to be considered when choosing

between the two settings. We also note that, given the input parameters, this analysis gives the set of servers

that a service provider should choose in order to minimize the mean sojourn time in its system. Finally, we

compare the performance perceived by jobs in the two settings by studying the so-called Price of Anarchy

(PoA), that is, the ratio between the selfish decentralized and the optimal centralized solutions. When the

holding cost per unit of time is the same in every server it is has been shown that the PoA is upper bounded

by the number of servers in the system, see for example [23, 12]. Interestingly, we show that for our system

the PoA is unbounded, that is, it can be arbitrarily close to infinity. This indicates that unequal holding costs

may have a profound impact on the system’s performance. In particular, the performance of selfish routing

can be unboundedly worse than the performance obtained by a centralized routing.

1.1 Related work

Load balancing in multi-server systems has been previously investigated not only in the context of commu-

nications services but also in the broader context of queueing systems. Global and individual optimality in

load balancing are considered in the monograph [14], which does not consider decisions based on knowledge

of the amount of load. Systems with general service time distribution and FCFS scheduling discipline were

studied in [7, 2, 3, 9], while [18, 12] studied systems with exponential service time distributions and arbitrary

scheduling discipline. In [10] the authors analysed a multi-server PS system where requests join the server that

has the smallest number of requests. In a recent work [6] the authors investigate the performance of a server

farm where the scheduling discipline in each server is SRPT (Shortest Remaining Processing Time First). In

[8] the authors studied the performance of selfish routing in a server farm with a min-max objective, that is,

when the objective is to minimize the maximum sojourn time in the servers.

Our work is closely related to [23] and [12]. The main differences are that (i) we consider a multi-class job

arrival process, allowing the dispatcher to use information on the size of the requests and (ii) the addition of a

heterogeneous holding cost per time unit in each server. As we will see, both (i) and (ii) generalizations allow

us to draw important conclusions, that to the best of our knowledge were not known before.

By considering a multi-class system, we wish to analyze how the information on the service requirements of

users impacts the structure of the optimal load balancing. Our results show that the structure of the optimal

routing in a system with the PS scheduling discipline is radically different with respect to the FCFS case.

For a multi-server FCFS system with homogeneous service capacities it was conjectured in [11], and proved

in [9], that the optimal load balancing scheme consists in assigning to each server all jobs whose processing

times fall within non-overlapping, continuous intervals of processing times. The intuitive explanation to this

result comes from the fact that this strategy reduces the variability of service times for each queue. Since

the mean delay in a FCFS queue is directly proportional to the variability of the service time distribution

(Pollaczek-Khinchin formula), an interval-based policy can minimize the overall mean delay in the system.

Interestingly, if the service capacities are heterogeneous an interval-based strategy need not be optimal [9].

In contrast, we show that in the case of a multi-server PS system the optimal load balancing strategy does

not take advantage of the service time information, that is, the probability that a job joins a given server is

independent of the job’s service requirement.

1.2 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we describe the system model, state the assumptions,

and give the mathematical formulation for the problem under consideration. In Section 3, we treat the

centralized setting, which is followed by the treatment of the decentralized setting in Section 4. In Section 5,

we compare the performance of the two settings using various measures, such as the server utilization and the

3



Price of Anarchy.

2 Model formulation

Consider a server farm consisting of a set of C servers. Let S = {1, 2, ..., C} denote the index set of the set

of servers. Server j has a service rate rj , for all j ∈ S. At every server, jobs are served according to the

processor sharing (PS) discipline. Customers arrive to the system according to a Poisson process with rate λ.

Depending on the application in mind, a customer may correspond to a job with a certain amount of service

requirement, or to a file that has to be transmitted and has a certain size. In the latter case we shall identify

the service requirement of the file as being its size.

Let {σ−1
k : 1 ≤ k ≤ K} denote the set of possible service requirements (i.e. the job sizes) and assume that K

is finite. Let K = {1, 2, ..., K} denote the index set of the set of possible service requirement. Customers have

independent and identically distributed service requirements which are sampled from {σk : k ∈ K} such that

the probability that a customer has service requirement σ−1
i is given by βi, for all i ∈ K.

As mentioned in the Introduction, we are interested in comparing the performance between the globally optimal

solution and the distributed non-cooperative problem. We assume that decisions are open-loop: they are taken

without knowledge of the queue sizes. However, we assume that the service requirement of an arriving user is

known, both to the dispatcher in the centralized case and to the user itself in the distributed non-cooperative

setting. The decision on which queue an arrival joins is assumed to depend only on that information. Since the

processes generated by splitting a Poisson process are still Poisson, each server can be seen as an M/G/1−PS

queue. We recall that the mean delay in a PS queue depends on the service time distribution only through its

mean (the so-called insensitivity property of PS [15]), therefore the mean number of jobs in an M/G/1 − PS

queue is the same as in an M/M/1 queue.

All arrivals with a given size are called a class. We thus have K classes of jobs where jobs of class i have mean

size σ−1
i . We associate with class i an arrival rate λi = λβi, and a traffic intensity ηi = λiσ

−1
i . Let

η =
∑

i∈K
ηi

denote the total input traffic intensity.

Remark 1 Note that the value of K is arbitrary. Therefore our formulation allows us to approximate a

continuous distribution arbitrarily closely, and thus we can investigate the optimal size-based routing strategy.

Notation. We shall use a lower case bold-faced character to denote a vector. The elements of a vector will be

denoted by the corresponding lower case characters. For example, a denotes the 1 × m vector (a1, a2, ..., am)

where m is the size of a. The vectors 0m and 1m will denote the 1 × m vectors with all elements as 0 and 1,

respectively. We shall use the symbol � to denote elementwise inequality for vectors.

Strategies. A strategy for a class i of customers is defined to be the probability vector (pi1, ..., piC), where

pij is the probability that a class i customer goes to queue j. Note that for any strategy
∑C

j=1 pij = 1. We

define a multi-strategy p = (pij), 1 ≤ i ≤ K, 1 ≤ j ≤ C as the matrix of strategies of all classes.

For a multi-strategy p, let ρi
j(p) denote the load on server j due to class i. The total load on server j is given

by

ρj(p) =
∑

i∈K
ρi

j(p) =
∑

i∈K

ηipij

rj
. (1)

From queueing theory we know that server j is stable if ρj(p) < 1. We shall say that p is a stable multi-

strategy if all servers are stable. The next proposition states the necessary and sufficient condition for the

existence of a stable multi-strategy.

4



Proposition 1 There exists a stable multi-strategy if and only if

∑

j∈S
rj > η. (2)

Proof: For a multi-strategy p, from (1) we get

rjρj(p) =
∑

i∈K
ηipij , for all j ∈ S.

Summing over all j and interchanging the two summations on the right-hand side we get

∑

j∈S
rjρj(p) =

∑

i∈K
ηi

∑

j∈S
pij = η. (3)

If
∑

j∈S rj < η, then the load on some server must be larger than 1 for (3) to hold. Thus, (2) is necessary for

the existence of a stable multi-strategy.

Now, assume (2) and consider the multi-strategy defined by

pij =
rj

∑

k∈S rk
, for all i ∈ K, and for all j ∈ S.

Due to the splitting property of Poisson processes, the arrival process to each of the queues will also be Poisson

under this multi-strategy. Then, each server can be modeled as an M/G/1 queue with

ρj(p) =
∑

i∈K

ηipij

rj
=

∑

i∈K ηi
∑

k∈S rk
< 1. (4)

and as a consequence every server j is stable. Thus, (2) is sufficient for the existence of a stable multi-strategy.

�

Assumption 1 The traffic intensities and the service rates are such that (2) is always satisfied.

Note that if p is a stable multi-strategy, then necessarily
∑C

j=1 ρj(p) < C.

Since all the queues in our system are M/G/1 − PS queues, the mean number of jobs at any queue has the

insensitivity property: it depends on the service distribution only through its expectation. For all j ∈ S, the

mean number of jobs is given by

E[Nj(p)] =
ρj(p)

1 − ρj(p)
, (5)

for ρj(p) < 1, and is infinity otherwise.

The total arrival rate to server j is
∑K

i=1 λipij . Thus, by Little’s law the mean sojourn time at queue j is

given by

E[Tj(p)] =
E[Nj(p)]
∑K

i=1 λipij

. (6)

Even though sometimes we will not make the dependency explicit, E[Nj ], ρj and E[Tj ], for all j ∈ S, shall be

understood to depend on the multi-strategy relevant to the context.

Our objective is to determine the multi-strategy p that minimizes the weighted mean number of jobs in the

system, that is,

argmin
p

C
∑

j=1

cjE[Nj ], (7)

where cj are some constants that depend on the index of the of the queue and that can represent, for example,

a cost on the holding time. We recall that in all previous works, the case cj = c, for all j ∈ S, was studied.

5



By Little’s law, minimizing the weighted mean number of jobs is equivalent to minimizing the weighted mean

sojourn time in the system.

Finally we note that throughout the paper we will assume the servers are labeled such that

c1

r1
≤ c2

r2
≤ . . . ≤ cC

rC
. (8)

Remark 2 Since the objective function defined in (7) depends only on the mean service time at each of the

servers, we could also interpret that the arrival stream is composed of K classes, where jobs of different classes

have different service time distributions. The mean service time of class i jobs is σ−1
i , for i ∈ K. All the

results in the present paper would hold under this interpretation as well. Nevertheless, for conciseness, in the

present paper we stick to the interpretation expressed in Remark 1.

3 The Global optimization problem

In this section we consider the global optimization problem, in which a dispatcher decides where each job

will get service so as to minimize the weighted mean number of jobs in the system. The global optimization

problem can be formulated in terms of the following Mathematical Program (MP):

minimize
∑

j∈S
cjE[Nj(p)] (9)

subject to
∑

j∈S
pij = 1, for all i ∈ K; (10)

p � 0; (11)
∑

i∈K
ηipij < rj , for all j ∈ S. (12)

We note that if condition (2) is satisfied, then there exists a multi-strategy which satisfies these constraints

and vice versa.

Since the objective function is convex and the constraints are linear, MP is a standard convex programme, and

its solution can be found in polynomial time in the number of unknowns and in the number of constraints.

We note that there may exist multiple multi-strategies that minimize (9) subject to (10)-(12). To explain this

note that the performance in a server only depends on the total load it handles (see equation (5)). Consider

then a simple example with a network of two identical servers, and two identical classes. Then the multi-

strategies p11 = p22 = 1 and p12 = p21 = 1 will provide exactly the same performance, and since the objective

function is convex, both will be in fact also optimal.

3.1 Size-unaware multi-strategies

The following result will play a key role in the rest of the paper. It shows that there exists a size-unaware

multi-strategy that is optimal.

Proposition 2 Let p be a multi-strategy satisfying the constraints (10)-(12). The multi-strategy p̂ defined by

p̂ij =

∑

l∈K ηlplj

η
=

ρj(p)rj

η
, (13)

for all i ∈ K and for all j ∈ S, also satisfies the constraints (10)-(12). Moreover, the load on a server under

p̂ is equal to the load on it under p.

Proof: The equality

∑

j∈S
p̂ij =

∑

j∈S

∑

l∈K ηlplj

η
= 1,

6



for all i ∈ K, shows that p̂ satisfies (10).

Since ηi is non-negative for all i ∈ K, and p satisfies (11), p̂ also satisfies (11).

The equality
∑

i∈K
ηip̂ij =

∑

i∈K
ηi

∑

l∈K ηlplj

η
=
∑

l∈K
ηlplj

helps us to verify that p̂ indeed satisfies (12).

Finally, since

ρj(p̂) =

∑

i∈K ηip̂ij

rj
=

∑

l∈K ηlplj

rj
= ρj(p),

for all j ∈ S, the load on a server is the same under both p and p̂. �

From Proposition 2, we can infer that, for every feasible multi-strategy, there exists a feasible size-unaware

multi-strategy such that both these strategies induce the same load on the servers. Since the objective function

in the MP depends on the multi-strategy only through the induced load (cf. (5)), we can conclude that one

may restrict oneself without loss of optimality to finding policies that take routing decisions independently of

the (known) amount of service requirement of a job. The result of Proposition 2 further illustrates that the

optimal load balancing in PS server farms is rather different than in FCFS server farms, where the size of jobs

is used by the optimal routing policy.

Moreover, the value of MP (9)-(12) can be obtained by optimizing directly over the loads. The routing

probabilities can be determined later from (13), once the load on each server is determined.

Let

fj(x) =

{

cjx/(1 − x), for 0 ≤ x < 1;

∞, otherwise.

From (5) and Proposition 2, we can conclude that an optimal load balancing policy is obtained by applying

(13) to the solution of the following Reduced Mathematical Program (RMP):

minimize
∑

j∈S
fj(ρj) (14)

subject to 0 � ρ ≺ 1; (15)
∑

j∈S
rjρj = η. (16)

Constraint (16) guarantees that all incoming jobs are served.

In contrast with MP (equations (9)-(11)), who did not have a unique solution, RMP does have a unique

solution because fj(ρj), j ∈ S, is a strictly convex function.

3.2 Characterizing the solution

Depending on the values of the service rates and the holding costs per unit time, the optimal multi-strategy

may not use all servers, but due to constraint (16) we are certain that at least one server will be used. Let

SG ⊆ S denote the subset of servers that the optimal multi-strategy uses.

In the following theorem we characterize the solution of (14)-(16). In particular we note that the solution to

(14)-(16) is unique.

Theorem 1 The subset of servers that are used in the optimal load balancing is SG = {1, . . . , j∗}, where

j∗ = sup

{

j ≤ C :

j
∑

k=1

√
cjrj >

(

j
∑

k=1

rk − η

)

√

cj

rj

}

(17)

7



Under the optimal multi-strategy, the load on server j ∈ SG is

ρ∗j = 1 −
√

cj

rj

∑

k∈SG
rk − η

∑

k∈SG

√
ckrk

. (18)

Proof: The Lagrangian associated with the RMP can be defined as

L(ρ, ν, ζ, γG) =
∑

j∈S
fj(ρj) +

∑

j∈S
νj(0 − ρj) +

∑

j∈S
ζj(ρj − 1) + γG





∑

j∈S
rjρj − η



 , (19)

where ν � 0, ζ � 0 and γG ∈ R.

Note that the RMP is convex. From Proposition 1 (see (4)) there exists a feasible solution. As a consequence

by Slater’s condition [4, Section 5.2.3] strong duality is satisfied. Then, ρ∗ and (γG∗, ν∗, ζ∗) are primal and

dual optimal with zero duality gap if they satisfy the Karush-Kuhn-Tucker (KKT) conditions

0 � ρ∗ ≺ 1;
∑

j∈S
rjρ

∗
j = η;

γG∗ ∈ R; ν∗ � 0; ζ∗ � 0;

ν∗
j ρ∗j = 0, ζ∗j (ρ∗j − 1) = 0, for all j ∈ S; (20)

cj
1

(1 − ρ∗j )
2
− γG∗rj − ν∗

j + ζ∗j = 0, for all j ∈ S. (21)

Condition (20) are the so-called complementary slackness, which hold due to strong duality.

Since the objective function tends to infinity when ρj tends to 1 at any server j, it follows that necessarily

ρ∗ ≺ 1. Therefore, from (20) it follows that ζ∗ = 0. Since ν � 0, from (21) we get

γG∗ ≤ cj

rj

1

(1 − ρ∗j )
2
, for all j ∈ S, (22)

and on eliminating the variables νj from (20), we get
(

cj
1

(1 − ρ∗j )
2
− γG∗rj

)

ρ∗j = 0, for all j ∈ S. (23)

For a given server j, if γG∗ is greater than cj/rj , then (22) can only be satisfied if ρ∗j is greater than 0 as well,

which together with (23) implies that

ρj = 1 −
√

cj

rj

√

1

γG∗ . (24)

Assume now that γG∗ ≤ cj/rj . If ρj is greater than 0 then

γG∗ ≤ cj/rj <
cj

(1 − ρ∗j )
2rj

,

which violates the complementary slackness condition (23). Thus, if γG∗ ≤ cj/rj, then ρ∗j is equal to 0. In

conclusion, we have

ρ∗j =

{

1 −
√

cj

rj

√

1
γG∗ , if γG∗ > cj/rj ;

0, otherwise.
(25)

From the above equation, we see that ρ∗j are non-decreasing in γG∗. Therefore, there is a unique value of γG∗

such that constraint (16) is satisfied. Since cj/rj is non-decreasing in j, it now follows that SG = {1, . . . , j∗},
where j∗ can be computed using (22) and is such that

cj∗

rj∗
< γG∗ <

cj∗+1

rj∗+1
. (26)

8



From (24) and (16), we obtain
√

1

γG∗ =

∑

k∈SG
rk − η

∑

k∈SG

√
ckrk

, (27)

which together with (26) gives

j∗ = sup







j ≤ C :
cj

rj
<

(

∑j
k=1

√
ckrk

∑j
k=1 rk − η

)2






,

which is an equivalent condition to the one stated in (17)

On combining (26) and (25), we get

ρ∗j = 1 −
√

cj

rj

∑

k∈SG
rk − η

∑

k∈SG

√
ckrk

,

which is the result stated in (18). �

Corollary 1 The size-unaware multi-strategy, p̂∗, is given by

p̂∗ij =
ρ∗jrj

η
, for all i ∈ K and for all j ∈ S. (28)

Remark 3 The solution structure of Theorem 1 is known as water-filling. We will say more about this in

Section 4.4.

From Theorem 1 we see that ρ∗j > ρ∗i , for any j < i. Since the mean number of jobs in a server increases with

its load, we conclude that, under any optimal multi-strategy, E[Nj ] > E[Ni] for any j < i. Interestingly, in

the next proposition we show that, even though ρ∗j > ρ∗i , the weighted mean sojourn time in server j will be

smaller than the weighted mean sojourn time in server i.

Proposition 3 For the multi-strategy (28), and for any two servers j and i in SG,

cjE[Tj ] < ciE[Ti], for j < i.

Proof: From Little’s law (see equation (6)) and the multi-strategy (2) we have

cjE[Tj ] =
cjE[Nj]
∑

i∈K λip̂∗ij
=

cjE[Nj]
∑

i∈K λi
ρjrj

η

.

Substituting (18) we get

cjE[Tj ] =

√

cj

rj

η
∑

k∈SG

√
ckrk

∑

i∈K λi

(
∑

k∈SG
rk − η

) .

The result now follows by noting that for any j < i, cj/rj < ci/ri. �

3.3 Alternative characterization of the optimal solution

In this subsection we write in vector form the KKT conditions that characterize the optimal solution to the

global optimization problem. This representation will play a crucial role in determining the optimal routing

strategy in the distributed non-cooperative setting. For simplicity in the exposition, we assume that all servers

are used.

Let us first introduce the Hadamard product for matrices. For two arbitrary matrices X = (x)ij and Y = (y)ij

of the same dimension, we denote by X • Y the matrix whose (i, j) element is aijbij . Thus, the Hadamard

9



product just refers to the element-wise product of matrices. The standard product of two matrices is denoted

by X ·B. Finally for an arbitrary matrix X we denote by XT its transpose matrix.

Let t(p) be the gradient of the objective function, i.e., t(p) is a matrix of dimension K×C whose (i, j) element

is given by

tij =
∂
∑

k∈S fk(ρj(p))

∂pij
. (29)

Then, similar to the derivation of (22)-(23), p is optimal for the original problem (9)-(12) if and only if there

exist Lagrange multipliers γ1, ..., γC and a matrix Γ of dimensions K × C whose (i, j) element is given by

Γij = γj ,

such that

(t + Γ) • p = 0, (30)

t + Γ � 0, (31)

1C · pT = 1K , p � 0. (32)

Note that equations (30) and (31) are the analogue of equations (23) and (22), respectively.

This equivalent characterization through complementarity inequalities of a globally optimal solution will be

essential for the next section.

4 The individual optimality

We study now the distributed non-cooperative setting, where an arriving customer, say of class i, aware of its

required amount of service (σi)
−1, wishes to minimize its own weighted expected sojourn time. The weighting

is done according to the queue to which the file is sent as can be viewed as a pricing that may vary from one

queue to another. If a class-i user chooses to be served by server j then its weighted conditional expected

sojourn time there is

τij(p) = cjE[Tj(p)|i] =
cj

rjσi
× 1

1 − ρj(p)
. (33)

Definition 1 We say that customers of class i use queue j if ρi
j > 0; i.e., queue j receives a strictly positive

load from class i.

Definition 2 We say that a strategy p is an equilibrium for the individual optimization problem if for each

i = 1, ..., K, each j = 1, ..., C and each queue k used by class i,

E[ckTk(p)|i] = min
j=1,...,K

E[cjTj(p)|i]. (34)

Without loss of generality, we can replace the equilibrium condition in (34) with the condition

E[dickTk(p)|i] = min
j=1,...,K

diE[cjTj(p)|i]. (35)

where di are arbitrary strictly positive constants.

Equation (34) characterizes the equilibrium, since only when (34) is satisfied users will not have an incentive

to deviate from their strategy.

10



4.1 A potential game approach to obtain the equilibrium

Denote by T(p) a K × C matrix whose (i, j) element is τij(p). Let a be the matrix of dimensions K × C

whose (i, j) element is given by aij = aj .

We can characterize the equilibrium by the following relations: p is an equilibrium if and only if there is some

a such that the following holds.

(

T(p) + a
)

• p = 0, (36)

T(p) + a � 0, (37)

1C · pT = 1K , p � 0. (38)

We observe (36)-(38) and note that they are the same as the system (30)-(32), provided that we identify the

minimum cost vector a with the Lagrange multiplier vector Γ, and we identify T as a gradient vector of some

potential function G.

Since system (30)-(32) were equivalent to a global minimization, we conclude that (36)-(38) are equivalent to

the equilibrium p being the global minimum of the function G subject to the constraints (38). Note that the

minimum is unique in terms of ρj if G is a strictly convex function of ρj .

Games that can be transformed into an equivalent optimization problem with a common function optimized

jointly by all users are known as potential games. They have been introduced in [1] in the context of road

traffic, see also [19, 17, 20, 22]. In particular, the existence of a potential function is a sufficient condition for

various greedy dynamics of the game to converge to equilibrium.

Proposition 4 The distributed non-cooperative game can be transformed into a standard convex optimization

problem of minimizing
C
∑

k=1

ck log T (ρk(p)) (39)

subject to the constraints (10)-(12) where T (z) := 1/(1 − z) for 0 ≤ z < 1 and ∞ for z ≥ 1.

Proof: Define

G(p) :=
C
∑

k=1

∫ ρk(p)

z=0

ckT (z)dz. (40)

Then

G(p) =
C
∑

k=1

∫ ρk(p)

z=0

ckT (z)dz =
C
∑

k=1

ck log T (ρk(p))

Thus,
∂G(p)

∂pij
= cjT j(p) × dρj

dpij
=

cj

1 − ρj(p)
× λi

σirj
= λi

(

cjE[Tj(p)|i]
)

We conclude that G is indeed a potential as its gradient coincides with the original costs as given in (35),

where di = λi.

The optimal solution p to (39) is given by the only vector that satisfies the KKT conditions, which in turn

are precisely given by (36)-(38), where a denotes the Lagrange multiplier vector. �

This implies that indeed the game can be transformed into a standard convex optimization problem of mini-

mizing G subject to the constraints (10)-(12), whose solutions are equilibria in the original game.

As we did in Section 3.1, we can further simplify the above optimization problem. Indeed, the value is directly

obtained through minimizing G(p) :=
∑C

k=1

∫ ρk

z=0 ckT (z)dz subject to (15)-(16). The solution to the game

problem is obtained from the loads that achieve the minimization by using (13).

11



4.2 Fairness

Let us interpret the meaning of the potential function G. Define ∆k := 1 − ρk to be the excess capacity at

server k. We note that the argument that achieves the minimization of G(p) achieves the maximum of the

product of (∆1)
c1 × (∆2)

c2 × · · · × (∆C)cC . We conclude the following:

Theorem 2 The individual optimal load balancing solution coincides with the routing strategy that achieves

the weighted proportional fair excess capacities between the C servers, where the weight for server k is given

by the powers ck.

Proof: The result is a direct consequence of (39) and the definition of Proportional Fair allocation. �

4.3 Characterizing the Individual Optimal solution

Since we have shown that the individual setting corresponds to a potential game, in equilibrium, the optimal

routing strategy will minimize (40) subject to (15)-(16). We have the following result.

Theorem 3 The subset of servers that are used in the optimal routing strategy in the non-cooperative setting

is of type SI = {1, . . . , j∗}, where

j∗ = sup

{

j ≤ C :

j
∑

k=1

cj >

(

j
∑

k=1

rk − η

)

cj

rj

}

(41)

For every j ∈ SI , the load is

ρj = 1 − cj

rj

∑SI

k=1 rk − η
∑SI

k=1 ck

. (42)

Proof: See Appendix A. �

We note that a routing strategy that achieves the desired load (42) in every server (and as a consequence the

same performance) can be obtained by (13).

Remark 4 From (42) it is easy to see that (34) is satisfied for each i = 1, . . . , K and each j ∈ SI . This can

also be seen from equation (54), which implies that in every server j ∈ SI that is used the mean cost per unit

of service required at the server,
cj/rj

1−ρj
= γI , is independent of the server.

From Remark 4 and Proposition 3 we observe the main difference between the global and individual optimal

solutions. In the individual optimal solution is constrained to a solution such that the mean sojourn time

is the same in each server. In the global optimal solution the weighted mean sojourn time varies across the

servers, and in fact, it increases as the index of the server increases (see Proposition 3).

When ci = c, ∀i, equation (41) becomes

rj+1 < (

j
∑

k=1

rk −
K
∑

k=1

ηi)
1

j
. (43)

Equation (43) has a clear interpretation. Server j + 1 will not be used if the exceeding capacity per server

when j servers are used is larger than rj+1.

4.4 The structure of the selfish routing

We recall from (8) that servers are relabeled in increasing order with respect to the ratio cj/rj , j = 1, . . . , C.

Let there be M1 servers with ci/ri = c1/r1. Let there be M2 servers with ci/ri = cM1+1/rM1+1. Let there be

Mk servers with ci/ri = cMk−1+1/rMk−1+1.

12



Then, from (34), the optimal policy has the following water-filling structure. For λ sufficiently small, only the

first M1 servers receive positive flow. This flow is assigned in a way that equalizes the expected delay among

the first M1 servers. We increase λ till a point where

c1

σ1r1
× 1

1 − ρ1(p)
=

c2

σ2r2
.

From this point, we route flow to all M1 +M2 first servers in a way that equalizes the expected delays on these

servers. No flow is sent to other servers.

This type of solution is often referred as to water-filling.

5 Comparing the global and individual optimum solutions

In this section we compare the optimal load balancing expressed in Theorems 1 and 3. Our first result shows

SI ⊆ SG, that is, the number of servers that are used in the global optimum solution is greater or equal to the

number of servers used in the distributed non-cooperative setting. This indicates that in the non-cooperative

setting, users will tend to overload fast servers, and fail to recognize the benefits that using a slower server

can have. A similar property was proven in [2] for a exponential multi-server system.

In this section, ρG
j and ρI

j will denote the load in server j in the optimal solution, respectively. In view of

(24) and (54) we will consider that both ρG
j := ρG

j (γ) and ρI
j := ρI

j (γ) are a function of a common variable γ.

We start with the following Lemma.

Lemma 1 For 0 < γ ≤ cj/rj, ρG
j (γ) = ρI

j (γ) = 0. For γ > cj/rj, ρG
j (γ) < ρI

j (γ).

Proof: The case γ ≤ cj/rj is obvious. For the second case, we have

γ > cj/rj

√
γ

√
γ

√
γ >

√

cj

rj
=

cj

rj
√

cj

rj

√

cj

rj

√

1

γ
>

cj

rj

1

γ

and from equations (24) and (54) it follows that ρG
j (γ) < ρI

j (γ). �

Proposition 5 For any arrival rate and service time distribution it holds SI ⊆ SG

Proof: From Theorems 1 and 3 (equations (27) and (56)) it is sufficient to prove that γG > γI . We prove the

statement by contradiction. Assume that γG ≤ γI . If γI < cj/rj , then ρI
j (γ) = ρG

j (γ) = 0. If γI > cj/rj then

ρI
j (γ

I) > 0 and from Lemma 1 we have

ρI
j = ρI

j (γ
I)

γI≥γG

≥ ρI
j (γ

G)

Lemma 1
> ρG

j (γG) = ρG
j .

It follows then that
∑C

j=1 rj(ρ
I
j−ρG

j ) > 0, but this is a contradiction with (3), and as a consequence γG > γI . �

In the following theorem we show that the individual optimal overloads the servers with smallest cj/rj .

13



Theorem 4 There exists an index i∗ such that
{

ρG
j < ρI

j j < i∗

ρG
j > ρI

j j ≥ i∗.

Proof: Due to constraint (3), there exists an index i∗ such that ρG
i∗ > ρI

i∗ . Now it suffices to show that

ρG
j > ρI

j , for all j > i∗. From (24) and (54) we have that

ρG
i∗ > ρI

i∗
√

ci∗

ri∗

√

1

γG
<

ci∗

ri∗

1

γI

γI <

√

ci∗

ri∗

√

γG.

Since j > i∗, it follows that cj/rj > ci∗/ri∗ . Thus

γI <

√

ci∗

ri∗

√

γG

<

√

cj

rj

√

γG

=

cj

rj
√

cj

rj

√

γG,

and rearranging we get
√

cj

rj

√

1
γG <

cj

rj

1
γI . From (24) and (54) it follows that ρG

j > ρI
j . �

5.1 Price of Anarchy

We now study the so-called Price of Anarchy.

Definition. The price of anarchy (PoA) is defined as the ratio between the performance (mean delay) obtained

by the Wardrop equilibrium and the global optimal solution [16] (see also [21]).

By Little’s law, calculating the ratio between the mean delays is equivalent to calculating the ratio of the mean

number of users. Then from the objective function (7) and the solution of Theorems 1 and (3) we get (note

that x
1−x = 1

1−x − 1):

PoA =

P

k∈SI
ck

P

k∈SI
rk

P

k∈SI
rk−η −∑k∈SI

ck

“

P

k∈SG

√
ckrk

”

2

P

k∈SG
rk−η −∑k∈SG

ck

. (44)

The Price of Anarchy has been studied as a measure of the inefficiency of selfish-routing (or non-cooperative

decentralized) in networks. This measure has received lot of attention in recent years. For example, in an

important general result, it has been shown that when the cost function in every arc is linear, then for any

arbitrary multi-commodity network the PoA is upper bounded by 4/3 [21]. In [12] and [23] the authors study

a multi-server system with the objective of minimizing (7) with equal costs, that is, cj = c, ∀j, and show

that PoA ≤ C, with C denoting the number of servers. Note that the upper bound holds for any parameter

configuration. In addition, in [12, Example 3.1] it is shown that the upper bound is tight, i.e., there exists a

network configuration such that the PoA is arbitrarily close to C. This result indicates that the inefficiency of

selfish routing is limited. In Theorem 5 we show that this changes dramatically when holding costs per unit

of time associated to each server are considered in the objective function. In this case the PoA is unbounded,

that is, for every θ < ∞, there exist a set of values such that PoA > θ. Our main result on the Price of

Anarchy is the following.

14



Theorem 5 For every θ, there exist cj and rj, j ∈ S, such that PoA > θ.

Proof: In order to prove this result we construct an example in which PoA can be unbounded. Let r1 > η,

and let cj = rj = 1 for 2 ≤ j ≤ C. Let

(r1 − η)2

r1
< c1 < r1 − η. (45)

For this particular choice of costs and server speeds, cj/rj is non-decreasing in j.

We first show that in the globally optimal multi-strategy all the servers are used, whereas in the solution of

the individual optimization problem only the first server is used.

Global optimization: Note that cj/rj = 1, ∀j ≥ 2. In view of (17), server j, j ≥ 2, will be used if

j
∑

k=1

√
cjrj =

√
c1r1 + j − 1

> r1 − η + j − 1 =

(

j
∑

k=1

rj − η

)

√

cj

rj
,

where the inequality follows from the assumption c1 > (r1−η)2

r1

. Since this is true for every j ≤ C, the load on

every server is positive.

Individual optimization: For j = 2, the left-hand side of (41) we have

c1 + c2 = c1 + r2

< r1 − η + r2 = (r1 + r2 − η)

√

c2

r2
,

where the inequality follows from the assumption c1 < r1 − η. Thus, in the non-cooperative setting all the

jobs choose to go to the first server.

From (44), the Price of Anarchy

PoA =

(

c1r1

r1 − η
− c1

)

× 1
(
P

k∈SG

√
ckrk)2

P

k∈SG
rk−η −∑k∈SG

ck

=
c1η

r1 − η
× r1 − η + (C − 1)

(
√

c1r1 + (C − 1))2 − (c1 + (C − 1))(r1 − η + (C − 1))
(46)

Since (r1−η)2

r1

< c1 < r1 − η, let

c1 =
1

2

(

(r1 − η)2

r1
+ r1 − η

)

= (r1 − η)
2r1 − η

2r1
. (47)

Now as r1 ↓ η, the numerator of (46) tends to η2(C − 1), whereas the denominator tends to 0.

Therefore, by choosing r1 close enough to η, the Price of Anarchy for this system can be made to exceed any

given real number. �

Remark 5 We note that examples where the PoA is unbounded have been previously found. For instance,

it is easy to determine an instance of the popular Prisoner’s dilemma where the PoA is unbounded. It also

follows from the network studied in [13] that the PoA is unbounded.

15



5.1.1 Discussion on Theorem 5

In order to provide an intuitive idea behind Theorem 5, first note that a key underlying idea is that in

the global optimal all servers are used, whereas in the non-cooperative setting only one server is used. This

property follows directly from the the upper and lower bounds of (45). Let us consider the lower bound in (45).

From equations (26) and (27) and the water-filling structure of the solution, we see that if r1c1

(r1−η)2 < c2

r2

= 1,

only server 1 will be used. Server 2 (and similarly all other servers), will start being used exactly when

c1 > (r1 − η)2/r1, which explains the lower bound on c1 in (45). Similarly, from (55) and (56) we can see that

the upper bound in (45) guarantees that only server 1 is used in the non-cooperative setting.

As we have seen, the Price of Anarchy is given by PoA =
minp

P

C
j=1

cjE[NI
j ]

minp

P

C
j=1

cjE[NG
j

]
. Let us look to the numerator and

denominator separately.

In the non-cooperative solution only server 1 is used. Thus
∑C

j=1 cjE[N I
j ] = c1E[N I

1 ], and server 1 is a

standard M/G/1 queue. Thus, as r1 ↓ η, E[N I
1 ] tends to infinity, but this is compensated by the fact that

c1 → 0, and overall c1E[N I
1 ] → η/2. Another way to see this is from equation (33), where we see that

τi1 = c1

r1−η . Thus, with c1 given from (47), it turns out that as r1 ↓ η, the performance (weighted with the

cost) that users joining server 1 remains unchanged.

In the global optimal solution, always all servers are used. As r1 ↓ η, the global optimal also tends to route

everything towards server 1, but the key property is that since all servers are used, the global optimal can do

this in such a way that E[NG
1 ] grows more slowly than the decrease of c1, and as a consequence c1E[NG

1 ] → 0.

More specifically, this is what happens with the global optimal solution. First, for all j ≥ 2, as r1 ↓ η

(and c1 given by (47)), ρj → 0. Since cj , ∀j ≥ 2, remain constant this implies that
∑C

j=2 cjE[NG
j ] → 0.

Concerning server 1, from (24), as r1 ↓ η, ρ1 = 1 − o(
√

r1 − η), which implies that E[NG
1 ] = O(1/

√
r1 − η).

Since c1 = o(r1 − η) as r1 ↓ η, it turns out that c1E[NG
1 ] → 0. Thus, for the global optimal solution

∑C
j=1 cjE[NG

j ] → 0 as r1 ↓ η, which explains why the PoA can not be bounded.

This result states that the PoA is unbounded for the load balancing problem under consideration. It is in

complete contrast to finite upper bounds obtained by [12, 23], for similar models but without holding costs

per unit of time associated to each server. Thus, when holding costs are taken into account, a significantly

different PoA is obtained.

5.2 The case when rj and cj/rj are not equal

Theorem 5 can be extended to the case when not all rj are equal and cj/rj are not necessarily equal.

Let r =
∑

j∈S rj be the aggregate available service rate of system. Let us assume that we are given a sequence

of server rates rj such that r1 > η. We wish to show that there exists a sequence {cj , j ∈ S}, such that cj/rj

is strictly increasing and that the following two inequalities are satisfied

c1 + c2 < (r1 + r2 − η)c2/r2, (48)
∑

j∈S

√
cjrj > (

∑

j∈S
rj − η)

√

cC/rC , (49)

which would imply that only the first server is used in the solution of the individual optimization problem

whereas all the servers are used in the global solution.

From (48), we require c2

r2

> c1

r1

r1

r1−η . For 2 ≤ j ≤ C, let
cj

rj
= c1

r1

r1

r1−η α2j , which results in an increasing sequence

{cj/rj , j ∈ S} provided that α > 1. We shall show that there exists an α > 1 such that the two inequalities

(48) and (49) are satisfied.

16



The left-hand side of (49)

∑

j∈S

√
cjrj =

∑

j∈S

√

cj

rj
rj

=

√

c1

r1
r1 +

∑

j≥2

√

c1

r1

√

r1

r1 − η
α2rj

>

√

c1

r1
r1 +

√

c1

r1

√

r1

r1 − η





∑

j≥2

rj



 .

Thus, we need to find an α larger than 1 which satisfies the inequality

√

c1

r1
r1 +

√

c1

r1

√

r1

r1 − η





∑

j≥2

rj



 > (r − η)
√

cC/rC

= (r − η)

√

c1

r1

√

r1

r1 − η
αC .

The left-hand side of the above inequality,

√

c1

r1
r1 +

√

c1

r1

√

r1

r1 − η





∑

j≥2

rj





=

√

c1

r1

√

r1

r1 − η





√

r1(r1 − η) +
∑

j≥2

rj





>

√

c1

r1

√

r1

r1 − η
(r − η)

where the inequality follows from the fact that
√

r1(r1 − η) >
√

(r − η)(r1 − η) = r1 − η. Thus, there exists

an α larger than 1 for which SI = {1} and SI ⊂ SG. As r1 ↓ η, PoA will become unbounded in this case as

well.

6 Acknowledgements

The work of the third author was partially carried out while he was a post-doctoral fellow with the CWI

(Amsterdam), TU/e (Eindhoven) and EURANDOM (Eindhoven). He wishes to acknowledge their support.

References

[1] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics and Transportation. Yale

University, 1956.

[2] C.H. Bell and S. Stidham. Individual versus social optimization in the allocation of customers to alternative

servers. Management Science, 29:831–839, 1983.

[3] S.C. Borst. Optimal probabilistic allocation of customer types to servers. In Proceedings of ACM SIG-

METRICS, pages 116–125, September 1995.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Yu. The state of the art in locally distributed

Web-server systems. ACM Computing Surveys, 34(2):263–311, 2001.

17



[6] H.L. Chen, J. Marden, and A. Wierman. The effect of local scheduling in load balancing designs. In

Proceedings of IEEE INFOCOM, 2009.

[7] Y-C Chow and W.H. Kohler. Models for dynamic load balancing in a heterogeneous multiple processor

system. IEEE Transactions on Computers, 28(5):354–361, 1979.

[8] A. Czumaj, P. Krysta, and B. Vocking. Selfish traffic allocation for server farms. In In Proceedings of

STOC, 2002.

[9] H. Feng, V. Misra, and D. Rubenstein. Optimal state-free, size-aware dispatching for heterogeneous

M/G/-type systems. Performance Evaluation, 62(1–4):36–39, 2005.

[10] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis of join-the-shortest-queue routing for

web server farms. In Proceedings of Performance, page 180, 2007.

[11] M. Harchol-Balter, M. Crovella, and C. Murta. On choosing a task assignment policy for a distributed

server system. IEEE Journal of Parallel and Distributed Computing, 59(2):204–228, 1999.

[12] M. Haviv and T. Roughgarden. The price of anarchy in an exponential multi-server. Operations Research

Letters, 35:421–426, 2007.

[13] H. Kameda, E. Altman, O. Pourtallier, J. Li, and Y. Hosokawa. Paradoxes in performance optimization

of distributed systems. In Proceedings of SSGRR 2000 Computer and ebusiness conference, 2000.

[14] H. Kameda, J. Li, C. Kim, and Y. Zhang. Optimal load balancing in distributed computer systems.

Springer-Verlag, 1997.

[15] F. Kelly. Stochastic Networks and Reversibility. Wiley, Chichester, 1979.

[16] E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In Proceedings of STACS 1999, 1999.

[17] D. Monderer and L.S. Shapley. Potential games. Games and Econ. Behavior, 14:124–143, 1996.

[18] L.M. Ni and K. Hwang. Optimal load balancing in a multiple processor with many job classes. IEEE

Trans. Software Eng., 11(5):491–496, 1985.

[19] M. Patriksson. The Traffic Assignment Problem: Models and Methods. VSP BV, The Netherlands, 1994.

[20] R.W. Rosenthal. A class of games possessing pure strategy Nash equilibria. Int. J. Game Theory, 2:65–67,

1973.

[21] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.

[22] W.H. Sandholm. Potential games with continuous player sets. Journal of Economic Theory, 97:81–108,

2001.

[23] D. Starobinski and T. Wu. Performance of server selection algorithms for content replication networks.

In IFIP Networking, 2005.

Appendix A: Proof of Theorem 3

The derivation follows the same steps of the proof of Theorem 1. From Proposition 1 (see equation (4)) there

exists a feasible solution. As a consequence, by Slater’s condition [4, Section 5.2.3] strong duality holds. Then

from the Karush-Kuhn-Tucker (KKT) conditions if

0 ≤ ρj ≤ 1, j = 1, . . . , C,

18



∑

j∈SI

rjρj = η,

γI ∈ R, νj ≥ 0, ζj ≥ 0, j = 1, . . . , C,

νjρj = 0, ζj(ρj − 1) = 0, j = 1, . . . , C, (50)

cj

(1 − ρj)
− γIrj − νj + ζj = 0, (51)

then ρj , j = 1, . . . , C and (γI , ν, ζ) are primal and dual optimal with zero duality gap.

Since the objective function tends to infinity if ρj → 1 at some server, it follows that necessarily ρj < 1,

j = 1, . . . , C. Because of (50) this implies that ζj = 0, for all j. Now note that νj are slack variables which

can be eliminated. Since νj ≥ 0, from (51) we get

γI ≤ cj

rj

1

(1 − ρj)
, (52)

and from (50) we have
(

cj

(1 − ρj)
− γIrj

)

ρj = 0. (53)

Now, if γI > cj/rj , equation (52) can only be satisfied if ρj > 0, and from (53) this implies that

ρj = 1 − cj

rj

1

γI
. (54)

Assume now that γI ≤ cj/rj . If ρj > 0 then this implies that γI ≤ cj/rj <
cj

(1−ρj)rj
, which violates the

complementary slackness condition (53). Thus if γI ≤ cj/rj then ρj = 0. In conclusion we have that

ρj =

{

1 − cj

rj

1
γI γI > cj/rj

0 γI < cj/rj .

It follows that ρj > 0 are non-decreasing in γI . Thus there is a unique value of γI such that constraint (16)

is satisfied. It follows that SI = {1, . . . , j∗}. From (52) we have that the index j∗ is such that

cj∗

rj∗
< γI <

cj∗+1

rj∗+1
. (55)

Substituting (54) in (16) we get

1

γI
=

∑

k∈SI
rk −

∑K
i=1 ηi

∑

k∈SI
ck

. (56)

This proves equation (42).

From (55) we get that server j is used if and only if

cj

rj
<

∑j
k=1 ck

∑j
k=1 rk −∑K

i=1 ηi

,

from where (41) follows.

19


