
Monotonicity properties for multi-class queueing systems∗

I.M. Verloop1, U. Ayesta2,3, S.C. Borst1,4,5

1CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
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Abstract

We study multi-dimensional stochastic processes that arise in queueing models used in the perfor-
mance evaluation of wired and wireless networks. The evolution of the stochastic process is determined
by the scheduling policy used in the associated queueing network. For general arrival and service
processes, we give sufficient conditions in order to compare sample-path wise the workload and the
number of users under different policies. This allows us to evaluate the performance of the system
under various policies in terms of stability, the mean overall delay and the mean holding cost.

We apply the general framework to linear networks, where users of one class require service from
several shared resources simultaneously. For the important family of weighted α-fair policies, stability
results are derived and monotonicity of the mean holding cost with respect to the fairness parameter
α and the relative weights is established. In order to broaden the comparison results, we investigate a
heavy-traffic regime and perform numerical experiments. In addition, we study a single-server queue
with two user classes, and show that under Discriminatory Processor Sharing (DPS) or Generalized
Processor Sharing (GPS) the mean overall sojourn time is monotone with respect to the ratio of the
weights. Finally we extend the framework to obtain comparison results that cover the single-server
queue with an arbitrary number of classes as well.

1 Introduction

In recent years a lot of attention has been devoted to multi-class stochastic networks where the capacity
allocated to the various classes depends on the number of users present in all classes. Analyzing multi-
class stochastic systems tends to be very challenging. Metrics like the joint (marginal) distribution of
the number of users of the various classes, or even the mean number of users of the various classes,
can only be determined in some special cases. In order to gain insight into the performance of the
system, researchers have therefore resorted to deriving various broader related properties of the underlying
stochastic processes, such as stability conditions, comparison results and performance bounds.
Stability of stochastic systems is a well-founded theory [28, 9]. Recently new results have been derived for
systems with state-dependent (and time-varying) capacities. For example, in [22] the stability conditions
for utility-based allocation policies in a time-varying scenario are characterized. In [6] necessary and
sufficient stability conditions for parallel-server queues with state-dependent capacities are derived.
There is a wide range of literature on the ordering of random processes, see for example [35, 30]. In
particular, stochastic comparison is often used. In the seminal paper [25] (see also [24]) necessary and
sufficient conditions on the transition rates are given for the existence of a stochastic ordering between
two Markov processes defined on ordered state spaces, starting from any two ordered initial states. It
turns out that these conditions are often too strong in a queueing context. In particular, the conditions

∗A shorter version with preliminary results appeared in the proceedings of ValueTools [38].
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are not satisfied in the examples we study in this paper. Here we consider a special case of stochastic
ordering: We use a sample-path approach to compare two stochastic networks, that is, for both networks
we assume the same realizations of the arrival processes and service requirements (see [11, 23] for more
details).
A related research direction is to obtain bounds for the stochastic process of interest [5, 41, 8]. In a recent
paper [5] the authors consider a network of processor sharing queues with independent Poisson arrival
processes. The capacity of the various queues is variable and depends on the number of users present in
all the queues. Stochastic bounds for the number of users present in each queue are obtained for so-called
monotone policies (removing a user from any queue increases the capacity allocated to every other user).
Our main interest is in stochastic processes that arise in so-called bandwidth-sharing networks introduced
in [27] to model the dynamic interaction among competing elastic data flows that traverse several links in
the Internet. An important family of rate allocation policies originally introduced in [29] are the so-called
weighted α-fair bandwidth-sharing policies, where as a function of the parameter α one obtains popular
disciplines such as maximum throughput (α → 0), Proportional Fairness (PF, α = 1) and max-min
fairness (α → ∞). It has been argued that the bandwidth sharing realized by TCP (Transmission Control
Protocol) in the Internet can be well approximated by an α-fair policy with parameter α = 2 [16]. In [4]
it is shown that any α-fair policy (α > 0) achieves maximum stability assuming Poisson arrival processes
and exponentially distributed flow sizes. Obtaining closed-form expressions for the performance metrics
of α-fair policies has proved to be rather difficult. Therefore, researchers have studied the performance
under various probabilistic limiting regimes. For example, in [13, 14, 17] the authors study the number
of users of the various classes under a fluid and a diffusion scaling when at least one node is in heavy
traffic, and investigate diffusion approximations for the queue lengths.
In this paper we start off by considering a general multi-class queueing system setting with general
arrival and service processes. The allocation to the various classes is feasible when it belongs to a rate
region, which may vary in time. We give sufficient conditions on two allocation policies in order to
compare sample-path wise the workload and the number of users of the various classes. We obtain
weaker sufficient conditions on the transition rates than [25, 24]. Since our result is a pure sample-path
comparison, it holds for arbitrary arrival processes, service time processes and rate region variations.
Our sample-path comparison yields stability results and monotonicity of the mean holding cost. Then
we apply our framework to linear networks. This is the canonical model to study the bandwidth sharing
of data traffic that traverses multiple links and the cross-traffic it meets on its route. Linear networks
can also model mutual interference in wireless networks or write permission in a shared database. For
the family of weighted α-fair policies in the linear network, we obtain stability results and, under certain
restrictions on the service requirements, show monotonicity of the mean holding cost with respect to the
fairness parameter α and the relative weights. To cover all service requirement parameters, we consider
a two-node linear network in a heavy-traffic regime and obtain further monotonicity results based on
a conjecture in [13, 14]. For a normally-loaded system we perform numerical experiments that provide
further insight into the performance of the α-fair policies. Finally, we consider a multi-class single-server
queue for which we are especially interested in weighted time-sharing policies such as Discriminatory
Processor Sharing (DPS) [20, 12, 1] and Generalized Processor Sharing (GPS) [10, 32]. For a single
server with two classes we obtain that the mean holding cost is monotone for DPS and GPS with respect
to the ratio of the weights. Then we extend the framework to cover the single-server queue with an
arbitrary number of classes.
The remainder of the paper is organized as follows. In Section 2 the model is introduced and Section 3
describes the results for the general framework. We apply this framework to a linear network in Section 4
and we focus on weighted α-fair policies in Section 5. In Section 6 we consider the multi-class single-server
queue.

2 Model description

We consider a multi-class queueing system with L + 1 classes of users. Class-i users arrive according to
a renewal process with mean inter-arrival time 1/λi, and have service requirements Bi with mean 1/µi,
i = 0, . . . , L. Let ρi = λi

µi
represent the offered work of class i per time unit. The inter-arrival times and

service requirements are mutually independent random variables.
For a given scheduling policy π, denote by Nπ

i (t) the number of class-i users in the system at time t and

let ~Nπ(t) = (Nπ
0 (t), Nπ

1 (t), . . . , Nπ
L(t)). Let Wπ

i (t) denote the total residual amount of work in class i
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(i.e. the workload in class i) at time t. We assume the processes Nπ
i (t) and Wπ

i (t) to be right continuous
with left limits. We further define Nπ

i and Wπ
i as random variables with the corresponding steady-state

distributions (when they exist).
For a given policy π, denote by sπ

i (t, ~n) the instantaneous service rate received by class i at time t when
the system is in state ~n = (n0, n1, . . . , nL). Hence the allocation given to class i can only depend on
the time and on the number of users present in the system. We assume that sπ

i (t, ~n) = 0 when ni = 0.
In addition, the allocation vector ~sπ(t, ~n) = (sπ

0 (t, ~n), . . . , sπ
L(t, ~n)) has to lie in a certain rate region

R(t) ⊂ RL+1
+ which may depend on the time t but not on the state ~n itself, that is ~sπ(t, ~n) ∈ R(t). In

the remainder of the paper we suppress the dependence on t and write ~sπ(~n) instead of ~sπ(t, ~n). The
service discipline within a particular class, the intra-class policy, is the First Come First Served discipline
(FCFS).
Denote by

Sπ
i (t) :=

t
∫

u=0

sπ
i ( ~Nπ(u))du

the cumulative amount of service received by class i during the time interval [0, t]. Let Ai(0, t) be the
amount of class-i work that arrived in the time interval (0, t]. Then the workload in class i at time t can
be written as

Wπ
i (t) = Wπ

i (0) + Ai(0, t) − Sπ
i (t). (1)

Remark 2.1 When the service requirements are exponentially distributed, for any non-anticipating intra-
class policy, the stochastic behavior of the system (for example the distribution of the number of users
of the various classes) is determined completely by the allocation vector ~sπ(~n) and does not depend on
the intra-class policy used. A policy is called non-anticipating when the discipline is not based on any
knowledge of the actual realizations of the remaining service requirements. This implies that when the
service requirements are exponentially distributed, the results we obtain (by assuming FCFS) are also
valid for non-anticipating policies like the Processor Sharing discipline (PS), the Last Come First Served
discipline and the Foreground Background discipline.

Remark 2.2 When the service requirements are exponentially distributed, the arrival processes are Pois-
son and the rate region R(t) = R does not vary in time, the process {Nπ

0 (t), Nπ
1 (t), . . . , Nπ

L(t)}t≥0 is a
continuous-time Markov process. The transition rates are given by

(n0, . . . , ni, . . . , nL) → (n0, . . . , ni + 1, . . . , nL) at rate λi,

and
(n0, . . . , ni, . . . , nL) → (n0, . . . , ni − 1, . . . , nL) at rate µis

π
i (~n).

As indicated in Remark 2.1, the transition rates are independent of the non-anticipating intra-class policy
used.

Our goal in this paper is to compare the performance of a multi-class queueing system under different
policies. First of all, we will be interested in whether a policy can achieve stability. Another important
performance measure we consider is the holding cost,

∑L
i=0 ciN

π
i (t), where ci is an arbitrary nonnegative

cost associated with class i, i = 0, . . . , L. Because of Little’s law, a policy that minimizes the total mean
(weighted) number of users present in the system, minimizes the mean overall (weighted) sojourn time
as well.
In Sections 4 and 5 we focus on a particular example of a multi-class queueing system: the linear network,
see Figure 1. It might be convenient for the reader to bear this network in mind when reading Section 3.
A linear network consists of L nodes. The capacity of node i at time t is equal to Ci(t), i = 1, . . . , L.
Class-i users require service at node i only, i = 1, . . . , L, while class-0 users require service at all nodes
simultaneously. Hence the rate region corresponding to the linear network is equal to

R(t) = {~s ∈ RL+1 : s0 + si ≤ Ci(t), ∀i = 1, . . . , L}.

When Ci(t) = C for all i and all t, we refer to it as a symmetric linear network. The linear network can
model situations such as bandwidth sharing in wired networks, mutual interference in wireless networks,
and write permission in a global database. This will be discussed in more detail in Section 4.
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node 1 node 2 node 3 node L

Figure 1: Linear network.

3 Comparison of policies

In this section we consider the behavior of a linear network under two different policies π and π̃ for
the same realizations of the arrival processes and service requirements. The following property states
conditions that will allow us to compare the two policies π and π̃.

Property 3.1 Let π and π̃ be two policies such that

(i) sπ
0 (~nπ) ≤ sπ̃

0 (~nπ̃), when nπ
0 = nπ̃

0 and nπ
j ≥ nπ̃

j , ∀j = 1, . . . , L.

(ii) sπ
0 (~nπ) + sπ

i (~nπ) ≤ sπ̃
0 (~nπ̃) + sπ̃

i (~nπ̃), i = 1, . . . , L, for all states ~nπ and ~nπ̃ that satisfy one of the
following conditions:

• nπ
0 > 0, nπ

0 ≥ nπ̃
0 , 0 < nπ̃

i and nπ
i ≤ nπ̃

i .

• nπ
0 = nπ̃

0 = 0, 0 < nπ
i = nπ̃

i and nπ
j ≥ nπ̃

j for all j 6= 0, i.

In Section 4 we show how this property allows us to compare policies in a linear network.
We now establish a sample-path comparison result for the number of class-0 users and for the workload
in the system. This result will play a key role in the remainder of the paper.

Proposition 3.2 Let π and π̃ be two policies that satisfy Property 3.1 and consider the same realizations
of the arrival processes and service requirements. Assume Wπ

0 (0) ≥ W π̃
0 (0) and Wπ

0 (0) + Wπ
i (0) ≥

W π̃
0 (0) + W π̃

i (0) for all i = 1, . . . , L. It holds that for all t ≥ 0,

(i) Sπ
0 (t) − Wπ

0 (0) ≤ Sπ̃
0 (t) − W π̃

0 (0),

(ii) Sπ
0 (t) − Wπ

0 (0) + Sπ
i (t) − Wπ

i (0) ≤ Sπ̃
0 (t) − W π̃

0 (0) + Sπ̃
i (t) − W π̃

i (0), i = 1, . . . , L,

and hence

(iii) Nπ
0 (t) ≥ N π̃

0 (t), Wπ
0 (t) ≥ W π̃

0 (t),

(iv) Wπ
0 (t) + Wπ

i (t) ≥ W π̃
0 (t) + W π̃

i (t), i = 1, . . . , L.

We like to emphasize that because of the FCFS assumption and the same realizations of the arrival
processes and service requirements, we implicitly assume that at time 0 the k-th most recently ar-
rived class-i user has the same service requirement under both policies, i = 0, 1, . . . , L, k = 1, . . . ,
min(Nπ

i (0), N π̃
i (0)) − 1. Hence, the condition in Proposition 3.2 always holds when both processes start

in the same state ~Nπ(0) = ~N π̃(0), where at time t = 0 each user has the same (remaining) service
requirement under both policies.
In the proof of Proposition 3.2 we use f(t+) > g(t+) to denote that there exists a sufficiently small δ > 0
such that f(u) > g(u) for all u ∈ (t, t + δ]. Since (Ni(t))t≥0 is a piece-wise constant right-continuous
process, this ensures that an inequality on Nπ

i (t) and N π̃
i (t) at time t, immediately translates to the same

inequality on Nπ
i (t+) and N π̃

i (t+) at time t+. This property is used throughout the proof.

Proof of Proposition 3.2: From (1) we obtain that inequality (i) implies Wπ
0 (t) ≥ W π̃

0 (t) and in-
equality (ii) implies inequality (iv). Also note that Wπ

0 (t) ≥ W π̃
0 (t) implies Nπ

0 (t) ≥ N π̃
0 (t), since the

intra-class policy is FCFS and the k-th most recently arrived class-0 user before the current time t has the
same (original) service requirement under both policies. Therefore, it suffices to prove that inequalities
(i) and (ii) hold.
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We prove (i) and (ii) by contradiction. Suppose they do not hold sample-path wise. Let t be the first
time epoch at which one of the two inequalities is violated.
First assume that inequality (i) is the first one to be violated, i.e., Sπ

0 (t) − Wπ
0 (0) = Sπ̃

0 (t) − W π̃
0 (0) and

sπ
0 ( ~Nπ(t+)) > sπ̃

0 ( ~N π̃(t+)) (with strict inequality), but Sπ
0 (t)−Wπ

0 (0)+Sπ
i (t)−Wπ

i (0) ≤ Sπ̃
0 (t)−W π̃

0 (0)+
Sπ̃

i (t) − W π̃
i (0) for all i = 1, . . . , L. Hence, from (1) we obtain Wπ

0 (t) = W π̃
0 (t) and Wπ

i (t) ≥ W π̃
i (t) for

all i = 1, . . . , L. Since the k-th most recently arrived class-j user before the current time t has the same
(original) service requirement under both policies and the intra-class policy is FCFS, we have as well

Nπ
0 (t) = N π̃

0 (t) and Nπ
i (t) ≥ N π̃

i (t) for all i = 1, . . . , L. (2)

The process {Ni(t)}t≥0 is a piece-wise constant process and is right continuous, hence (2) remains true at

time t+. Together with Property 3.1 this gives sπ
0 ( ~Nπ(t+)) ≤ sπ̃

0 ( ~N π̃(t+)), which contradicts the initial
assumption.
Next, assume that inequality (ii) is violated at time t, i.e., Sπ

0 (t) − Wπ
0 (0) + Sπ

i (t) − Wπ
i (0) = Sπ̃

0 (t) −
W π̃

0 (0)+Sπ̃
i (t)−W π̃

i (0) and sπ
0 ( ~Nπ(t+))+sπ

i ( ~Nπ(t+)) > sπ̃
0 ( ~N π̃(t+))+sπ̃

i ( ~N π̃(t+)) (with strict inequality),
but Sπ

0 (t)−Wπ
0 (0) ≤ Sπ̃

0 (t)−W π̃
0 (0) and Sπ

0 (t)−Wπ
0 (0)+Sπ

j (t)−Wπ
j (0) ≤ Sπ̃

0 (t)−W π̃
0 (0)+Sπ̃

j (t)−W π̃
j (0)

for all j 6= 0, i. Hence Wπ
0 (t) ≥ W π̃

0 (t) and Wπ
i (t) ≤ W π̃

i (t), from which (as before) we can conclude that
Nπ

0 (t+) ≥ N π̃
0 (t+) and Nπ

i (t+) ≤ N π̃
i (t+). We now distinguish between the following possibilities:

• If N π̃
i (t+) > 0.

– If Nπ
0 (t+) > 0, then by Property 3.1 (ii) it follows that sπ

0 ( ~Nπ(t+))+sπ
i ( ~Nπ(t+)) ≤ sπ̃

0 ( ~N π̃(t+))+

sπ̃
i ( ~N π̃(t+)) which contradicts the initial assumption.

– If Nπ
0 (t+) = 0, then N π̃

0 (t+) = 0 and hence Sπ
0 (t) − Wπ

0 (0) = Sπ̃
0 (t) − W π̃

0 (0) which implies
Sπ

i (t) − Wπ
i (0) = Sπ̃

i (t) − W π̃
i (0) and Sπ

j (t) − Wπ
j (0) ≤ Sπ̃

j (t) − W π̃
j (0) for j 6= 0, i. So

0 = Nπ
0 (t+) = N π̃

0 (t+), Nπ
i (t+) = N π̃

i (t+) > 0, and Nπ
j (t+) ≥ N π̃

j (t+) for all j 6= 0, i. By

Property 3.1 (ii) it follows that sπ
0 ( ~Nπ(t+)) + sπ

i ( ~Nπ(t+)) ≤ sπ̃
0 ( ~N π̃(t+)) + sπ̃

i ( ~N π̃(t+)) which
contradicts the initial assumption.

• If N π̃
i (t+) = 0, then Nπ

i (t+) = 0 as well, and hence Sπ
i (t) − Wπ

i (0) = Sπ̃
i (t) − W π̃

i (0). This
implies Sπ

0 (t) − Wπ
0 (0) = Sπ̃

0 (t) − W π̃
0 (0) and Sπ

j (t) − Wπ
j (0) ≤ Sπ̃

j (t) − W π̃
j (0) for all j, implying

Wπ
0 (t) = W π̃

0 (t) and Wπ
j (t) ≥ W π̃

j (t). As before, we obtain that Nπ
0 (t+) = N π̃

0 (t+) and Nπ
j (t+) ≥

N π̃
j (t+) for all j 6= 0. By virtue of Property 3.1 this means that sπ

0 ( ~Nπ(t+)) ≤ sπ̃
0 ( ~N π̃(t+)). Since

N π̃
i (t+) = Nπ

i (t+) = 0, we also have that sπ
i ( ~Nπ(t+)) = sπ̃

i ( ~N π̃(t+)) = 0, and hence sπ
0 ( ~Nπ(t+)) +

sπ
i ( ~Nπ(t+)) ≤ sπ̃

0 ( ~N π̃(t+)) + sπ̃
i ( ~N π̃(t+)), which contradicts the initial assumption.

�

Remark 3.3 Proposition 3.2 is a sample-path result and does not require any distributional or indepen-
dence assumptions with respect to the inter-arrival times and service requirements. The only assumption
required is that the arrival characteristics are independent of the state of the system, since in Proposition
3.2 we use the same realizations of the arrival processes and service requirements when comparing the
policies.

Proposition 3.2 (iii) states in fact a sample-path wise pre-ordering on two continuous-time processes

{ ~Nπ(t)}t≥0 and { ~N π̃(t)}t≥0 starting from ordered initial states. There is a broad range of literature on
the existence of orderings of stochastic processes. An important ordering is the stochastic ordering ≤st

([30, 35]). The sample-path ordering is a special case of this. Let X(t) and Y (t) be two continuous-time
processes. We say that {X(t)}t≥0 ≤st {Y (t)}t≥0 if and only if there exists a coupling (X ′(t), Y ′(t)), i.e.

X(t)
d
= X ′(t) and Y (t)

d
= Y ′(t), which is order-preserving, i.e. P(X ′(t) ≤ Y ′(t), ∀t ≥ 0) = 1 (here ≤ is an

ordering on the state space). So if the processes X and Y are initially ordered, then the order is kept at
all times.
When X(t) and Y (t) are two continuous-time Markov processes, in [25, Theorem 5.3] and [24, Theorem
2] necessary and sufficient conditions on the transition rates are given in order for an order-preserving
coupling to exist ({X(t)}t≥0 ≤st {Y (t)}t≥0) for any ordered initial states (X(0) ≤ Y (0)). Here ≤ denotes
a pre-order relation. In particular, in a Markovian setting (Poisson arrivals, exponentially distributed
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service requirements and a fixed rate region, see Remark 2.2) the necessary and sufficient conditions on
the policies π and π̃ to obtain

{Nπ
0 (t)}t≥0 ≥st {N π̃

0 (t)}t≥0, for any two ordered initial states Nπ
0 (0) ≥ N π̃

0 (0), (3)

are
sπ
0 (~nπ) ≤ sπ̃

0 (~nπ̃) when nπ
0 = nπ̃

0 . (4)

(The pre-ordering relation used here for the L + 1-dimensional process ~N(t) is defined by the number of
class-0 users.) The sufficient condition in Property 3.1 for the sample-path comparison of Proposition 3.2
to hold, and the necessary and sufficient condition in (4) for the stochastic comparison in (3) to hold, are
not directly comparable. Given two policies, it is possible that either only Property 3.1 is satisfied, or
only (4) is satisfied. Note that the stochastic ordering result in (3) holds for any two initial states that
are ordered, Nπ

0 (0) ≥ N π̃
0 (0). In Proposition 3.2 the initial states are ordered as well, but we assume

that at time t = 0 we have additional knowledge on the service requirements of the users present under
policy π and π̃. So in this respect we would expect Property 3.1 to be weaker than (4). On the other
hand, in Proposition 3.2 the coupling is specified in advance, namely the two processes are coupled by
their arrival processes and service requirements, while in (3) any coupling is allowed to obtain the desired
order-preserving result. So in this respect we would expect (4) to be weaker than Property 3.1.
In a queueing context, condition (4) is rather strong. One often encounters examples where s0(~n) → 0
as ni → ∞, i 6= 0. If this is the case for policy π̃, then (4) will not be satisfied. In Sections 5
and 6 we will consider settings for which Property 3.1 is satisfied, while (4) does not hold. In addition,
Proposition 3.2 is not restricted to Markov processes, hence it applies as well for general arrival processes,
service requirements and time-varying rate regions.
The results in [25] and [24] provide a notion of ordering that holds for any ordered initial states. In this
paper we use a weaker notion, that is, we use additional information on the service requirements at time
t = 0. This allows us to prove the auxiliary inequalities in Proposition 3.2 (i) and (ii) for policies π and
π̃ that satisfy Property 3.1, which are crucial in proving the final ordering result. Since we are interested
in performance metrics like stability and mean number of users, the chosen initial states are not relevant.
In the next two subsections, Proposition 3.2 is used to derive results for the stability and mean holding
cost.

3.1 Stability

Recall that the stability conditions depend on the policy being used. The sample-path comparison in
Proposition 3.2 does not require the system to be stable. In particular, Proposition 3.2 (iv) implies the
following result.

Corollary 3.4 Assume policies π and π̃ satisfy Property 3.1. If the system is stable under policy π, then
it is stable under policy π̃ as well, in the sense that the system is empty under policy π̃ whenever it is
empty under policy π.
In particular, if the empty state is positive recurrent under policy π in the case of Poisson arrivals, then
it is positive recurrent under policy π̃ as well.

Proof: The first statement follows by noting that if
∑L

i=0 Wπ
i (t) = 0, then we obtain from Proposi-

tion 3.2 (iv) that
∑L

i=0 W π̃
i (t) = 0. The second assertion is a direct implication of the first one. �

3.2 Mean number of users

In case the service requirements are exponentially distributed with
∑L

i=1 ciµi ≤ c0µ0, the sample-path
comparison established in Proposition 3.2 allows us to compare the mean holding cost.

Proposition 3.5 Assume the service requirements are exponentially distributed. Let π and π̃ be two
policies that satisfy Property 3.1 and assume policy π gives a stable system. If

∑L
i=1 ciµi ≤ c0µ0, then

L
∑

i=0

ciE(Nπ
i (t)) ≥

L
∑

i=0

ciE(N π̃
i (t)), ∀ t ≥ 0.
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Proof: Assume at time t = 0 the conditions as stated in Proposition 3.2 are satisfied (for example,
assume both policies π and π̃ start with an empty system). From Proposition 3.2 (iii) we have that
Nπ

0 (t) ≥ N π̃
0 (t) for all t ≥ 0. Taking expectations we get

E(Nπ
0 (t)) ≥ E(N π̃

0 (t)). (5)

From Proposition 3.2 (iv) we have that Wπ
0 (t)+Wπ

i (t) ≥ W π̃
0 (t)+W π̃

i (t) for all t ≥ 0. Taking expectations
we get E(Wπ

0 (t)) + E(Wπ
i (t)) ≥ E(W π̃

0 (t)) + E(W π̃
i (t)) for all i = 1, . . . , L. Since the policy is non-

anticipating and the service requirements are exponentially distributed, and thus memoryless, we obtain
E(Wπ

i (t)) = 1
µi

E(Nπ
i (t)) and hence for all i = 1, . . . , L,

1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t)) ≥ 1

µ0
E(N π̃

0 (t)) +
1

µi
E(N π̃

i (t)). (6)

Inequalities (5) and (6) together with
∑L

i=1 ciµi ≤ c0µ0 give

L
∑

i=0

ciE(Nπ
i (t)) =

c0µ0 −
∑L

i=1 ciµi

µ0
E(Nπ

0 (t)) +

L
∑

i=1

ciµi

(

1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t))

)

≥ c0µ0 −
∑L

i=1 ciµi

µ0
E(N π̃

0 (t)) +
L
∑

i=1

ciµi

(

1

µ0
E(N π̃

0 (t)) +
1

µi
E(N π̃

i (t))

)

=

L
∑

i=0

ciE(N π̃
i (t)).

�

Note that by Remark 2.1, Proposition 3.5 holds for any non-anticipating intra-class policy, so not only
for FCFS.

Remark 3.6 We only obtain a comparison result in terms of the mean holding cost, while we start
from a sample-path comparison as stated in Proposition 3.2. The derivation of stochastic ordering results
remains as a challenging topic for further research.
When ~Nπ(t) and ~N π̃(t) are two Markov processes, the necessary and sufficient conditions in order

to obtain
∑L

i=0 Nπ
i (t) ≥st

∑L
i=0 N π̃

i (t) for any ordered initial states
∑L

i=0 Nπ
i (0) ≥ ∑L

i=0 N π̃
i (0), are

∑L
i=0 µis

π
i (~nπ) ≤∑L

i=0 µis
π̃
i (~nπ̃) for all states with

∑L
i=0 nπ

i =
∑L

i=0 nπ̃
i , [24, 25]. In a queueing context

this condition is rather strong. In Sections 4 and 6 we will see settings for which this condition is not
satisfied.

4 Linear network

In this section we apply the results obtained in Section 3 to a linear network as depicted in Figure 1. As
mentioned in the Introduction, the linear network provides a useful model for the interaction of data flows
that traverse several links in a wired network, and experience bandwidth contention from independent
cross traffic. A linear network also arises in simple models for the mutual interference in wireless networks.
Consider the following setting of a wireless cellular network. Users can be either in cell 0, cell 1 or cell
2, see Figure 2. Users in cells 1 and 2 can be served in parallel by their own base station. Because of
interference, a user in cell 0 can only be served when exactly one base station is on and transmits the
requested file to the user in cell 0. Hence, class 0 can only be served when both classes 1 and 2 are not
served, which can be modeled by a linear network consisting of two nodes. The results for the linear
network that we obtain later in this section can be applied to a wireless network if coordination between
base stations is possible. Coordination has recently been proposed in [3, 40].
As a further motivating example we could think of write permission in a shared database. Consider
L servers that each perform tasks involving read/write operations in some shared database. Read op-
erations can occur in parallel. However, if a server needs to perform a task involving write operations,
then the database needs to be locked, and no tasks whatsoever can be performed by any of the other
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Base station 1 Base station 2

cell 0cell 1 cell 2

Figure 2: Two base stations.

servers. This may be modeled as a linear network with L nodes, where class-0 tasks corresponds to the
write operations.
From now on we focus on efficient policies. A policy π is said to be efficient if it does not leave any
capacity unnecessarily unused. So for the linear network this implies

sπ
i (~n) = Ci(t) − sπ

0 (~n) when ni > 0, i = 1 . . . , L for all t.

Thus, the remaining capacity in node i is fully allocated to class-i users whenever possible. It can be
shown that any policy that leaves capacity unused, can be improved sample-path wise (in terms of the
workload and the number of users of the various classes) by an efficient policy. However, an efficient policy
is not sufficient to ensure a stable system under the necessary stability conditions. Consider for example
a symmetric linear network with unit capacities. It is clear that the necessary stability conditions are
ρ0 + ρi < 1 for all i. In fact, for the policy that gives preemptive priority to class 0 these conditions are
sufficient for stability as well. However, the policy that gives preemptive priority to classes 1, . . . , L (this
is an efficient policy) is stable if and only if ρ0 < ΠL

i=1(1− ρi) which is more stringent than the necessary
stability conditions. The instability can arise here since the latter policy can leave a substantial portion
of the capacity unused, regardless of how large the number of class-0 users is.
Condition (ii) in Property 3.1 is always satisfied for an efficient policy π̃, since sπ̃

0 (~nπ̃) + sπ̃
i (~nπ̃) = Ci(t)

whenever nπ̃
i > 0. Hence, in the specific case of a linear network, Property 3.1 simplifies as follows.

Property 4.1 Let π and π̃ be two efficient policies such that sπ
0 (~nπ) ≤ sπ̃

0 (~nπ̃), when nπ
0 = nπ̃

0 and
nπ

i ≥ nπ̃
i for all i = 1, . . . , L.

In particular, Property 4.1 is implied by the following property.

Property 4.1’ Let π and π̃ be two efficient policies such that sπ
0 (~n) ≤ sπ̃

0 (~n), and either sπ
0 (~n) or

sπ̃
0 (~n) is non-increasing with respect to ni for all i 6= 0.

In order to see this, assume that Property 4.1’ is satisfied with (for example) sπ̃
0 (~n) non-increasing with

respect to ni for all i 6= 0. Then we have

sπ
0 (~nπ) ≤ sπ̃

0 (~nπ) ≤ sπ̃
0 (~nπ̃),

with nπ
i ≥ nπ̃

i for all i 6= 0 and nπ
0 = nπ̃

0 . This is exactly Property 4.1. So for the linear network,
Property 3.1 can be replaced by Property 4.1 or 4.1’.
Assume policies π and π̃ satisfy either Property 4.1 or 4.1’. This basically means that higher priority
is given to class 0 under policy π̃ compared to π. From Section 3 we then obtain the following results.
Under policy π̃ the number of class-0 users is less than under policy π (Proposition 3.2 (iii)) and the
stability conditions are less strict for policy π̃ (Corollary 3.4). These results arise from the fact that
when class 0 is served, it simultaneously uses capacity in all nodes. Hence, giving more preference to
class 0 makes better use of the available capacity and hence makes the workload in each node smaller, i.e.
Wπ

0 (t)+Wπ
i (t) ≥ W π̃

0 (t)+W π̃
i (t), i = 1, . . . , L (Proposition 3.2 (iv)). When in addition c0µ0 ≥

∑L
i=1 ciµi,

that is the maximum weighted departure rate is obtained when class 0 is served, giving higher priority
to class 0 decreases the mean holding cost (

∑L
i=0 ciE(Ni(t))) as well (Proposition 3.5). More intuition

on this will be given later. One natural choice for the weights ci could be to relate them to the number
of links each class uses. For example, take c0 = L and ci = 1, i = 1, . . . , L. In this case the result of
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Proposition 3.5 will be valid under the intuitively appealing condition 1
L

∑L
i=1 µi ≤ µ0, i.e. the departure

rate of class 0 is larger than or equal to the average departure rate for classes 1, . . . , L.

Remark 4.2 Assume ~Nπ(t) and ~N π̃(t) are two Markov processes for any two policies π and π̃. When
Property 4.1 is satisfied, a sample-path comparison for the number of class-0 users in a linear network
holds. The condition (4) is a necessary and sufficient condition for a stochastic ordering relation for
the number of class-0 users to exist as in the framework of [24, 25]. It can be immediately seen that
Property 4.1 is a weaker condition than (4). Interestingly, for applications as will be given later in the
paper, the policies do satisfy Property 4.1, but not (4).

When c0µ0 ≥ ∑L
i=1 ciµi and Property 4.1 is satisfied, it is possible to compare the total (weighted)

mean number of users in a linear network under the two policies. As mentioned in Remark 3.6, in a
queueing context the sufficient and necessary conditions to stochastically order the total number of users
for any ordered initial states, are rather strong. For the special case of a linear network it is even never
satisfied. When choosing the states such that ~nπ = (0, 1, . . . , 1) and ~nπ̃ = (L, 0, . . . , 0), it is needed that
∑L

i=1 µi ≤ µ0, but when choosing the states such that ~nπ = (1, 0, . . . , 0) and ~nπ̃ = (0, . . . , 0, 1, 0, . . . , 0),
it is needed that µ0 ≤ µi, i = 1, . . . , L, see Remark 3.6. Hence, we see that there does not exist any
combination of the variables µ0, . . . , µL, for which these conditions are satisfied, and a stochastic ordering
relation for the total number of users as in the framework of [24, 25] does not hold.

A natural objective in queueing networks is to minimize the total number of users in the system or the
holding cost. Classical results for a single-server system indicate that giving preference to “small” users
is beneficial in terms of the number of users present in the system [34, 36, 33, 31]. For exponentially
distributed service requirements, the cµ-rule, i.e. giving priority to the class with the highest weighted
departure rate ciµi, minimizes the mean holding cost,

∑K
i=1 ciE(Ni), among all non-anticipating policies.

The problem of how to allocate the capacity of the nodes among the various users in a linear network is
more complex. Besides trying to maximize the weighted departure rate, we must take into account that
giving more preference to class 0 makes better use of the available capacity.
When

∑L
i=1 ciµi > c0µ0, it can be the case that the maximum total instantaneous weighted departure

rate is obtained when class 0 is not served. However, this does not necessarily make full use of the
available resources. Some care has to be taken in allocating the available capacity. More information on
the structure of the optimal policy for this case can be found in [39].

When
∑L

i=1 ciµi ≤ c0µ0, there is no conflict between these two objectives. The maximum total instan-
taneous weighted departure rate is obtained when class 0 is served at its maximum possible rate, i.e.
mini Ci(t), and the other classes obtain what is left. At the same time, this makes maximum use of the
available capacity. Intuitively it is clear that the policy that gives preference to class 0 minimizes the
mean holding cost. Using Proposition 3.5 it can be proved that this is indeed the case.

Corollary 4.3 Consider a linear network with time-varying capacities. Assume the service requirements
are exponentially distributed. Let policy π∗ be the policy that serves class 0 at maximum rate, i.e.,
sπ∗

0 (~n) = mini Ci(t) if n0 > 0 and sπ∗

0 (~n) = 0 otherwise. Classes 1, . . . , L obtain what is left, i.e.,

sπ∗

i (~n) = Ci(t) − sπ∗

0 ( ~N) if ni > 0 and sπ∗

i (~n) = 0 otherwise. If
∑L

i=1 ciµi ≤ c0µ0, then policy π∗

minimizes the mean holding cost
∑L

i=0 ciE(Ni(t)), for all t ≥ 0, among all non-anticipating policies.

Proof: Note that sπ∗

0 (~n) is constant with respect to ni, i 6= 0. In addition, sπ∗

0 (~n) ≥ sπ
0 (~n) for any

policy π. Hence, Property 4.1’ is satisfied and from Proposition 3.5 we obtain
∑L

i=0 ciE(Nπ
i (t)) ≥

∑L
i=0 ciE(Nπ∗

i (t)) for all t ≥ 0 and any policy π. �

In [37] it was proved that for a symmetric linear network, policy π∗, as defined in Corollary 4.3, is in
fact stochastically optimal in terms of the total number of users. That is, for every t ≥ 0 and for any
non-anticipating policy π we have

∑L
i=0 Nπ

i (t) ≥st

∑L
i=0 Nπ∗

i (t) given that ~Nπ(0) = ~Nπ∗(0).
Proposition 3.2 and Property 4.1 are stated in order to compare two different policies. However, they
also allow us to evaluate the impact of removing a node from the linear network on the performance of
class 0, i.e., compare two different networks under the same policy. In the following corollary we show
that the number of class-0 users is reduced when a node (and hence the corresponding cross traffic) is
removed.
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Corollary 4.4 Let π be a policy in a linear network with L nodes that satisfies the following property:

sπ
0 (n0, n1, . . . , nL) ≤ sπ

0 (n0, m1, . . . , mL−1, 0)

for all ni ≥ mi, i = 1, . . . , L − 1.
Also consider the linear network where node L is removed (and hence has L − 1 nodes) and apply the
same policy π in the following way: sπ

0 (n0, . . . , nL−1) := sπ
0 (n0, . . . , nL−1, 0).

If Wπ,L
0 (0) ≥ Wπ,L−1

0 (0) and Wπ,L
0 (0) + Wπ,L

i (0) ≥ Wπ,L−1
0 (0) + Wπ,L−1

i (0), then

Nπ,L
0 (t) ≥ Nπ,L−1

0 (t)

and for i = 1, . . . , L − 1
Wπ,L

0 (t) + Wπ,L
i (t) ≥ Wπ,L−1

0 (t) + Wπ,L−1
i (t),

with Nπ,l
i (t) and Wπ,l

i (t) the number of class-i users and the class-i workload, respectively, at time t under
policy π in a linear network with l nodes.

Proof: Policy π in a linear network with L− 1 nodes can be seen as a policy in a linear network with L
nodes by ignoring the class-L users. Denote this policy by π̃. So for all x ≥ 0, sπ̃

0 (n0, n1, . . . , nL−1, x) :=
sπ
0 (n0, n1, . . . , nL−1). Hence

sπ
0 (n0, n1, . . . , nL−1, nL) ≤ sπ

0 (n0, m1, . . . , mL−1, 0)

= sπ
0 (n0, m1, . . . , mL−1)

= sπ̃
0 (n0, m1, . . . , mL−1, x)

for all x and all ni ≥ mi, i = 1, . . . , L − 1. This implies that policies π and π̃ satisfy Property 4.1 and
from Proposition 3.2 the result follows. �

5 Weighted α-fair policies in a linear network

Weighted α-fair policies are an important family of policies that have received a lot of attention in recent
years [4, 16, 17, 29]. For a given population ~n, the weighted-α fair allocation is the solution to the
following optimization problem:







max~s∈R(t)

∑L
i=0 wini

(

si

ni

)1−α

/(1 − α) if α > 0, α 6= 1,

max~s∈R(t)

∑L
i=0 wini log( si

ni
) if α = 1.

(7)

As mentioned in the Introduction, for different values of α, one obtains common bandwidth allocation
principles, like maximum total throughput, proportional fairness, and max-min fairness. Denote the
weighted α-fair discipline with weights w = (w0, w1, . . . , wL) and parameter α by π(α, w) and the corre-

sponding allocation vector by ~s π(α,w)( ~N). The allocated capacity to class i is shared equally among all
class-i users, hence the intra-class policy is PS. Recall that in the model description we assumed that the
intra-class policy is FCFS. In all the results of this section we assume exponentially distributed service
requirements. Thus, the results we obtain will also be valid if the intra-class policy is PS, see Remark 2.1.
In order to compare two α-fair policies we only need to check whether Property 4.1’ holds. In [4] it was
shown that for a symmetric linear network with unit capacity for all nodes the weighted α-fair allocation
is given by

s
π(α,w)
0 (~n) =

(w0n
α
0 )1/α

(w0nα
0 )1/α + (

∑L
i=1 winα

i )1/α
(8)

and s
π(α,w)
i (~n) = 1 − s

π(α,w)
0 (~n) for all i with ni > 0. Using (8), it can be checked that Property 4.1’

is satisfied for a symmetric linear network when comparing policies π(β, w) and π(γ, w̃) with β ≤ γ and
w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L (see also [21, Proposition 6.1]). For an asymmetric network we have no expression

for the weighted α-fair allocation available. However, the optimization problem (7) allows us to prove
that Property 4.1’ is satisfied then as well. The proof may be found in Appendix A.

Lemma 5.1 The following results hold in a linear network:
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(i) s
π(α,w)
0 (~n) is non-increasing in ni, i = 1, . . . , L.

(ii) If β ≤ γ, then s
π(β,w)
0 (~n) ≤ s

π(γ,w)
0 (~n) for all ~n.

(iii) If w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L, then s

π(α,w)
0 (~n) ≤ s

π(α,w̃)
0 (~n) for all ~n.

Since Property 4.1’ holds for weighted α-fair policies, the comparison results in Proposition 3.2 apply.
This allows us to gain insights into the performance of such policies in linear networks, see Subsections 5.1
and 5.2.
The stochastic comparison results in [24, Theorem 2] and [25, Theorem 5.3] are not applicable to the
weighted α-fair policies. As we already mentioned in Remark 4.2, such an ordering is not possible for the
total number of users present in the system. Also, an ordering for the number of class-0 users for any
ordered intitial states is not possible, since equation (4) is not satisfied for the class of weighted α-fair
policies in linear networks. Consider for example the simple symmetric linear network and choose states
such that nπ

0 = nπ̃
0 , nπ

1 = 1 and nπ̃
1 = m with π and π̃ two α-fair policies. From (8) we see that if m tends

to ∞ then s
π(α,w)
0 (~nπ̃) tends to 0. Hence (4) cannot hold for any pair of α-fair policies.

In [5] the authors obtain stochastic bounds for the number of users present in any queue for policies that
satisfy the monotonicity property (removing a user from any queue, increases the capacity allocated to
every other user). This property fails to hold for a linear network under α-fair policies, as also indicated
in [5]. For example, removing a class-1 user implies that class 1 gets less capacity and class 0 gets more.
This however implies that classes i = 2, . . . , L obtain less capacity as well and hence a class-i user gets
less capacity, i = 2, . . . , L. The only requirement in Property 4.1’ is that removing a class-i user, i 6= 0,
increases the capacity allocated to the class-0 users. As shown in Lemma 5.1, this holds under natural
conditions on the parameters of weighted α-fair policies.

Remark 5.2 From Lemma 5.1 and Corollary 4.4 we obtain that under a weighted α-fair policy, the
number of class-0 users in a linear network with L nodes is larger than in a linear network with L − 1
nodes.

In Section 5.1 the stability results are presented and in Section 5.2 monotonicity of the mean holding
cost with respect to the fairness parameter and the relative weights is established. In order to broaden
the comparison result, in Section 5.3 we investigate a heavy-traffic regime and in Section 5.4 we perform
numerical experiments. In Section 5.5 we describe a time-scale separation (the dynamics of class-0 users
are infinitely faster than those of classes 1, . . . , L) and derive approximations for the mean number of
users.

5.1 Stability

In [4] it is proved that for Poisson arrivals and exponentially distributed service requirements, any
weighted α-fair allocation in a bandwidth-sharing network with fixed capacity gives a stable system,
in the sense that the queue length process is positive-recurrent, under the necessary stability conditions
that the load in each node is smaller than the available capacity. For example, in the case of a linear
network the necessary stability conditions are ρ0 + ρi < Ci, for all i = 1, . . . , L. Corollary 3.4 and
Lemma 5.1 allow us to derive stability results for a linear network with time-varying capacities.

Corollary 5.3 Consider a linear network with time-varying capacities. Let the service requirements be
exponentially distributed. Assume β ≤ γ and w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L. If policy π(β, w) gives a stable

system, then policy π(γ, w̃) gives a stable system as well.

Proof: The α-fair policies have PS as intra-class policy. However, since we assume that the service
requirements are exponentially distributed, the stochastic behavior of the network does not depend on
which non-anticipating intra-class policy is being used. Therefore we can assume that we have a FCFS
intra-class policy. From Lemma 5.1 we obtain that Property 4.1 is satisfied, hence the result in Corol-
lary 3.4 applies. �

In [22] the authors consider the stability conditions for systems with a time-varying general rate region
under an α-fair policy with unit weights. They assume that the rate region can be in a finite number of
states according to a stationary and ergodic process. The authors characterize the stability conditions
and show that the stability region is non-increasing in the value of α. Interestingly, Corollary 5.3 indicates
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that the stability region is in fact also non-decreasing in the value of α in the setting of a linear network.
We obtain the following result.

Corollary 5.4 Assume Poisson arrivals and exponentially distributed service requirements. Consider a
linear network and assume the set of all the possible capacity vectors (C1(t), . . . , CL(t)) can be in a finite
number of states and evolves as a stationary and ergodic process. Let Ci be the average of the process
Ci(t).
Policy π(α, w) with wi ≤ w0, i = 1, . . . , L, gives a stable system under the necessary stability conditions
ρ0 + ρi < Ci, i = 1, . . . , L.

Proof: In [22] it is shown that for α-fair policies with unit weights (wj = 1, j = 0, . . . , L) the necessary
stability conditions are given by ρ0 + ρi < Ci, i = 1, . . . , L. Moreover, it is established that these
conditions are sufficient as well for the policy π(α,~1) when α ↓ 0. On the other hand, Corollary 5.3 states
that the stability conditions become less strict when α increases. This proves that π(α,~1) is stable under
the necessary stability conditions, for all α > 0. From Corollary 5.3 we can then conclude that the same
holds for policy π(α, w) with wi ≤ w0, i = 1, . . . , L. �

5.2 Mean number of users

We are now ready to derive a monotonicity result for the mean number of users for weighted α-fair
policies in a time-varying linear network. When

∑L
i=1 ciµi ≤ c0µ0, the instantaneous weighted departure

rate of class 0 is relatively large, hence, it will be attractive to give preference to class-0 users, either by
increasing the relative weight given to class 0, w0/wi, or by increasing the parameter α, see Lemma 5.1.
At the same time this makes better use of the available capacity of the nodes, see Proposition 3.2 (iv). In
the next corollary we prove that the mean holding cost indeed decreases when more preference is given
to class 0. More precisely, the mean holding cost is non-increasing in α and in w0

wi
, i = 1, . . . , L.

Corollary 5.5 Consider a linear network with time-varying capacities. Assume exponentially distributed
service requirements with

∑L
i=1 ciµi ≤ c0µ0. If β ≤ γ and w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L, then

L
∑

i=0

ciE(N
π(β,w)
i (t)) ≥

L
∑

i=0

ciE(N
π(γ,w̃)
i (t)), ∀ t ≥ 0.

Proof: From Lemma 5.1 we obtain that π(β, w) and π(γ, w̃) satisfy Property 4.1’. The result then
follows from Proposition 3.5. �

When
∑L

i=1 ciµi > c0µ0 the analysis is more difficult. For example, in a two-node linear network (L = 2)
with c1µ1 + c2µ2 > c0µ0, it is beneficial to give more preference to classes 1 and 2 (and hence less
preference to class 0) since that will maximize the total instantaneous weighted departure rate. From
Lemma 5.1 we see that this can be done by choosing α small. In the case of exponentially distributed
service requirements and a heavily loaded system, the mean holding cost is indeed strictly increasing in
α, as we will see in Section 5.3. For a normally loaded system this is however not the case (see the
simulations in Section 5.4). Then the effect that a smaller α uses the available capacity in each node less
efficiently becomes more apparent.

5.3 Heavy-traffic regime

In this section we compare α-fair policies in a heavy-traffic scenario for a two-node linear network with
fixed capacities C1 and C2. Throughout this section we consider α-fair policies with unit weights wj =
1, j = 0, . . . , L. We consider the setting of [13, 14, 17], where a general bandwidth-sharing network
under weighted α-fair allocations is considered with Poisson arrivals and exponentially distributed service
requirements. Below we briefly state the results specialized to the two-node linear network under α-fair
policies with unit weights. We refer to [13, 14] for the full details.
Assume the heavy-traffic setting ρi + ρ0 = Ci, i = 1, 2. Define the diffusion scaled processes as follows:

N̂
k,π(α)
i (t) :=

N
π(α,~1)
i (kt)√

k
, i = 0, 1, 2
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and

V̂
k,π(α)
i (t) :=

N
π(α,~1)
0 (kt)/µ0 + N

π(α,~1)
i (kt)/µi√

k
= N̂

k,π(α)
0 (t)/µ0 + N̂

k,π(α)
i (t)/µi, i = 1, 2.

Here V̂
k,π(α)
i (t) can be seen as the total workload in node i under the diffusion scaling. In [14, Conjecture

5.1] it is conjectured that for an arbitrary bandwidth-sharing network, the diffusion scaled workload

process
~̂
V k,π(α)(t) converges in distribution as k → ∞ to

~̂
V π(α)(t), where

~̂
V π(α)(t) is a semimartingale

reflecting Brownian motion (with a covariance matrix independent of α) living in a workload cone. For α
equal to 1 this conjecture is proved in [13, 14] for an arbitrary bandwidth-sharing network. In addition,
it is mentioned that for the case of a two-node linear network, this result can be extended to α 6= 1.
Throughout this section we will assume that the conjecture holds for the two-node linear network for
general α.
The workload cone for a two-node linear network under an α-fair policy with unit weights is given by

{~v : vi =
ρ0

µ0
(q1 + q2)

1

α +
ρi

µi
q

1

α

i , q1, q2 ≥ 0, i = 1, 2} (9)

= {~v : v1 ≥ 0, v1
ρ0/µ0

(C1 − ρ0)/µ1 + ρ0/µ0
≤ v2 ≤ v1

(C2 − ρ0)/µ2 + ρ0/µ0

ρ0/µ0
}, (10)

which is independent of the parameter α. Hence, the workload process
~̂
V π(α)(t) is independent of α

as well. The diffusion scaled number of users,
~̂
Nk,π(α)(t), converges in distribution as k → ∞ to some

process
~̂
Nπ(α)(t), which does depend on α (this process is specified in Appendix B).

Since the process of the total workload in a node does not depend on α, we are able to derive monotonicity
results for the mean holding cost over the whole range of the parameter µ0. We can express the scaled
holding cost as follows:

2
∑

i=0

ciN̂
π(α)
i (t) =

c0µ0 − c1µ1 − c2µ2

µ0
· N̂π(α)

0 (t) +

2
∑

i=1

ciµi · (
1

µ0
N̂

π(α)
0 (t) +

1

µi
N̂

π(α)
i (t))

d
=

c0µ0 − c1µ1 − c2µ2

µ0
· N̂π(α)

0 (t) +

2
∑

i=1

ciµiV̂
π(α)
i (t). (11)

From Proposition 3.2 we know that N
π(α,~1)
0 (t) is decreasing in α, and hence N̂

π(α)
0 (t) is decreasing in

α as well. Since V̂
π(α)
i (t) is independent of α, and by taking expectations in (11), we obtain that if

c1µ1 + c2µ2 ≤ c0µ0 or c1µ1 + c2µ2 ≥ c0µ0, then E(
∑2

i=0 ciN̂
π(α)
i (t)) is non-increasing or non-decreasing

in α, respectively.

When in addition we use the characterization of
~̂
Nπ(α)(t), we are able to derive a stronger monotonicity

result. The proof may be found in Appendix B.

Proposition 5.6 Consider a linear network with fixed capacities C1 and C2. Assume that the inter-
arrival times and service requirements are exponentially distributed, and ρi + ρ0 = Ci for i = 1, 2. If the
conjecture in [14] is valid, then

• If c1µ1 + c2µ2 < c0µ0, then E(
∑2

i=0 ciN̂
π(α)
i (t)) is strictly decreasing in α.

• If c1µ1 + c2µ2 = c0µ0, then E(
∑2

i=0 ciN̂
π(α)
i (t)) is constant in α.

• If c1µ1 + c2µ2 > c0µ0, then E(
∑2

i=0 ciN̂
π(α)
i (t)) is strictly increasing in α.

5.4 Numerical results

In this section we present numerical experiments to provide further insight into the performance of α-
fair policies. We consider a two-node linear network where both nodes have unit capacity. We assume
Poisson arrivals and exponentially distributed service requirements and fix µ1 = 1, µ2 = 0.5, ρ1 = ρ2 and

13



0 0.5 1 1.5 2
12

14

16

18

20

22

24

α

E
(N

0π(
α)

+
N

1π(
α)

+
N

2π(
α)

)

ρ
0
=0.7, ρ

1
=0.2, ρ

2
=0.2 and µ

1
=1, µ

2
=0.5

 

 

µ
0
=0.2

µ
0
=0.4

µ
0
=0.8

µ
0
=1.2

µ
0
=2

µ
0
=10

perf. bound

0 2 4 6 8 10
6.5

7

7.5

8

8.5

9

9.5

α

E
(N

0π(
α)

+
N

1π(
α)

+
N

2π(
α)

)

ρ
0
=0.3, ρ

1
=0.5, ρ

2
=0.5 and µ

1
=1, µ

2
=0.5

 

 

µ
0
=0.2

µ
0
=0.4

µ
0
=0.6

µ
0
=1.2

µ
0
=2

µ
0
=10

perf. bound

Figure 3: Total mean number of users under α-fair policies in a two-node linear network with a) ρ0 =
0.7, ρ1 = 0.2 and ρ2 = 0.2, and b) ρ0 = 0.3, ρ1 = 0.5 and ρ2 = 0.5.
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Figure 4: Total mean number of users under α-fair policies in a two-node linear network with ρ0 =
0.3, ρ1 = 0.2 and ρ2 = 0.2.

wj = cj = 1, j = 0, 1, 2. The numerical experiments are performed using Matlab c©, and in the order of
107 busy periods are simulated.
In Figures 3 a) and b) and Figure 4 a) we let α vary on the horizontal axis and plot the corresponding
total mean number of users for various values of µ0. As expected from Corollary 5.5, we observe that
for µ0 ≥ µ1 +µ2 = 1.5 the total mean number of users is decreasing with respect to the value of α. When
µ0 < µ1 + µ2 = 1.5, we observe that the total mean number of users is monotone (either decreasing or
increasing) in α as well in the range α ∈ [1,∞). However, when α ∈ (0, 1) and µ0 < µ1 + µ2 = 1.5, it
is possible that the total mean number of users is not monotone in α. This fact may be explained as
follows. Since µ0 < µ1 + µ2 = 1.5, it is attractive to give more preference to classes 1 and 2 when they
are both present (hence less preference to class 0). This corresponds to a small value for α. However,
an α-fair policy with a small α uses the available capacity less efficiently, see Proposition 3.2 (iv) and
Lemma 5.1 (ii). These two opposite effects might cause the total mean number of users to not be
monotone in α. Note that for the heavy-traffic regime as considered in Section 5.3, the workload in a
node was independent of the parameter α and hence every value for α had the same efficiency. Therefore,
there was no trade-off and we were able to prove the monotonicity results for µ0 < µ1 + µ2 as well.
In Figure 4 b) we let µ0 vary on the horizontal axis and plot the corresponding total mean number of
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users for various values of α. We observe that the total mean number of users is mostly increasing in µ0

when α < 1 and decreasing in µ0 when α > 1, respectively. This can be explained as follows. First of all,
if α = 1, the policy reduces to PF. For PF with unit weights, the mean total number of users is exactly
known and equals

E

(

L
∑

i=0

N
π(1,~1)
i

)

=
ρ1

1 − ρ0 − ρ1
+

ρ2

1 − ρ0 − ρ2
+

ρ0

1 − ρ0

(

1 +
ρ1

1 − ρ0 − ρ1
+

ρ2

1 − ρ0 − ρ2

)

, (12)

see [26]. In fact, PF is insensitive to the service requirement distributions apart from their respective
means (see [26]) and hence (12) holds for generally distributed service requirements. In particular, the
total mean number of users is independent of the parameters µ0, µ1 and µ2 for given values of ρ0, ρ1 and
ρ2. When α > 1, from Lemma 5.1 (ii) we observe that class 0 is treated preferentially over classes 1 and
2 (compared to PF). Under an α-fair policy that gives preference to class 0, it is likely that the total
mean number of users decreases when the class-0 users become smaller, i.e., when µ0 increases, while
µ1, µ2, ρ0, ρ1 and ρ2 are kept fixed. Similarly, when α < 1, classes 1 and 2 are treated preferentially over
class 0 (compared to PF). When µ0 becomes larger (while µ1, µ2, ρ0, ρ1 and ρ2 are kept fixed), class-1
and 2 users become relatively larger. Under an α-fair policy that gives preference to classes 1 and 2, it
is likely that the total mean number of users increases when µ0 increases.

5.5 Time-scale separation

In [5] the authors introduce the so-called quasi-stationary and fluid-limit regimes (see also [18]). In
these regimes, the flow dynamics of the various classes occur on separate time scales, which can greatly
simplify the analysis. It was conjectured in [5] that these limiting regimes provide performance bounds.
For the symmetric linear network with unit weights, Poisson arrivals and generally distributed service
requirements, we refer to the quasi-stationary and fluid regimes when µ0 → ∞ and µ0 → 0, respectively,
and keeping µ1, . . . , µL and ρ0, ρ1, . . . , ρL fixed. From our simulation results for a linear network it seems
that these limiting regimes can indeed be performance bounds, see Figure 4 b). When α > 1, the quasi-
stationary regime (µ0 → ∞) is a lower bound on the total mean number of users and the fluid regime
(µ0 → 0) an upper bound on the total mean number of users, and when α < 1 vice versa. A similar
observation was made in [18] for a DPS queue.
We develop here an approximate analysis of the quasi-stationary regime. The approximate formulae
might be useful in assessing the performance of α-fair policies, since exact closed-form formulae are not
available. In the quasi-stationary regime, µ0 → ∞, the dynamics of class 0 will “average out” on the
relevant time scale for class i, i = 1, . . . , L. Hence, we can say that class 0 takes away a constant service
rate ρ0 and class i sees capacity 1 − ρ0. Class i behaves as in a PS system with capacity 1 − ρ0, which
implies that the number of class-i users in the system is geometrically distributed with mean ρi

1−ρ0−ρi

[15]. Hence, limµ0→∞ E(N
π(α,w)
i ) = ρi

1−ρ0−ρi
, which is independent of α and w0

wi
.

The time scale of class 0 is infinitely faster than that of classes 1, . . . , L. Thus on the time scale of
class 0, the dynamics of classes 1, . . . , L almost vanish. It can be assumed that for a given number of
class-i users, i = 1, . . . , L, class 0 will reach some sort of statistical equilibrium. We recall from (8)

that s
π(α,w)
0 (~n) = n0

n0+c , with c = c(n1, . . . , nL) = (
∑L

i=1
wi

w0

nα
i )1/α. Thus, given a population ~n, class

0 behaves like a PS system with c permanent users. The mean number of users in such a system is
ρ0

1−ρ0

(1 + c). Unconditioning and noting that N
π(α,w)
i is in the limit geometrically distributed with mean

ρi

1−ρ0−ρi
, i = 1, . . . , L, we get that approximately

lim
µ0→∞

E(N
π(α,w)
0 ) = lim

µ0→∞

∑

n1,...,nL

E(N
π(α,w)
0 |Nπ(α,w)

i = ni, i = 1, . . . , L) · P(N
π(α,w)
i = ni, i = 1, . . . , L)

= lim
µ0→∞

∑

n1,...,nL

ρ0

1 − ρ0
·
(

1 + (
L
∑

i=1

wi

w0
nα

i )1/α

)

· P(N
π(α,w)
i = ni, i = 1, . . . , L)

≈ ρ0

1 − ρ0
·



1 +

(

L
∑

i=1

wi

w0
(

ρi

1 − ρ0 − ρi
)α

)1/α


 . (13)

We ignored here the non-linearity induced by the parameter α. We see that the performance of class 0
does depend on α and the weights wi, and using similar arguments as in the proof of Lemma 5.1, it
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can be checked that the mean number of class-0 users as given in (13) indeed decreases when α or w0

wi

increases (as was proved already in Proposition 3.2).
As an approximation for the total mean number of users we then obtain

lim
µ0→∞

E

(

L
∑

i=0

N
π(α,w)
i

)

≈ ρ0

1 − ρ0
·



1 +

(

L
∑

i=1

wi

w0
(

ρi

1 − ρ0 − ρ1
)α

)1/α


+

L
∑

i=1

ρi

1 − ρ0 − ρi
. (14)

The approximation (14) gives the correct expression for α = 1 and unit weights, see (12). In Figures 3
and Figure 4 a) we plotted (14) against α (denoted in the figures by “perf. bound”). We observe that (14)
provides indeed an upper bound on the performance when α < 1, and a lower bound when α > 1. Even
for moderate values of µ0, the bound is quite tight and not off by more than 10% as long as the value of
α is not too small or too large.
Unfortunately, it does not seem possible to derive an approximation for the fluid regime. When µ0 → 0,
the dynamics of classes 1, . . . , L “average out” on the relevant time scale of class 0. Thus, class 0 sees
a system with capacity 1 − max(ρ1, . . . , ρL). The time scale of classes 1, . . . , L are infinitely faster than
that of class 0, hence on the relevant time scale of classes 1, . . . , L, the dynamics of class 0 nearly vanish.

Thus, given a certain number of class-0 users, class i obtains capacity s
π(α,w)
i (~n) = (

∑L
i=1

wi

w0

nα
i )1/α/(n0+

(
∑L

i=1
wi

w0

nα
i )1/α), where n0 can be considered fixed. From this equation we cannot approximate the

behavior of classes 1, . . . , L by any known queueing system unless α = 1.

6 Multi-class single-server queue

In Section 4 and Section 5 we have focused on a linear network. In this section we turn our attention to
the multi-class single-server queue with time-varying capacity C(t). There are K classes of users, where
class-i users arrive according to a general arrival process with rate λi, and have generally distributed
service requirements with mean 1/µi, i = 1, . . . , K. Let ρ =

∑K
i=1 ρi. The inter-arrival times and the

service requirements are mutually independent random variables. We consider allocation policies that
are work-conserving, i.e. if

∑K
i=1 ni > 0 then

∑K
i=1 si(~n) = C(t), and if ni = 0 then si(~n) = 0. The

intra-class policy is FCFS.
In Section 6.1 we consider two popular weighted time-sharing policies and, using the general results from
Section 3, we obtain monotonicity properties in the case of two classes of users. In Section 6.2 we derive
a framework (similar to the one derived in Section 3) for a multi-class single-server system (with an
arbitrary number of classes) under work-conserving disciplines.

6.1 GPS and DPS policies

The policies we are particularly interested in are GPS [10, 32] and DPS [20, 12, 1], two popular non-
anticipating policies in multi-class single-server queues. Let GPS(φ) (DPS(φ)) denote a GPS (DPS)

discipline that assigns weight φj to class j, with
∑K

j=1 φj = 1.
The GPS allocation is given by

s
GPS(φ)
i (~n) = C(t)

φi
∑K

j=1 φj1(nj>0)

, i = 1, . . . , K,

for
∑K

j=1 nj > 0. We take as intra-class policy in GPS the FCFS discipline.
The DPS allocation is given by

s
DPS(φ)
i (~n) = C(t)

φini
∑K

j=1 φjnj

, i = 1, . . . , K, (15)

for
∑K

j=1 nj > 0. With DPS, the allocated capacity to class i is shared equally among all class-i users,
hence the intra-class policy in DPS is PS.
Assume the service requirements are exponentially distributed with c1µ1 ≥ c2µ2 ≥ · · · ≥ cKµK . The
cµ-rule (give priority to the class with highest ciµi) minimizes the mean holding cost among all non-
anticipating policies (see for example [31]). For both GPS and DPS, a class is given more preference
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when its weight is increased. Hence it seems plausible that giving relatively more weight to classes with
a high ciµi, will decrease the mean holding cost. For a single-server system with only two classes of users
(K = 2) we can indeed prove this. Such a system is equivalent to a linear network with one node (L = 1).
When φ1 < φ̃1, the policies GPS(φ) and GPS(φ̃) (DPS(φ) and DPS(φ̃)) satisfy Property 4.1’. Hence,
we can use the results of Section 3 to obtain monotonicity results for GPS and DPS in a single-server
system with two classes of users and time-varying capacity.

Proposition 6.1 Consider a single-server queue with two classes of users and time-varying capacity.
Let φ1 < φ̃1. Assume Wπ

1 (0) ≥ W π̃
1 (0), Wπ

2 (0) ≤ W π̃
2 (0) and Wπ

1 (0) + Wπ
2 (0) = W π̃

1 (0) + W π̃
2 (0),

where either π = GPS(φ) and π̃ = GPS(φ̃), or π = DPS(φ) and π̃ = DPS(φ̃). We consider the same
realizations of the arrival processes and service requirements for both processes.
For generally distributed service requirements it holds that

W
GPS(φ)
1 (t) ≥ W

GPS(φ̃)
1 (t) and N

GPS(φ)
1 (t) ≥ N

GPS(φ̃)
1 (t). (16)

The opposite inequalities hold for class 2.
For exponentially distributed service requirements it holds that

{WDPS(φ)
1 (t)}t ≥st {WDPS(φ̃)

1 (t)}t and {NDPS(φ)
1 (t)}t ≥st {NDPS(φ̃)

1 (t)}t. (17)

The opposite inequalities hold for class 2.
If the service requirements are exponentially distributed with c1µ1 ≥ c2µ2 and the system can be made
stable, then

2
∑

i=1

ciE(N
GPS(φ)
i (t)) ≥

2
∑

i=1

ciE(N
GPS(φ̃)
i (t)), ∀ t ≥ 0, (18)

and
2
∑

i=1

ciE(N
DPS(φ)
i (t)) ≥

2
∑

i=1

ciE(N
DPS(φ̃)
i (t)), ∀ t ≥ 0. (19)

Proof: Since the respective pair of policies satisfy Property 4.1’, equations (16) and (17) follow directly
from Propositions 3.2, and equations (18) and (19) follow directly from Proposition 3.5. For exponentially
distributed service requirements, the stochastic behavior is independent of the used intra-class policy, see
Remark 2.1. For DPS we consider exponentially distributed service requirements. Hence, the sample-
path comparison in Proposition 3.2 obtained for FCFS, allows us to obtain the stochastic comparison
result in (17) for DPS when the intra-class policy is PS. �

Inequalities (16) and (17) are rather natural, but to the best of our knowledge have not been obtained
previously. In particular, the comparison results from [24] and [25] do not allow for such a comparison,
as explained later in Remark 6.10. The result for GPS is particularly interesting. The GPS discipline
is used to model the queueing delay experienced by packets in packet networks. An important body of
research on GPS is devoted to the characterization of the workload when there are two classes of users,
see for example [32, 7].
Inequalities (18) and (19) show that for two classes, the mean holding cost under DPS or GPS is monotone
in the whole range φ1 ∈ [0,∞), where one extreme corresponds to giving preemptive priority to class 2
(φ1 = 0) and the other extreme to preemptive priority to class 1 (φ1 = 1). To the best of our knowledge,
this kind of monotonicity result is new for GPS. In the case of a two-class single-server DPS-system with
fixed capacity and Poisson arrivals, this result could also be obtained from the analysis in [12] (see [2] for
more details).
For an arbitrary number of classes little is known on monotonicity results for GPS and DPS. As mentioned
before, motivated by the optimality of the cµ-rule, one would expect that giving relatively more weight to
classes with a high ciµi, will decrease the mean holding cost. One of the most relevant results is obtained
in [19]. The authors consider a single server with fixed capacity, Poisson arrivals and exponentially
distributed service requirements with µ1 ≥ µ2 ≥ · · · ≥ µK . Using the results of [12] they prove that if

φ̃1 ≥ φ̃2 ≥ · · · ≥ φ̃K , then E(
∑K

i=1 NPS
i ) ≥ E(

∑K
i=1 N

DPS(φ̃)
i ). Note that PS is equivalent to a DPS

policy with weights φi = φj , ∀i, j, see equation (15). In general, we expect the following results to hold
(a similar conjecture for the steady-state of DPS has been made in [19]).
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Conjecture 6.2 Consider a single-server queue with K classes of users. Assume the service requirements
are exponentially distributed with c1µ1 ≥ . . . ≥ cKµK . If the weights φ and φ̃ are such that class i obtains
a relatively larger weight (compared to class i + 1) under φ̃ than under φ, that is

φi/φi+1 < φ̃i/φ̃i+1, i = 1, . . . , K − 1,

then
K
∑

j=1

cjE(N
GPS(φ)
j (t)) ≥

K
∑

j=1

cjE(N
GPS(φ̃)
j (t)),

and
K
∑

j=1

cjE(N
DPS(φ)
j (t)) ≥

K
∑

j=1

cjE(N
DPS(φ̃)
j (t)), ∀ t ≥ 0.

In the next example we perform numerical experiments that support Conjecture 6.2 for a single-server
system with three classes.

Example 6.3 (Numerical experiments for GPS and DPS) We consider a single server with fixed
unit capacity and three classes of users with exponentially distributed service requirements and Poisson ar-
rivals. We consider both GPS and DPS with weights φi(r) = Ω(r) ·rK−i, r ≥ 1, and Ω(r) = 1/(

∑K−1
i=0 ri)

a normalization constant. Note that φi/φi+1 = r, i = 1, . . . , K. Hence, as the parameter r increases,
class i obtains relatively a larger weight compared to class i + 1. We choose µ1 = 2, µ2 = 1 and µ3 = 0.5,

hence we expect that the functions E(
∑K

i=1 N
GPS(φ(r))
i ) and E(

∑K
i=1 N

DPS(φ(r))
i ) are decreasing in r.

When r → ∞, both GPS(r) and DPS(r) become a priority rule that gives preemptive priority to class 1,
and if class 1 is empty, it serves class 2. Since µ1 > µ2 > µ3, this policy minimizes the total mean
number of users present in the system (follows from the optimality of the cµ-rule).
For GPS with weights φi(r) we simulated the system and Figure 5 a) plots the total mean number of users
as a function of the parameter r. We observe that the total mean number of users indeed reduces as r
increases.
In Figure 5 b) we consider a single server under DPS(r) and plot the mean total number of users as
a function of the parameter r. The total mean number of users was obtained by solving a system of

linear equations as given in [12]. When r = 1, the policy reduces to PS, hence E(
∑K

i=1 N
DPS(φ(1))
i ) =

E(
∑K

i=1 NPS
i ) = ρ1+ρ2+ρ3

1−ρ1+ρ2+ρ3

. We observe that the mean total number of users is again decreasing in r.
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Figure 5: a) Total mean number of users under GPS policies, b) Total mean number of users under DPS
policies.

For a single server with more than two classes, the framework and results as developed in Section 3 and in
particular Property 3.1 are not applicable. Therefore, in the next subsection we develop a similar analysis
as in Section 3, but now for a single-server system with an arbitrary number of classes. Unfortunately,
this sample-path framework does not allow a full comparison of either two DPS or two GPS policies for
more than two classes. This will be explained as well in the next subsection.
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6.2 Comparison results for the multi-class single-server queue

We now focus on a single-server system with K classes of users, K ≥ 2. We only consider efficient policies,
which in a single-server scenario is equivalent to the work-conserving property. In this section we develop
sample-path results similar to the ones obtained in Section 3. We start by giving sufficient conditions on
two policies in order to compare sample-path wise two policies.

Property 6.4 Let π and π̃ be two work-conserving policies such that for any k = 1, . . . , K − 1 we have

k
∑

i=1

sπ
i (~nπ) ≤

k
∑

i=1

sπ̃
i (~nπ̃), (20)

for all states ~nπ̃ and ~nπ that satisfy the following:

• nπ
1 ≥ nπ̃

1 , nπ
k ≤ nπ̃

k , nπ
k+1 ≥ nπ̃

k+1 and nπ
K ≤ nπ̃

K.

• If nπ̃
k = 0, then in addition nπ

k−1 ≤ nπ̃
k−1. If nπ̃

k = 0 and nπ̃
k−1 = 0, then in addition nπ

k−2 ≤ nπ̃
k−2.

Etc.

• If nπ
k+1 = 0, then in addition nπ

k+2 ≥ nπ̃
k+2. If nπ

k+1 = 0 and nπ
k+2 = 0, then in addition nπ

k+3 ≥
nπ̃

k+3. Etc.

Property 6.4 represents a weak notion of priority, with strict priority as a special case. When two policies
satisfy Property 6.4, we can derive the following sample-path comparison result.

Proposition 6.5 Let π and π̃ be two work-conserving policies that satisfy Property 6.4 and consider
the same realizations of the arrival processes and service requirements. If

∑m
i=1 Wπ

i (0) ≥ ∑m
i=1 W π̃

i (0),

m = 1, . . . , K − 1, and
∑K

i=1 Wπ
i (0) =

∑K
i=1 W π̃

i (0), then for all t ≥ 0

m
∑

i=1

(Sπ
i (t) − Wπ

i (0)) ≤
m
∑

i=1

(

Sπ̃
i (t) − W π̃

i (0)
)

, m = 1, . . . , K. (21)

For m = K, (21) holds with equality.
In particular we have

Nπ
1 (t) ≥ N π̃

1 (t), Nπ
K(t) ≤ N π̃

K(t), (22)

and
m
∑

i=1

Wπ
i (t) ≥

m
∑

i=1

W π̃
i (t), m = 1, . . . , K. (23)

For m = K, (23) holds with equality.

Proof: Equation (23) follows from (1) and equation (21). The first relation in equation (22) follows from
equation (23) with m = 1, since the intra-class policy is FCFS and the k-th most recently arrived class-1
user before time t has the same (original) service requirement under both policies. Similarly, the second

relation in equation (22) follows from equation (23) with m = K − 1 and
∑K

i=1 Wπ
i (t) =

∑K
i=1 W π̃

i (t).
Therefore, it suffices to prove equation (21).

The policies are work-conserving, so
∑K

i=1 Wπ
i (0) =

∑K
i=1 W π̃

i (0) gives that
∑K

i=1 Sπ
i (t) =

∑K
i=1 Sπ̃

i (t),
and hence (21) holds with equality for m = K.
Equation (21) for m < K is proved by contradiction. Let t be the first time epoch at which (21) is

violated for some k, 1 ≤ k ≤ K − 1. So we have
∑k

i=1(S
π
i (t) − Wπ

i (0)) =
∑k

i=1(S
π̃
i (t) − W π̃

i (0)) and
∑k

i=1 sπ
i ( ~Nπ(t+)) >

∑k
i=1 sπ̃

i ( ~N π̃(t+)) (with strict inequality), but
∑m

i=1(S
π
i (t)−Wπ

i (0)) ≤∑m
i=1(S

π̃
i (t)−

W π̃
i (0)), for m 6= k. Hence,

Sπ
1 (t) − Wπ

1 (0) ≤ Sπ̃
1 (t) − W π̃

1 (0), Sπ
k (t) − Wπ

k (0) ≥ Sπ̃
k (t) − W π̃

k (0),

Sπ
k+1(t) − Wπ

k+1(0) ≤ Sπ̃
k+1(t) − W π̃

k+1(0), Sπ
K(t) − Wπ

K(0) ≥ Sπ̃
K(t) − W π̃

K(0)
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Together with (1), we obtain Wπ
1 (t) ≥ W π̃

1 (t), Wπ
k (t) ≤ W π̃

k (t), Wπ
k+1(t) ≥ W π̃

k+1(t) and Wπ
K(t) ≤ W π̃

K(t).
Since the k-th class-j user under both policies has the same (original) service requirement and the intra-
class policy is FCFS, we have as well

Nπ
1 (t) ≥ N π̃

1 (t), Nπ
k (t) ≤ N π̃

k (t), Nπ
k+1(t) ≥ N π̃

k+1(t) and Nπ
K(t) ≤ N π̃

K(t).

Since {Ni(t)}t≥0 is a piece-wise constant process and is right continuous, the same holds at time t+:
Nπ

1 (t+) ≥ N π̃
1 (t+), Nπ

k (t+) ≤ N π̃
k (t+), Nπ

k+1(t
+) ≥ N π̃

k+1(t
+) and Nπ

K(t+) ≤ N π̃
K(t+).

Note that if N π̃
k (t+) = 0, then Sπ

k (t) − Wπ
k (0) = Sπ̃

k (t) − W π̃
k (0) and hence

∑k−1
i=1 (Sπ

i (t) − Wπ
i (0)) =

∑k−1
i=1 (Sπ̃

i (t) − W π̃
i (0)). So Sπ

k−1(t) − Wπ
k−1(0) ≥ Sπ̃

k−1(t) − W π̃
k−1(0) and by (1) we obtain Nπ

k−1(t
+) ≤

N π̃
k−1(t

+). Now if also N π̃
k−1(t

+) = 0, then we obtain in the same way that Nπ
k−2(t

+) ≤ N π̃
k−2(t

+), etc.

Also note that if Nπ
k+1(t

+) = 0, then Sπ
k+1(t) − Wπ

k+1(0) = Sπ̃
k+1(t) − W π̃

k+1(0) and hence
∑k+1

i=1 (Sπ
i (t) −

Wπ
i (0)) =

∑k+1
i=1 (Sπ̃

i (t) − W π̃
i (0)). So Sπ

k+2(t) − Wπ
k+2(0) ≤ Sπ̃

k+2(t) − W π̃
k+2(0) and by (1) we obtain

Nπ
k+2(t

+) ≥ N π̃
k+2(t

+). Now if also Nπ
k+2(t

+) = 0, then we obtain in the same way that Nπ
k+3(t

+) ≥
N π̃

k+3(t
+), etc.

So at time t+ we are in states ~Nπ(t+) and ~N π̃(t+) that satisfy Property 6.4 and hence
∑k

i=1 sπ
i ( ~Nπ(t+)) ≤

∑k
i=1 sπ̃

i ( ~N π̃(t+)). This contradicts the initial assumption. �

Every work-conserving policy gives a stable system whenever possible. However, for a subset of the
classes, the stability conditions can still depend on the policy being employed. We have the following
result:

Corollary 6.6 Assume policies π and π̃ satisfy Property 6.4. If classes 1, 2, . . . , m are stable under policy
π, then these classes are stable under policy π̃ as well, in the sense that the system is empty under policy
π̃ whenever it is empty under policy π.
In particular, if the empty state is positive-recurrent under policy π in the case of Poisson arrivals, then
it is positive-recurrent under policy π̃ as well.

Proof: If
∑m

i=1 Wπ
i (t) = 0, then we obtain from Proposition 6.5 that

∑m
i=1 W π̃

i (t) = 0. The second
assertion is a direct implication of the first one. �

The following proposition states the analogous version of Proposition 3.5.

Proposition 6.7 Assume the service requirements are exponentially distributed. Let π and π̃ be two
policies that satisfy Property 6.4 and assume the system is stable. If c1µ1 ≥ c2µ2 ≥ . . . ≥ cKµK , then

K
∑

i=1

ciE(Nπ
i (t)) ≥

K
∑

i=1

ciE(N π̃
i (t)), ∀ t ≥ 0.

Proof: Assume at time t = 0 the conditions as stated in Proposition 6.5 are satisfied. From Proposi-
tion 6.5 we obtain

∑m
i=1 Wπ

i (t) ≥
∑m

i=1 W π̃
i (t). Since π is non-anticipating and the service requirements

are exponentially distributed we obtain

m
∑

i=1

1

µi
E(Nπ

i (t)) ≥
m
∑

i=1

1

µi
E(N π̃

i (t)) (24)

for m ≤ K. Define P π
m(t) :=

∑m
i=1

1
µi

E(Nπ
i (t)). So P π

m(t) ≥ P π̃
m(t), m = 1, . . . , K and hence

K
∑

i=1

ciE(Nπ
i (t)) = (c1µ1 − c2µ2)P

π
1 (t) + (c2µ2 − c3µ3)P

π
2 (t) + . . . + cKµKP π

K(t)

≥ (c1µ1 − c2µ2)P
π̃
1 (t) + (c2µ2 − c3µ3)P

π̃
2 (t) + . . . + cKµKP π̃

K(t)

=

K
∑

i=1

ciE(N π̃
i (t)),

where we used that c1µ1 ≥ c2µ2 ≥ . . . ≥ cKµK . �
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Example 6.8 (Optimality of the cµ-rule:) As mentioned before, for exponentially distributed service
requirements, the cµ-rule, i.e. the policy that gives preemptive priority to the class i with the maximum
ciµi, minimizes the mean holding cost among all non-anticipating policies. For a time-varying multi-
class single-server system, this was shown in [31]. In fact this also follows from Proposition 6.7. Assume
c1µ1 ≥ c2µ2 ≥ . . . ≥ cKµK . Denote the cµ-rule by π̃, and consider an arbitrary non-anticipating policy
π. Whenever

∑k
i=1 nπ̃

i > 0 we have that
∑k

i=1 sπ̃
i (~nπ̃) = C(t) and hence (20) is satisfied for these states.

Now assume
∑k

i=1 nπ̃
i = 0. Since nπ̃

i = 0 for all i ≤ k, the corresponding states ~nπ we have to consider

in Property 6.4 should satisfy nπ
i ≤ nπ̃

i = 0 for all i ≤ k, that is
∑k

i=1 nπ
i = 0 as well. But then (20) is

by definition satisfied. Hence Property 6.4 is satisfied and the optimality of the cµ-rule follows now from
Proposition 6.7.

Proposition 6.7, combined with Property 6.4 gives sufficient conditions in order to compare the mean
holding cost under two policies. When K = 2, Property 6.4 reduces to the rather natural condition
sπ
1 (~n) ≤ sπ̃

1 (~n) for all states ~n. This is for example satisfied by either two DPS policies or two GPS
policies when φ1 ≤ φ̃1. Unfortunately, for more than two classes Property 6.4 fails to hold for any two
DPS policies. For a GPS system, Property 6.4 is satisfied under more stringent conditions than the ones
stated in Conjecture 6.2. For example, for the case of three classes it can be checked that for two GPS
disciplines, GPS(φ) and GPS(φ̃), Property 6.4 is equivalent to

φ1

φ1 + φ2
≤ φ̃1,

φ1

φ1 + φ3
≤ φ̃1

φ̃1 + φ̃3

and φ3 ≥ φ̃3

φ̃2 + φ̃3

. (25)

Hence, (25) is a sufficient condition to compare the mean holding cost under GPS(φ) and GPS(φ̃). If we
choose as weights φi(r) = Ω(r) · rK−i, r > 1 (as considered in Example 6.3), equation (25) is equivalent
to 1 ≤ r and r̃ ≥ r + r2. We would expect the comparison result already to hold for all r̃ ≥ r, so this
shows that there is still a gap of length r2. For an arbitrary number of classes, the sufficient conditions
in order for Conjecture 6.2 to hold for GPS can be obtained as well, however, the derivations become
very cumbersome.
In this section we used sample-path inequalities as given in (21) in order to compare the mean holding
cost under two different policies. Property 6.4 is a sufficient (but not necessary) condition for these
sample-path inequalities to hold. For DPS and GPS, this property is not (always) satisfied. In fact, the
counterexample below illustrates for the case of three classes that the sample-path inequalities (21) do not
need to hold for either two DPS policies or two GPS policies that satisfy the conditions of Conjecture 6.2.
This indicates that for more than two classes Conjecture 6.2 may not be proved using sample-path
arguments and requires a different kind of approach.

Example 6.9 (Counterexamples for DPS and GPS) We give a counterexample for inequality (21)
that is valid for both DPS and GPS, since the sample-path will exactly be the same under both policies.
Consider a system with three classes, and consider the two policies with weight vectors φ = (2, 1, 1)
and φ̃ = (∞, 1, 1), respectively. It is easy to verify that the vectors φ and φ̃ satisfy the condition of
Conjecture 6.2. Assume that at time t = 0 there is one user in every class, that is, Nπ(0) = N π̃(0) =
(1, 1, 1) and their service requirements are respectively 4, 10 and 1 under both policies π and π̃. At time
t = 6 a class-3 user arrives with a strictly positive service requirement. Let us analyze the evolution under
both disciplines over time:

• Policy π: In the interval [0, 4) all users share the capacity according to the weights. At time t = 4
the class-3 user departs the system and the remaining service requirements of the class-1 and the
class-2 user are 2 and 9, respectively. In the interval [4, 6) the class-1 and class-2 users will share
the capacity according to their weights, thus at time t = 6 the remaining service requirements for the
class-1 and class-2 users are 2

3 and 25
3 , respectively. It follows that Sπ

1 (6)+Sπ
2 (6) = 4+10− 2

3 − 25
3 =

5.

• Policy π̃: In the interval [0, 4) only class 1 will be served and it departs at time t = 4. In the
interval [4, 6) the class-2 and class-3 users will equally share the capacity. At time t = 6 the
class-3 user departs and the class-2 user has a remaining service requirement of 9. It follows that
Sπ̃

1 (6) + Sπ̃
2 (6) = 4 + 10 − 9 = 5.

Due to the new arrival at t = 6 it follows that sπ
1 ( ~Nπ(6+)) + sπ

2 ( ~Nπ(6+)) = 3
4 whereas sπ̃

1 ( ~N π̃(6+)) +

sπ̃
2 ( ~N π̃(6+)) = 1

2 . This together with the fact that Sπ
1 (6) + Sπ

2 (6) = Sπ̃
1 (6) + Sπ̃

2 (6) implies that Sπ
1 (6+) +

Sπ
2 (6+) > Sπ̃

1 (6+) + Sπ̃
2 (6+), which contradicts (21) for m = 2.
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In the following remark we explain that Conjecture 6.2 does not follow either from results in [24, 25] and
hence that a novel approach is needed.

Remark 6.10 Assume the processes { ~Nπ(t)}t≥0 and { ~N π̃(t)}t≥0 are two continuous-time Markov pro-
cesses (hence Poisson arrivals with exponentially distributed service requirements and C(t) = C). From

Remark 3.6 we readily see that the conditions on the policies π and π̃ in order to obtain {∑K
i=1 Nπ

i (t)}t≥0

≥st {
∑K

i=1 N π̃
i (t)}t≥0 for any initial states

∑K
i=1 Nπ

i (0) ≥st

∑K
i=1 N π̃

i (0), are only satisfied when µi = µ
for all i. Consider for example the two states ~nπ = ek and ~nπ̃ = ej, where ej denotes a vector with the j-
th component equal to 1 and all other components equal to 0. Then the condition as stated in Remark 3.6
becomes

∑K
i=1 µis

π
i (~nπ) = µk ≤

∑K
i=1 µis

π̃
i (~nπ̃) = µj, see also [24, 25]. However, for the states ~nπ = ej

and ~nπ̃ = ek we obtain similarly that we need µj ≤ µk. So only when µi = µ for all i, the conditions are
satisfied, but this is not very interesting.
The necessary and sufficient conditions in order to obtain a similar comparison result as in Proposi-
tion 6.5, i.e. {Nπ

1 (t)}t≥0 ≥st {N π̃
1 (t)}t≥0 and {Nπ

K(t)}t≥0 ≤st {N π̃
K(t)}t≥0 given that Nπ

1 (0) ≥ N π̃
1 (0)

and Nπ
K(0) ≤ N π̃

K(0), are

sπ
1 (~nπ) ≤ sπ̃

1 (~nπ̃) for all nπ
1 = nπ̃

1 and nπ
K ≤ nπ̃

K , (26)

sπ
K(~nπ) ≥ sπ̃

K(~nπ̃) for all nπ
1 ≥ nπ̃

1 and nπ
K = nπ̃

K , (27)

see [24, 25]. In a queueing context, this can only be satisfied when policy π̃ gives preemptive priority to
class 1 (see equation (26) with states such that nπ

2 = . . . = nπ
K = 0) and policy π gives preemptive priority

to class K (see equation (27) with states such that nπ̃
1 = . . . = nπ̃

K−1 = 0). In particular, for any two GPS
policies or two DPS policies (with non-degenerate weights) the inequalities (26) and (27) do not hold.

7 Conclusion and future work

In this paper we have studied monotonicity properties for multi-class stochastic networks and have ob-
tained comparison results for the performance under two different policies in terms of stability, mean
holding cost and the mean overall delay. The results were obtained by using a natural coupling, namely by
choosing the same realization of inter-arrival times and service requirements for both processes. Sample-
path comparisons were obtained for the workload and the number of users of certain classes.
The results were applied to a linear network and a multi-class single-server system. In future work, it
might be interesting to consider different types of networks, like a star or grid network, and use the same
approach in order to compare the performance of different policies.
For the linear network we proved monotonicity results for the mean holding cost under α-fair policies.
In the numerical section, we observed additional monotonicity properties. For instance we have strong
evidence to believe that the total mean number of users in the system is monotone in α ∈ [1,∞) when
the other parameters are kept fixed. Another interesting observation from the numerical section is that
the total mean number of users is monotone in µ0 for given load ρ0, when the other parameters are
kept fixed. There is no hope that this latter property can be proved using sample-path arguments, since
this requires the same realizations for the service requirements. When we compare the two stochastic
processes for different values of µ0, this can no longer be done.
For the single-server system, it is reasonable to expect that for popular weighted time-sharing policies like
DPS and GPS, monotonicity results for expected performance measures hold under natural conditions
on the weights, see Conjecture 6.2. We were able to prove this for some special cases using a sample-path
argument. The other cases remain as a challenging topic for further research.
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Appendix A: Proof of Lemma 5.1

For a given state ~n, the α-fair allocation is the vector (s0, s1, . . . , sL) that solves the optimization prob-
lem (7). If ni > 0, then si = Ci − s0. The objective function in (7) expressed in terms of the value s0, is
concave in s0. Taking the derivative of (7) with respect to s0 and setting it equal to zero, we obtain that

s
π(α,w)
0 (~n) satisfies

w0 · nα
0 · (sπ(α,w)

0 (~n))−α =

L
∑

i=1

wi · nα
i · (Ci − s

π(α,w)
0 (~n))−α,

24



or equivalently

1 =

L
∑

i=1

wi

w0

( ni

n0

s
π(α,w)
0 (~n)

Ci − s
π(α,w)
0 (~n)

)α

. (28)

The function
∑L

i=1
wi

w0

(

ni

n0

s0

Ci−s0

)α

is non-decreasing in s0. Hence, when either ni or wi

w0

increases, by

equality (28) the corresponding value of s0 must decrease. Statements (i) and (iii) follow now immediately.
Statement (ii) follows similarly by noting that

(

L
∑

i=1

wi

w0

(ni

n0

s
π(γ,w)
0 (~n)

Ci − s
π(γ,w)
0 (~n)

)γ) 1

γ

= 1 =
(

L
∑

i=1

wi

w0

(ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)β) 1

β

=
(

L
∑

i=1

wi

w0

(ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)β) r
rβ

≥
(

L
∑

i=1

wi

w0

(ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)rβ) 1

rβ

=
(

L
∑

i=1

wi

w0

(ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)γ) 1

γ

,

with rβ = γ and r > 1. Hence s
π(β,w)
0 (~n) ≤ s

π(γ,w)
0 (~n). �

Appendix B: Proof of Proposition 5.6

By the conjecture of [14], the scaled workload in a node is independent of α. In addition, it is stated

that the diffusion scaled number of users,
~̂
Nk,π(α)(t), converges in distribution as k → ∞ to

~̂
Nπ(α)(t) =

∆(
~̂
V π(α)(t)), where the lifting mapping ∆ : R2

+ → R3
+ is as defined in [14, 17]. This is equivalent to

saying that there are q1(α), q2(α) ≥ 0 such that

N̂
π(α)
i = ρiqi(α)

1

α , i = 1, 2 and N̂
π(α)
0 = ρ0(q1(α) + q2(α))

1

α . (29)

Using this representation for the number of users, we can describe the effect the parameter α has on the
holding cost.
We compare the holding cost under two α-fair policies with parameters α1 and α2 for a given workload

in both nodes. So we have at each time that the workload in a node is V̂
π(α)
i = v̂i, independent of α,

i = 1, 2 (from now on we will drop the dependence on t). Using the representation as in (9) and the fact
that ρ0 + ρi = Ci, this gives

(Ci − ρ0)qi(α)1/α + ρ0
µi

µ0
(q1(α) + q2(α))1/α = v̂i. (30)

Together with (29), the holding cost for an α-fair policy can be written as

2
∑

i=0

ciN̂
π(α)
i = c0ρ0(q1(α) + q2(α))

1

α + c1(C1 − ρ0)q1(α)
1

α + c2(C2 − ρ0)q2(α)
1

α

= c1

(

(C1 − ρ0)q1(α)1/α + ρ0
µ1

µ0
(q1(α) + q2(α))1/α

)

+c2

(

(C2 − ρ0)q2(α)1/α + ρ0
µ2

µ0
(q1(α) + q2(α))1/α

)

+
c0µ0 − c1µ1 − c2µ2

µ0
ρ0(q1(α) + q2(α))

1

α

d
= c1v̂1 + c2v̂2 +

c0µ0 − c1µ1 − c2µ2

µ0
ρ0(1 + f(α)α)

1

α q2(α)
1

α , (31)

where f(α) :=
(

q1(α)
q2(α)

)
1

α

.
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For i = 2, equation (30) gives

q2(α1)
1/α1

(

C2 − ρ0 + ρ0
µ2

µ0
(1 + f(α1)

α1)1/α1

)

= q2(α2)
1/α2

(

C2 − ρ0 + ρ0
µ2

µ0
(1 + f(α2)

α2)1/α2

)

. (32)

From (32) we conclude that

(1 + f(α1)
α1)

1

α1 q2(α1)
1

α1 < (=) (1 + f(α2)
α2)

1

α2 q2(α2)
1

α2 (33)

if and only if

(1 + f(α1)
α1)

1

α1

(C2 − ρ0 + ρ0
µ2

µ0

(1 + f(α1)α1)1/α1

< (=)
(1 + f(α2)

α2)
1

α2

(C2 − ρ0 + ρ0
µ2

µ0

(1 + f(α2)α2)1/α2

,

if and only if

(1 + f(α1)
α1)

1

α1 < (=) (1 + f(α2)
α2)

1

α2 . (34)

Let b be such that v̂1 = bv̂2. Assume without loss of generality ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

≤ b ≤ 1. (For states

with b > 1 the analysis is the same, with only the roles of nodes 1 and 2 interchanged.) Note that when

b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

we are on the edge of the cone as described in (10). In Lemma 1 (see below) we

prove that (1+ f(α)α)
1

α is indeed strictly decreasing in α when ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

< b ≤ 1 and is constant

when b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

, the edge of the cone. Assuming the probability mass is not all concentrated

on the edge of the cone, we conclude from (31) and the equivalence between (33) and (34), that the mean
holding cost is strictly decreasing (strictly increasing) in α when c1µ1 +c2µ2 < c0µ0 (c1µ1 +c2µ2 > c0µ0).
�

The following lemma is used in the proof of Proposition 5.6.

Lemma 1 The function (1 + f(α)α)1/α with f(α) =
(

q1(α)
q2(α)

)
1

α

, is strictly decreasing in α when

ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

< b ≤ 1 and is constant when b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

. Here b satisfies v̂1 = bv̂2.

Proof: From v̂1 = bv̂2 and (30) we obtain the relation

(C1 − ρ0)q1(αi)
1

αi + (1 − b)ρ0
µ1

µ0
(q1(αi) + q2(αi))

1

αi = b(C2 − ρ0)
µ1

µ2
q2(αi)

1

αi ,

hence when we divide both sides by q2(αi)
1

αi , we obtain

(C1 − ρ0)f(αi) + (1 − b)ρ0
µ1

µ0
(1 + f(αi)

αi)
1

αi = b(C2 − ρ0)
µ1

µ2
. (35)

By (35) we have that f(α) = 0 if and only if b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

.

Assume b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

. Then f(α) = 0 and hence the function (1 + f(α)α)
1

α is constant.

Now assume ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0

< b ≤ 1. So f(α) > 0 for all α. Take α1 < α2 and let r > 1 be such that

α2 = rα1. Then

(1 + f(α2)
α2)

1

α2 = (1rα1 + f(rα1)
rα1)

1

rα1 < (1α1 + f(rα1)
α1)

r
rα1 = (1 + f(rα1)

α1)
1

α1 , (36)

since 1 + f(rα1) > 1. Suppose f(α2) = f(rα1) ≤ f(α1). From (36), we then obtain (1 + f(α2)
α2)

1

α2 <

(1 + f(α1)
α1)

1

α1 . However, from (35) we know that when f(α2) ≤ f(α1), then (1 + f(α2)
α2)

1

α2 ≥
(1 + f(α1)

α1)
1

α1 , hence we have a contradiction. So we conclude that f(α2) > f(α1), and hence f(α) is

strictly increasing in α and from (35) it then follows that (1 + f(α)α)
1

α is strictly decreasing in α. �
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