
IEEE TRANSACTIONS ON NETWORKING 1

Performance Degradation in Parallel-Server Systems
Josu Doncel, Samuli Aalto and Urtzi Ayesta

Abstract—We consider a parallel-server system with homo-
geneous servers where incoming tasks, arriving at rate λ, are
dispatched by n dispatchers, each of them balancing a fraction
1/n of the load to K/n servers. Servers are FCFS queues and
dispatchers implement SITA-E, a size-based policy such that the
servers are equally loaded. We compare the performance of a
system with n > 1 dispatchers and of a system with a single
dispatcher. We show that the performance of a system with n
dispatchers, K servers and arrival rate λ coincides with that
of a system with one dispatcher, K/n servers and arrival rate
λ/n. We define the degradation factor as the ratio between the
performance of a system with K servers and arrival rate λ and
the performance of a system with K/n servers and arrival rate
λ/n. We establish a partial monotonicity on n for the degradation
factor and, therefore, the degradation factor is lower-bounded
by one. We then investigate the upper-bound of the degradation
factor for particular distributions. We consider two continuous
service time distributions: uniform and Bounded Pareto; and a
discrete distribution with two values, which is the distribution
that maximizes the variance for a given mean. We show that the
performance degradation is small for uniformly distributed job
sizes, but that for Bounded Pareto and two points distributions it
can be unbounded. We have investigated the degradation using
the distribution obtained from real traces.

Index Terms—Parallel-server routing, Performance degrada-
tion, Economies of Scale.

I. INTRODUCTION

We are interested in measuring the performance of parallel-
server systems formed by K homogeneous servers. For these
systems, the exact analysis of the mean response time of some
routing policies such as Join the Shortest Queue is known to
be a difficult task and, as a consequence, in this work we
focus on a size-based dispatching policy called Size Interval
Task Assignment policy with Equal Load (SITA-E) [15]. In
the SITA-E scheduling the service time distribution is divided
into intervals, all the jobs whose size fall in a given interval
are dispatched to the same server and the servers are equally
loaded. It is known that the job sizes in data centers have the
heavy-tailed property, i.e., a small fraction of jobs make up the
half of the load [31]. This property motivates that a SITA based

Research partially supported by the Academy of Finland through the
project FQ4BD (Grant No. 296206), by the French ”Agence Nationale de
la Recherche (ANR)” through the project ANR-15-CE25-0004 (ANR JCJC
RACON), by the Project of the Spanish Ministry of Economy and Competi-
tiveness with reference MTM2016-76329-R, by the Marie Sklodowska-Curie
grant agreement No 777778 and by the Consolidated Research Group Grant
IT649-13 on “Mathematical Modeling, Simulation, and Industrial Applications
(M2SI)”

J. Doncel is with University of the Basque Country UPV/EHU, Spain.
S. Aalto is with Department of Communications and Networking at Aalto

University, Finland.
U. Ayesta is with CNRS, IRIT, France, with Université de Toulouse, INP,

France, with University of the Basque Country UPV/EHU, Spain and with
IKERBASQUE - Basque Foundation for Science, Spain.

Part of this work was carried out while J. Doncel was with Inria Grenoble,
France.

dispatching policy can be an appropriate design choice for a
data center. Indeed, with a heavy-tailed distribution, separating
short jobs from long jobs, makes the waiting time of jobs
decrease. Another important property of size-based policies
with respect to other popular routing policies in the literature,
such as Power of two, is that it does not require signaling
between dispatchers and servers. Besides, for SITA-E, none
of the parallel servers is heavily loaded.

In this work, we compare the performance of SYS-(K,n,λ),
which is formed by n > 1 dispatchers, where each of them
handles a traffic equal to λ/n and balances it to K/n queues,
with the performance of SYS-(K,1,λ). In the SYS-(K,n,λ),
we assume that the total traffic is shared uniformly among
dispatchers with a random assignment policy. As a metric to
measure the difference on the performance of these systems,
we define the degradation factor as the ratio of the mean
waiting time of SYS-(K,n,λ) over the mean waiting time of
SYS-(K,1,λ).

Given the symmetry of SYS-(K,n,λ), it follows that its
performance is equal to the performance of SYS-(K/n,1,λ/n).
Thus, the analysis of the degradation factor can be interpreted
as the economies of scale of a multiserver system when we
scale up the number of servers and the arrival rate proportion-
ately.

This work can have a potential impact in the organization
of data centers. For instance, in the context of micro data
centers, the performance degradation would correspond to the
comparison between having a single centralized data center,
and multiple small micro data centers located closer to the
end users. Within a single large data center, another potential
application could be in the design of a data center, which
is typically organized in a tree-based topology, and where
the dispatcher is often located in the edge nodes [27]. This
architecture corresponds to SYS-(K,n,λ). However, if the rout-
ing policies are implemented in the core nodes, data centers
consist of SYS-(K,1,λ) and the performance difference could
be assessed using the results of this article.

We assume that the servers are First-Come-First-Served
(FCFS), which is a common model, for example, in super-
computing systems [24]. We denote by γ the ratio between the
smallest and the largest job size. The main contributions of this
work are presented in Table I, where the degradation factor of a
system with K servers and n routers is denoted by D(K,n).
We first show that, for an arbitrary continuous distribution,
if the ratio n2/n1 is integer, D(K,n1) ≤ D(K,n2). From
this result, we conclude that the degradation factor is lower-
bounded by one and upper-bounded by D(K,K). Therefore,
to analyze the maximum performance degradation, we con-
sider three representative distributions. We first study two job
size distributions, uniform and Bounded Pareto.
• Uniform Distribution. For uniformly distributed job

2 IEEE TRANSACTIONS ON NETWORKING

Degradation Factor Result

Arbitrary continuous distribution 1 ≤ D(K,n) ≤ D(K,K) Corollary 1

Uniform distribution: D(K,K) ≤ 4/3. Proposition 2
K ≤ ∞ Corollary 2

Bounded Pareto distribution: D(K,K)→∞1 Proposition 3
α = 1

Bounded Pareto distribution: D(K,K)→∞1 Proposition 4
α 6= 1 and K →∞

Bounded Pareto distribution: D(K,K) ≤ K
1

|1−α| . Proposition 5
α ∈ (0, 2) \ {1} and K finite

Two Point: K = 2, D(K,n) ≥ 1 and D(K,K)→∞1 Proposition 6
Equally Loaded Jobs
Two Point: K = 2, D(K,n) ≥ 1 and D(K,K)→∞1 Proposition 7

Unequally Loaded Jobs Proposition 8

TABLE I: Summary of the main results of this article.

sizes and any finite number of servers, we show that
the degradation factor is upper-bounded by 4/3. As
a consequence, this upper bound also holds when the
number of servers tends to infinity.

• Bounded Pareto Distribution. For Bounded Pareto dis-
tributed job sizes with parameter α = 1, we show that
the degradation factor is unbounded from above. We show
that the degradation factor is also unbounded from above
for Bounded Pareto distributed job sizes with parameter
α 6= 1 and K → ∞. When α ∈ (0, 2) \ {1} and finite
number of servers, assuming that the degradation factor
decreases with γ, we prove that the degradation factor is
upper bounded by K

1
|1−α| .

According to these results, we conclude that the degradation
is small for uniformly distributed job sizes, but for Bounded
Pareto, which is a useful model for highly variable workloads,
the degradation is extremely high when the variability of jobs
increases.

We know that for the distributions with bounded and fixed
support (i.e., fixed lower and upper bound), the distribution
that maximizes the variance (with a given mean) concentrates
on these two extreme points. Therefore, we study the degrada-
tion factor for a discrete job size distribution that concentrates
on two points, the smallest and the largest job size.
• Two Point Distribution. For a discrete job sizes distri-

bution that consists of two points, the smallest and the
largest job size, we consider a two-server system and,
when the load of both types of jobs is equal or unequal,
we show that the degradation factor is lower bounded by
one and unbounded from above.

Our results show that the degradation can be non negligible
and increases as the variability of the distribution increases.
We present simulations where we consider the Degenerate
Hyperexponential distribution that confirm that as the vari-
ability of the service time increases, so does the degradation.
Using numerical experiments, we validate the monotonicity
assumptions on the degradation factor. We also investigate the

1We show that there exist parameters of the system such that the degradation
tends to infinity.

performance degradation with real traces of parallel machines
and the obtained results also confirm the influence of the
variability of jobs in the degradation factor.

Given the complexity of the analysis, our modeling assump-
tions have various limitations. For instance, we study SITA-E
dispatching policy rather than SITA policy where the cutoffs
optimize the system performance. Unfortunately, the analytical
computation of the optimal cutoffs is known to be intractable
even for a system with two servers [17], whereas the SITA-E
cutoffs for Bounded Pareto distribution are well-known [15].
Therefore, the analysis of SITA-E seems to be a tractable
approach that allows us to get insights in the performance
degradation of the systems under study.

The rest of the paper is organized as follows. The related
work is presented in Section II. In Section III, we describe
the model and give some preliminary results. In Section IV,
we explore the monotonicity of the degradation factor for
an arbitrary continuous job sizes distribution. We study the
degradation factor for uniformly distributed job sizes in Sec-
tion V and, in Section VI, for Bounded Pareto distributed job
sizes. Then, in Section VII we analyze the degradation for a
discrete job sizes distribution that concentrates on two points.
We present the numerical experiments in Section VIII and
the degradation factor analysis with real traces of different
data centers in Section IX. Finally, in Section X, the main
conclusions of this work are drawn. The proofs that do
not appear in the body of the article are available in the
Supplementary Material.

An earlier version of this paper appeared in [7].

II. RELATED WORK

Many researchers in Computer Science have been interested
in analyzing how to balance the load in a system with parallel
queues optimally, that is, in order to minimize a certain
objective function, for example the mean response time of
the incoming jobs, see the survey [25] and the book [14]. The
typical architecture of the routing policies that are studied in
the literature is formed by one dispatcher that receives all
the incoming traffic, which distributes the load among the
set of servers. In the Join-the-Shortest-Queue [11], [12] the

DONCEL et al.: PERFORMANCE DEGRADATION IN PARALLEL-SERVER SYSTEMS 3

dispatcher sends the flow to the queue with less customers.
This routing policy is very popular since it minimizes the
mean response times of jobs when the number of customers
in all the servers is known and the service time distribution
is exponential or has a non-decreasing hazard rate [28], [32].
Another important routing policy is the Power of Two, where
for all incoming jobs, the dispatcher selects two servers
independently and uniformly at random and applies the Join-
the-Shortest-Queue policy among the chosen servers [20],
[22]. Join-Idle-Queue is also a very popular dispatching rule,
where processors inform dispatchers when they are idle [19].
When the service demand is known but the queues are non-
observable and the servers are FCFS, the SITA policy with
optimal thresholds is shown to optimize the performance of the
system [10]. In this policy, each host serves jobs whose service
demand is in a designated range. The SITA-E policy has been
introduced in [15] and, under this routing policy, the cutoffs are
chosen to equalize the load in all the servers. This dispatching
policy has been also studied by [6], where the authors apply
SITA-E to web server farms. In [13] the author introduces the
task assignment by guessing size, which is a variant of SITA-E
policy where knowledge of the job sizes is not required. Under
the SITA routing policy with optimal thresholds, asymptotic
analysis for the Bounded Pareto distribution has been done
in [4], [26]. The authors in [16] consider a system where the
coefficient of variation of incoming tasks is high and they show
that the performance of SITA can be much worse than the
performance of the Least-Work-Left policy. Another related
work is [17], where authors consider a two server system and
they give conditions that establish in which direction the load
should be unbalanced in order to optimize the performance.
Furthermore, for Bounded Pareto distributed job sizes, they
show that when (i) α < 1, the short job server must be
underloaded, (ii) α = 1, the load is equally balanced and
(iii) α > 1, the long job server must be underloaded. The
analysis of the economies of scaling the arrival rate and the
number of servers proportionally in multiserver systems has
been previously done in the literature, but in different contexts
of our work. The author in [29] analyzes the optimal server
utilization and he provides a simple approximation of the
mean steady state waiting time. In [30] the author considers
an M/M/K queue and analyzes the economies of scale for
different performance measures.

The problem of how to balance the load in a server farm has
been extensively studied also in the context of game theory,
see [2], [5], [8], [18], [21], [23]. An important assumption in
these models is that jobs can decide individually where to get
service.

III. MODEL DESCRIPTION

We consider a system with K servers with equal capacity
and n dispatchers. We denote by xm and xM the minimum
and maximum size of the incoming jobs to the system and
by λ the total incoming traffic to the system. The traffic that
each dispatcher controls arrives to the system according to
a Poisson process of rate λ/n and it is balanced to K/n
servers. The servers are FCFS queues and the dispatchers

implement the SITA-E routing policy. We assume that service
times of incoming jobs form an i.i.d. sequence with a common
distribution denoted by X , and let E(X) and E(X2) denote its
first and second moment, respectively. Let F (x) = P(X ≤ x)
denote the service time distribution. We assume F (x) to be
differentiable and we denote f(x) = dF (x)

dx . The total load
in the system is denoted by ρ = λ · E(X)/K. For stability
reasons, we assume ρ < 1.

We denote by W (K,n, xm, xM , λ) the random variable
corresponding to the steady-state waiting time of jobs in SYS-
(K,n,λ). We define the degradation factor as follows:

D(K,n, xm, xM) =
E(W (K,n, xm, xM , λ))

E(W (K, 1, xm, xM , λ))
.

In SYS-(K,n,λ) there are n groups and, in each group, there
are K/n servers. It is assumed that n is a divisor of K and that
the total traffic is shared uniformly among dispatchers with
a random assignment policy. Moreover, the traffic that each
dispatcher of SYS-(K,n,λ) handles is the same and equal to
λ/n and every dispatcher applies SITA-E policy. Thus, SYS-
(K,n,λ) and SYS-(K/n,1,λ/n) have the same performance, and
the degradation factor can be written as:

D(K,n, xm, xM) =
E(W (Kn , 1, xm, xM ,

λ
n))

E(W (K, 1, xm, xM , λ))
. (1)

From (1), the performance degradation study of this article
can be interpreted as a queueing problem that consists of
evaluating the economies of scale a parallel-server system
when we scale up the arrival rate and the number of servers
proportionally. We have not included λ as a parameter of the
degradation factor since, as we will see in Section III-E, the
degradation factor does not depend on the arrival rate. We
define by γ = xm

xM
∈ [0, 1] the ratio between the shortest and

the largest job size.

Remark 1 (Randomized Load Balancing). As an example,
let us calculate (1) in the case of a load balancing scheme
without sized-based information. We consider a system with
K homogeneous servers and one dispatcher that operates
under Bernoulli routing policy. The probability of a job to be
executed in a given server is 1/K and, therefore, the arrival
rate to that server is λ/K. Thus, we obtain that the mean
waiting time of jobs in this system is (λ/K) E(X2)

2 (1−ρ) . We now
consider a system with K/n homogeneous servers and an
incoming traffic λ/n. We observe that the probability of a
job to be executed in a given server is n/K and the arrival
rate to that server is λ/K. Hence, the mean waiting time in
this system is also (λ/K) E(X2)

2 (1−ρ) . As a result, the degradation
factor for randomized load balancing policies is equal to one.

From Pollaczek-Khinchine formula, we know that the wait-
ing time of jobs depends on the second moment, which is
related to the variability of the service time distribution. With
SITA-E, as the number of servers increases, the size variability
in each server decreases. Hence, we can expect the perfor-
mance of SYS-(K,n,λ) to be worse than that of SYS(K,1,λ).
Likewise, when xm and xM coincide, the jobs arrive to the
system following a deterministic distribution. Therefore, size-

4 IEEE TRANSACTIONS ON NETWORKING

based scheduling can not improve the performance and there
is no performance degradation in this case.

Lemma 1. If xm = xM , then the performance degradation is
equal to one.

From (1), we see that to analyze the degradation factor we
need to compare two systems with one dispatcher, where one
system has K servers and arrival rate λ, so SYS-(K,1,λ),
and the other K/n servers and arrival rate λ/n, so SYS-
(K/n,1,λ/n). Therefore, we analyze the performance of a
generic SYS-(R,1,λ), which is a system with one dispatcher, R
servers and arrival rate λ. Prior to that, we present the SITA-E
routing policy for SYS-(R,1,λ).

A. SITA-E Routing

If the size of incoming jobs is known, the dispatcher can
perform the so-called SITA routing, that, roughly speaking,
separates jobs of different sizes to be executed in different
servers. In other words, the SITA routing is a size-aware policy
where the service times are divided into intervals and all the
jobs with size in a given interval are dispatched to the same
server. In a system with R servers, there are R+ 1 thresholds
c0, c1, . . . , cR satisfying that xm = c0 < c1 < · · · < cR−1 <
cR = xM and jobs ranging in size from cj−1 to cj are executed
in server j.

When the SITA policy is implemented in a multiserver
system, its performance is affected by the way we choose the
thresholds. One might choose, for example, the thresholds that
minimize the response time of jobs. In this work, we assume
that the dispatcher carries out the SITA-E routing, that is a
particular SITA routing, where the thresholds are chosen so
as to Equalize the load of the servers. The main advantage of
this routing policy is that the thresholds can be easily obtained
using the following expression:∫ c1

xm

xf(x)dx =

∫ c2

c1

xf(x)dx = · · · =
∫ xM

cR−1

xf(x)dx, (2)

whereas the computation of the thresholds of the optimal SITA
policy is known to be intractable even for a system with two
servers [17].

We now observe that if (2) is satisfied, then the load of all
the server is equal. In fact, the load in server j is given by

λ · (F (cj)− F (cj−1)) ·
∫ cj

cj−1

x
f(x)

F (cj)− F (cj−1)
dx,

and, thus, (2) implies that the load is the same in each server.
Throughout this article, we use the notion of scaled thresholds,
which are defined as zj= cj/xM . We note that, in the particular
cases where j = 0 and j = R, we have respectively that
z0 = γ and zR = 1.

B. Waiting Time in SYS-(R,1,λ)

We study SYS-(R,1,λ), which is a system that consists of R
servers, one dispatcher that implements SITA-E load balancing
and arrival rate λ. As we said before, in this system there
are R + 1 thresholds. We denote the j-th threshold by cj .

Since the probability of a job to be executed in server j is
F (cj)− F (cj−1), the mean waiting time of this system is

E(W (R, 1, xm, xM , λ)) =

λ

2(1− ρ)

R∑
j=1

(F (cj)− F (cj−1))2E(X2
j), (3)

where ρ = λE(X)
R and E(X2

j) is the second moment of the
service time distribution of the tasks executed in server j.

Using conditional probabilities, we obtain that the second
moment of the jobs to be executed in server j is

E(X2
j) =

∫ cj

cj−1

x2
f(x)

F (cj)− F (cj−1)
dx. (4)

Therefore, using (3), (4), we obtain the following expression
for the mean waiting time of SYS-(R,1,λ) for continuously
distributed job sizes:

E(W (R, 1, xm, xM , λ)) =

λ

2 (1− ρ)

R∑
j=1

(F (cj)− F (cj−1)) ·
∫ cj

cj−1

x2 f(x)dx. (5)

C. Continuous Distributions: Uniform and Bounded Pareto

In this paper, we consider two continuous job size distri-
butions: the uniform and the Bounded Pareto. For uniformly
distributed job sizes, if xm ≤ x ≤ xM , we have that
f(x) = 1

xM−xm , and f(x) = 0 otherwise. Furthermore, the
cumulative distributed function of the job sizes is

F (x) =

0, x ≤ xm,
x−xm
xM−xm , xm ≤ x ≤ xM ,
1, x ≥ xM .

The thresholds of SYS-(R,1,λ) can be obtained from (2)
and using that f(x) = 1

xM−xm , for all x ∈ [xm, xM], and are

given by cj =

√
(R−j) x2

m+j x2
M

R , j = 0, . . . , R.
For Bounded Pareto distributed job sizes with parameter α,

we have that, if xm ≤ x ≤ xM , f(x) =
α xαm

1−(xm/xM)α x−α−1,

and f(x) = 0 otherwise. The cumulative distributed function
of the job sizes is

F (x) =

0, x ≤ xm,
1−(xm/x)α

1−(xm/xM)α , xm ≤ x ≤ xM ,
1, x ≥ xM .

The value of the thresholds for Bounded Pareto distributed
job sizes of SYS-(R,1,λ) is given in [15] and it is cj =(
R−j
R x1−αm + j

R x1−αM

) 1
1−α

if α 6= 1 and cj = xm

(
xM
xm

) j
R

if α = 1.
In the rest of the article, we denote by DU (K,n, xm, xM)

and DBP (α)(K,n, xm, xM) the degradation factor when the
job sizes are uniformly distributed and Bounded Pareto dis-
tributed with parameter α, respectively. Since, in both cases,
the degradation factor depends on xm and xM only through
γ = xm

xM
(see Lemma 5 and Lemma 7), we also use the

notation DU (K,n, γ) and DBP (α)(K,n, γ).

DONCEL et al.: PERFORMANCE DEGRADATION IN PARALLEL-SERVER SYSTEMS 5

D. Discrete Distributions

Here we assume the incoming job sizes follow a discrete
distribution. We first assume that the job sizes are distributed
in two points and hence with probability p an incoming task
is of size xm and with probability 1− p it is of size xM . The
jobs of size xm (resp. of size xM) are said to be short jobs
(resp. long jobs). Since the distribution under consideration is
discrete, (2) does not determine the load balancing for this
distribution. Therefore, we define how the load is balanced in
SYS-(R,1,λ) when the job sizes are distributed in two points.

Let l = R

1+
(1−p)xM
pxm

. If l is integer, we have that the short

jobs are executed in l servers and the load is balanced among
these servers using the Bernoulli routing policy. On the other
hand, the long jobs are executed in R− l servers, where it is
also applied the Bernoulli scheduling. Indeed,

l =
R

1 + (1−p)xM
pxm

⇐⇒ pxm
l

=
(1− p)xM
R− l

,

and, as a consequence, the load in all the servers is the same.
If l is not integer, we have three different possibilities:
• If l > R−1, there is one server that executes all the long

jobs and a proportion p1 of short jobs. In the rest of the
servers only short jobs are executed. The value of p1 is
chosen so as to equalize the load of the servers, that is,
it is the solution of the following equation:

(1− p1)pxm
R− 1

= p1pxm + (1− p)xM .

• If l < 1, there is one server that executes all the short
jobs and a proportion p2 of long jobs. In the rest of the
servers only long jobs are executed. The value of p2 is
chosen so as to equalize the load of the servers, that is,
it is the solution of the following equation:

pxm + p2(1− p)xM =
(1− p2)(1− p)xM

R− 1
.

• If 1 < l < R− 1, there are blc servers that execute only
short jobs and R − dle 2 servers that execute only long
jobs, while in the other server a proportion p1 of short
jobs and a proportion p2 of long jobs. The values of p1
and p2 are chosen in order to equalize the load of the
servers, that is,

(1− p1)pxm
blc

= p1pxm + p2(1− p)xM =

(1− p)(1− p1)xM
R− dle

.

We analyze in Section VII the degradation factor when
the job sizes is distributed in two points and we denote it
by DTP (l)(K,n, xm, xM). In Section IX, we analyze the
degradation factor with real traces and we consider that the
job sizes distribution coincides with the jobs that has been
submitted to real data centers. For these cases, the job sizes
follow a discrete distribution with more than two points
characterized by a vector of job sizes x = (xm, . . . , xM) and
a probability distribution p.

2bxc and dxe denote respectively the floor and the ceil of x ∈ R.

E. Preliminary Results

We now present that, using the results of Section III-B,
we can give the expression for the degradation factor when
the job sizes are continuously distributed. We first observe
that, from (3), we can obtain the mean waiting time of SYS-
(K,1,λ) when R = K and λ = λ and the mean waiting time of
SYS-(K/n,1,λ/n) when R = K/n and λ = λ/n. Besides, for
both systems, ρ coincides and the factor λ

2(1−ρ) appears in the
numerator and denominator of the degradation factor. Hence,
we conclude that the degradation factor does not depend on
the arrival rate λ.

Let x0, . . . , xK denote the thresholds of SYS-(K,1,λ) and
y0, . . . , yK

n
denote the thresholds of SYS-(K/n,1,λ/n). Substi-

tuting these values in (5) it results:

D(K,n, xm, xM) =

1

n

∑K/n
j=1 (F (yj)− F (yj−1))

(∫ yj
yj−1

x2f(x)dx
)

∑K
j=1 (F (xj)− F (xj−1))

(∫ xj
xj−1

x2f(x)dx
) . (6)

As it can be observed, the degradation factor depends on
the thresholds of SYS-(K/n,1,λ/n) and of SYS-(K,1,λ).

We now show that the thresholds of both systems are related
for continuously distributed job sizes.

Lemma 2. If f(x) > 0 for all x ∈ [xm, xM], then yj = xn·j .

From this result and (6), it follows directly the expression
for the degradation factor for continuously distributed job
sizes.

Proposition 1. If f(x) > 0 for all x ∈ [xm, xM],

D(K,n, xm, xM) =

1

n

∑K/n
j=1

(
F (xn·j)− F (xn·(j−1))

) (∫ xn·j
xn·(j−1)

x2f(x)dx
)

∑K
j=1 (F (xj)− F (xj−1))

(∫ xj
xj−1

x2f(x)dx
) ,

(7)

where the thresholds xm = x0, x1, . . . , xK−1, xK = xM
satisfy∫ x1

xm

xf(x)dx =

∫ x2

x1

xf(x)dx = · · · =
∫ xM

xK−1

xf(x)dx.

Let k = K
n . In the following result, we show the properties

that the probability and the second moment of jobs executed
in the servers satisfy.

Lemma 3. Let pj = F (xn·j) − F (xn·(j−1)) and sj =∫ xn·j
xn·(j−1)

x2f(x)dx, for j = 1, . . . , k. Then,

(i) p1 + · · ·+ pk = 1,
(ii) p1 ≥ · · · ≥ pk ≥ 0,

(iii) sk ≥ · · · ≥ s2 ≥ s1 ≥ 0.

IV. MONOTONICITY ON n

As we explained in Section III, jobs are split in such a
way that the variability of jobs decreases when the number of

6 IEEE TRANSACTIONS ON NETWORKING

servers increases. Hence, one can think that the degradation
factor D(K,n, xm, xM) increases with n. In this section we
deal with this monotonicity property.

We consider the values of s1, . . . , sk and p1, . . . , pk of
Lemma 3. The key result to prove the monotonicity property
is the following:

Lemma 4. Let k ≥ 1 and s1, . . . , sk and p1, . . . , pk as defined
in Lemma 3. Then

k∑
i=1

pisi ≤
1

k

k∑
i=1

si.

This result can be interpreted in the following way: the aver-
age of the values s1, . . . , sk is always larger than its weighted
sum when p1 ≥ · · · ≥ pk ≥ 0 and sk ≥ · · · ≥ s1 ≥ 0.

Let n and m such that 1 ≤ n ≤ m ≤ k. We now write
qi = pn+i−1∑m

j=n pj
and ti = sn+i−1, for i = 1, . . . ,m − n + 1.

Hence, from the above result, it follows that
m−n+1∑
i=1

qiti ≤
1

m− n+ 1

m−n+1∑
i=1

ti.

Therefore,
m∑
i=n

pi∑m
j=n pj

sj ≤
1

m− n+ 1

m∑
i=n

si, (8)

where the result coincides with that of Lemma 4 when n = 1
and m = k. In the following result we show that the
degradation factor is partially monotone with n.

Theorem 1. Let n1 ≤ n2 and assume that K/n1, K/n2 and
n2/n1 are integers. If f(x) > 0 for all x ∈ [xm, xM], then

D(K,n1, xm, xM) ≤ D(K,n2, xm, xM).

Proof. Let k1 = K/n1, k2 = K/n2 and l = n2/n1. For any
i = 1, . . . , k2, p̄i = 1

l

∑il
j=(i−1)l+j pj . By Proposition 1, we

have that D(K,n1, xm, xM) ≤ D(K,n2, xm, xM) if and only
if

k1∑
i=1

pisi ≤
k2∑
i=1

l∑
j=1

p̄is(i−1)l+j .

And the desired result follows from (8).

We now present the interesting conclusions that we obtain
from this result. First, if we apply this result to n1 = 1 and
n2 = n, we conclude the degradation factor is always lower-
bounded by one, which means that there exists always degra-
dation when we compare the performance of SYS-(K,n,λ)
with that of SYS-(K,1,λ). Another important conclusion of
the previous result is obtained if we assume that n1 = n and
n2 = K. Indeed, for this case, we show that the degradation
factor is upper-bounded by D(K,K, xm, xM). Hence, the
following result is a direct consequence of Theorem 1.

Corollary 1. If f(x) > 0 for all x ∈ [xm, xM], then

1 ≤ D(K,n, xm, xM) ≤ D(K,K, xm, xM).

The following sections are devoted to analyzing the upper-
bound D(K,K, xm, xM) for specific distributions. First, we
consider uniformly distributed job sizes and, then, Bounded
Pareto distributed job sizes. Finally, we explore the degra-
dation factor for two points distributed job sizes, i.e., when
there are only two types of jobs: small ones and large ones. In
Section IX, we consider discrete distributions with more than
two points and we present instances where the degradation
factor is not monotone on n when the ratio n2/n1 is not an
integer. However, Corollary 1 still holds for these cases.

V. UNIFORMLY DISTRIBUTED JOB SIZES

We focus on the degradation factor when the job sizes
are uniformly distributed. We observe that this distribution
satisfies that f(x) > 0 for all x ∈ [xm, xM]. Therefore, we
can use the result of Corollary 1 to state that the degradation
factor for uniformly distributed job sizes is lower-bounded by
one and upper-bounded by DU (K,K, γ). In this section, we
show that, for any value of K, the degradation factor is upper
bounded by 4/3.

It is trivial to check that the scaled thresholds are

zj =

√
(K − j)γ2 + j

K
, j = 0, . . . ,K.

In the following result, we give an expression of the
degradation factor for uniformly distributed job sizes, which,
as expected, depends on xm and xM only through γ.

Lemma 5. The degradation factor for uniformly distributed
job sizes only depends on K, n and γ and it is given by

DU (K,n, γ) =
1

n

∑K/n
j=1 (zn·j − zn·(j−1))(z3n·j − z3n·(j−1))∑K

j=1(zj − zj−1)(z3j − z3j−1)
.

(9)

We first study the degradation factor when the number
of servers is finite. Our goal is to give an upper bound on
DU (K,K, γ) for a finite K. First, we present the following
lemma.

Lemma 6. For any x ≥ 0 and h ≥ 0,(
(x+ h)

1
2 − x 1

2

)(
(x+ h)

3
2 − x 3

2

)
≥ 3

4
h2.

Since z2i −z2i−1 = 1−γ2

K , it follows from Lemma 6 that each
term of the denominator of DU (K,K, γ) is lower bounded by
3
4
(1−γ2)2

K2 and, as a result,

DU (K,K, γ) ≤ (1− γ)(1− γ3)

K
∑K
i=1

3
4
(1−γ2)2

K2

=
4

3

(1− γ)(1− γ3)

(1− γ2)2
.

We now note that

(1− γ)(1− γ3)

(1− γ2)2
=

(1 + γ + γ2)

(1 + γ)2
= 1− γ

(1 + γ)2
≤ 1,

which implies that DU (K,K, γ) ≤ 4
3 .

DONCEL et al.: PERFORMANCE DEGRADATION IN PARALLEL-SERVER SYSTEMS 7

Proposition 2. For K < ∞ and uniformly distributed job
sizes, the degradation factor is upper bounded by 4/3.

A direct consequence of this result is that the degradation
factor is also upper bounded by 4/3 when K →∞.

Corollary 2. For K →∞ and uniformly distributed job sizes,
the degradation factor is upper bounded by 4/3.

VI. BOUNDED PARETO DISTRIBUTED JOB SIZES

In this section, we concentrate on the degradation factor for
Bounded Pareto distributed job sizes. We observe that this
distribution satisfies that f(x) > 0 for all x ∈ [xm, xM].
Therefore, we can use the results of Corollary 1 to state that the
degradation factor for uniformly distributed job sizes is lower-
bounded by one and upper-bounded by DBP (α)(K,K, γ).
For α = 1 and for α 6= 1 and K → ∞, we show
that the degradation factor is unbounded from above. For
α ∈ (0, 2)\{1} and finite K, assuming that DBP (α)(K,K, γ)
decreases as γ increases, we show that the degradation factor
is upper bounded by K

1
|1−α| .

We now present the values of the scaled thresholds for
Bounded Pareto distributed job sizes:

zj =

(
K−j
K + j

K γ1−α
) 1

1−α
, α 6= 1,

γ1−
j
K , α = 1.

(10)

In the following result, we give an expression of the
degradation factor for Bounded Pareto distributed job sizes,
which also depends on xm and xM only through γ.

Lemma 7. The degradation factor for Bounded Pareto dis-
tributed job sizes only depends on K, n, α and γ and it is
given by

DBP (α)(K,n, γ) =

1

n

∑K/n
j=1 (z2−αn·j − z

2−α
n·(j−1))(z

−α
n·(j−1) − z

−α
n·j)∑K

j=1(z2−αj − z2−αj−1)(z−αj−1 − z
−α
j)

. (11)

A. The case α = 1

We first analyze the degradation factor for Bounded Pareto
distributed job sizes with α = 1. As we said in Section II, the
authors in [17] show that SITA-E optimizes the performance of
a system with two servers and Bounded Pareto distributed jobs
sizes with α = 1. From Lemma 7 and (10) and simplifying,
it results that

DBP (1)(K,n, γ) =
1

n2
· γ
−n
K (1− γ n

K)2

γ
−1
K (1− γ 1

K)2
. (12)

We show that this expression decreases with γ.

Lemma 8. DBP (1)(K,n, γ) is a decreasing function of γ.

Using the previous result and noting, from (12), that
DBP (1)(K,K, γ) tends to infinity when γ → 0, we give the
following result.

Proposition 3. DBP (1)(K,K, γ) tends to infinity when γ →
0.

From this result, we state that the performance of SYS-
(K/n,1,λ/n) is, in the worst case, infinite times worse that the
performance of SYS-(K,1,λ). In fact, this ratio equals infinity
when γ → 0, in which case the Bounded Pareto distribution
is very skewed and the variance goes to infinity.

B. The case α 6= 1

We now study the degradation factor for Bounded Pareto
distributed job sizes with α 6= 1. We first assume that the
number of servers is infinite and then we analyze the case of
a finite number of servers.

1) Degradation Factor when K →∞ and n = K: We first
focus on the case n = K and K →∞. The scaled thresholds
satisfy that, when K →∞,

K

K∑
i=1

(z−αi − z−αi−1)(z2−αi − z2−αi−1)→∫ 1

γ1−α
(y
−α
1−α)′(y

2−α
1−α)′dy(1−γ1−α) =

α · (2− α)

−(1− α)2
(1−γ1−α)2,

since zi = (γ1−α + j
K (1− γ1−α))

1
1−α . Therefore, the degra-

dation factor for Bounded Pareto distributed job sizes and
K →∞ and n = K is

DBP (α)(∞,∞, γ) =
−(1− α)2

α · (2− α)
·
(

1− (1− γ)2

γα(1− γ1−α)2

)
.

(13)
We now show that the above expression is decreasing with

γ.

Lemma 9. DBP (α)(∞,∞, γ) is a decreasing function of γ.

From (13), it follows that the degradation factor is un-
bounded from above when γ → 0.

Proposition 4. DBP (α)(∞,∞, γ) tends to infinity when γ →
0.

2) Degradation Factor when K is finite: We now analyze
the degradation factor when K is finite and we first give
the value of DBP (α)(K,n, γ) when γ → 0, i.e., when the
difference between xm and xM tends to infinity.

Lemma 10. If α ∈ (0, 2) \ {1},

lim
γ→0

DBP (α)(K,n, γ) = n
1

|1−α| .

It is important to note that, when γ → 0, the degradation
factor for Bounded Pareto distributed job sizes with α 6= 1

does not depend on K. Besides, n
1

|1−α| is infinite when α→ 1
for any n. Therefore, we conclude from Proposition 3 and
Lemma 10 that the limits when γ goes to zero and when
α tends to one interchange for Bounded Pareto job sizes
distribution, i.e.,

lim
γ→0

lim
α→1

DBP (α)(K,n, γ) = lim
α→1

lim
γ→0

DBP (α)(K,n, γ).

We assume that DBP (α)(K,K, γ) with α 6= 1 and for any K
finite decreases with γ. Given the difficulty of the expression
(11) as well as the scaled thresholds (10), we have not

8 IEEE TRANSACTIONS ON NETWORKING

succeeded in showing this monotonicity property. We have
performed many numerical experiments to conjecture that the
degradation factor decreases with γ when α 6= 1 and n = K.

Conjecture 1. When α ∈ (0, 2) \ {1}, and for any finite K,
DBP (α)(K,K, γ) is a decreasing function of γ.

Under this assumption, we conclude that, for this case,

D(K,K, γ) ≤ lim
γ→0

D(K,K, γ) = K
1

|1−α| ,

where the last equality is given by Lemma 10.

Proposition 5. Assume Conjecture 1 holds. Then, the degra-
dation factor for Bounded Pareto distributed job sizes with
α ∈ (0, 2) \ {1}, and K finite is upper-bounded by K

1
|1−α| .

We observe that K
1

|1−α| is infinite when K tends to infinity.
Therefore, we conclude from Proposition 5 and Proposition 4
that the limits when γ goes to zero and K goes to infinity
interchange, that is,

lim
γ→0

lim
K→∞

DBP (α)(K,K, γ) = lim
K→∞

lim
γ→0

DBP (α)(K,K, γ).

VII. TWO POINT DISTRIBUTED JOB SIZES

In this section, we assume that the job sizes are distributed
in two points with parameter p, i.e., p = P(X = xm) and
P(X = xM) = 1 − p. We recall that the load balancing of
SYS-(K,1,λ) for this distribution depends on l = K

1+
(1−p)xM
pxm

.

A. The Case K = 2

We first study the degradation factor for this distribution in a
two-server system. Hence, we aim to compare the performance
of SYS-(2,1,λ) with the performance of SYS-(1,1,λ/2). SYS-
(1,1,λ/2) is an M/G/1 queue with arrival rate λ/2 and,
according to the Pollaczek-Khinchine formula, its expected
waiting time is

λ
2 E(X2)

2(1−ρ) . We now analyze the degradation factor
for different values of l.

1) Equally Loaded Jobs (l = 1): We assume that l = 1,
which occurs when pxm = (1− p)xM , i.e., the load of short
jobs and of long jobs is equal. We note that for any γ ∈ [0, 1],
there exists a value p ∈ [0.5, 1] such that pγ = (1− p) holds.

When l = 1, in SYS-(2,1,λ), the short and long jobs are
executed in different servers. From (3), it follows that the
expected waiting time of SYS-(2,1,λ) when l = 1 is given
by λ

2(1−ρ) (p
2x2m+(1−p)2x2M). Using that pxm = (1−p)xM

and also that E(X2) = px2m + (1 − p)x2M , we obtain the
following expression for the degradation factor:

DTP (1)(2, 2, γ) =
1 + γ2

4γp
.

It is easy to see that this expression is decreasing with γ for all
γ ∈ [0, 1] and p and, as a result, an upper bound and a lower
bound are given when γ → 0 and γ → 1, respectively. From
Lemma 1 and since the degradation factor tends to infinity
when γ → 0, it implies the following result:

Proposition 6. DTP (1)(2, 2, γ) ≥ 1 and it tends to infinity
when γ → 0.

2) Unequally Loaded Jobs (l 6= 1): We assume that l > 1.
For this case, in SYS-(2,1,λ), we have that pxm > (1− p)xM ,
i.e., the load of small jobs is higher that the load of large jobs,
and also that there exists a proportion p1 such that

(1− p1)pxm = p1pxm + (1− p)xM ,

holds. This means that there is one server that executes all
the large jobs and a proportion p1 of small jobs, while in the
other server only small jobs are executed. From (3) and using
conditional probability properties, we have that the expected
waiting time of SYS-(2,1,λ) is

λ

2(1− ρ)
((1−p1)2p2x2m+(p1p+(1−p))(p1px2m+(1−p)x2M)),

which results

DTP (l)(2, 2, γ, p1) =

1

2

pγ2 + (1− p)
p2(1− p1)2γ2 + (p1p+ (1− p))(p1pγ2 + (1− p))

. (14)

We show that (14) decreases with γ.

Lemma 11. When l > 1, DTP (l)(2, 2, γ, p1) is a decreasing
function of γ.

From this result and Lemma 1, we conclude that
DTP (l)(2, 2, γ, p1) is lower bounded by one when l > 1.
We now observe that when p1 → 0, (14) coincides with
DTP (1)(2, 2, γ). Besides, executing long jobs and short jobs
in different servers leads to a performance improvement in
SYS-(2,1,λ) with respect to the case l > 1. As a consequence,
since SYS-(1,1,λ/2) does not vary with l, we have that when
l > 1,

DTP (l)(2, 2, γ, p1) ≤ lim
p1→0

DTP (l)(2, 2, γ, p1)

= DTP (1)(2, 2, γ).

Thus, from Proposition 6, it follows that DTP (1)(2, 2, γ) is
unbounded from above.

Proposition 7. When l > 1, DTP (l)(2, 2, γ, p1) ≥ 1 and it
tends to infinity when γ → 0 and p1 → 0.

When l < 1, the situation is very similar to that of l > 1.
In this case, we have that

DTP (l)(2, 2, γ, p2) ≤ lim
p2→0

DTP (l)(2, 2, γ, p2)

= DTP (1)(2, 2, γ),

and the same techniques as in Lemma 11 show that the
degradation factor is decreasing with γ when l < 1. As a
consequence, we give the following result.

Proposition 8. When l < 1, DTP (l)(2, 2, γ, p2) ≥ 1 and it
tends to infinity when γ → 0 and p2 → 0.

B. The case K > 2

We show that there are instances where there is no per-
formance degradation for arbitrary K. We assume that l is
integer. Hence, we know that in SYS-(K,1,λ) the short jobs
are executed in l servers using Bernoulli policy, while the long

DONCEL et al.: PERFORMANCE DEGRADATION IN PARALLEL-SERVER SYSTEMS 9

jobs are executed in K − l servers, also applying Bernoulli
policy. Therefore, the arrival rate to a server that executes
short jobs is λpl and the arrival rate to a server that executes
long jobs is λ 1−p

K−l .
We now analyze the performance of SYS-(K/n,1,λ/n) when

l is a multiple of n. Thus, for SYS-(K/n,1,λ/n), we define
l∗ = K/n

1+
(1−p)
pxm

and, if l∗ is integer, the short jobs are executed

in l∗ servers and the long jobs in K/n − l∗. Note that
l∗ = l/n and therefore l∗ is integer since l is multiple of
n. Hence, the arrival rate to a server that executes short jobs
is λ

n
p
l∗ = λpl and the arrival rate to a server that executes long

jobs is λ
n

1−p
K/n−l∗ = λ 1−p

K−l . It follows directly thus that the
performance of SYS-(K/n,1,λ/K) coincides with that SYS-
(K,1,λ) when l is a multiple of n.

When l is not multiple of n, in SYS-(K/n1,λ/n) there is one
server where jobs of both types are executed. Therefore, the
performance of both systems do not coincide for this instance
and we can claim that there exist a performance degradation.
Given the difficulty of the expressions of the degradation factor
for arbitrary K and when l is not a multiple of n, we did not
succeed in performing the analytical study of the performance
degradation.

VIII. NUMERICAL COMPUTATIONS

In this section, we present the numerical experiments of
this work. First, we provide numerical evidence to validate
the assumptions required for some of the results. Then, we
focus on the degradation factor for Bounded Pareto distributed
job sizes, for two point distributed job sizes with more than
two servers and l not multiple of n and for Degenerate
Hyper-exponential distributed job sizes. Finally, we analyze
the degradation factor in a system with two servers under SITA
policy with optimal cutoffs (SITA-Opt), in M/M/k and M/G/k
systems and in Join the Shortest Queue (JSQ) policy.

A. Monotonicity Assumptions

We aim to check that the conjecture of this work holds. We
have performed a large number of simulations modifying the
parameters of the system. In all the cases, we have observed
that the monotonicity property is satisfied. We now present
results that are illustrative of the general pattern.

We investigate the degradation factor for Bounded Pareto
distributed job sizes with α 6= 1. In Figure 1, we assume that
α = 1.5 and we plot the evolution of DBP (α)(K,K, γ) with
respect to γ for different values of K. We observe that the
degradation factor in all the instances is always decreasing
with γ, as stated in Conjecture 1. In addition, we observe that
DBP (α)(K,K, γ) tends to K2 when γ → 0, which coincides
with the value given in Lemma 10.

We now aim to study if the degradation factor decreases
with γ for other dispatching policies than SITA-E. We consider
the following dispatching policies: JSQ, M/G/k systems and
SITA-Opt. For M/G/10 and M/G/100 systems and different
values of n and for SITA-Opt policy with two servers, we
have studied numerically the degradation factor when γ varies
and the job size distribution is Bounded Pareto and we have

.
10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 10 0

D
(K

,K
,.

)

10 0

10 1

10 2

10 3

10 4

10 5

K=10

K=100

K=200

Fig. 1: Evolution over γ of the degradation factor for Bounded
Pareto distributed job sizes with parameter α = 1.5 (x-axis and
y-axis in logarithmic scale).

observed the degradation factor decreases with γ for these
routing policies. Due to space constraints, we do not report
these results. The simulations results for JSQ are reported in
Table II. We consider Bounded Pareto distributed job sizes
with α = 1.25. We set the smallest job size to one, i.e. xm =
1, and, for different values of K and n, we vary the value of
the longest job size from 2 to 1000. The arrival rate is set to
ensure that the load of the system is 0.8. For each value of
K, n and xM we have performed five independent runs each
with 106 arriving jobs and we write as D(K,n) the sample
mean of the degradation factor and the numbers in brackets
denote the corresponding 95% confidence interval. As it can
be seen in Table II, the degradation factor increases with xM
(i.e., decreases with γ) (i) when K = 10 and any value of n
and (ii) when K = 100 and n is 20, 50 and 100. Hence, when
K = 100 and n is small, the degradation factor decreases
with xM and, therefore, the property of the conjecture does
not hold for the JSQ in these cases.

B. Degradation Factor

Here we study the degradation factor for the original SITA-
E dispatching policy.

1) Bounded Pareto: We now study the degradation factor
for Bounded Pareto distributed job sizes. We know from the
results of Section VI that the degradation factor can be very
large, for example when γ is zero and α is close to one.
We consider a system with K = 1000 servers and we set
γ to 9/1014, which is the value used by [15]. As we saw in
Lemma 7, the performance degradation does not depend on
the arrival rate of the system. Hence, we do not specify the
value of this parameter in these experiments.

In Table III, we show the degradation factor when n = 100,
n = 500 and n = 1000 for different values of α. We also
present in Table III the evolution over α of the value n

1
|1−α| ,

which is the degradation factor when γ is zero. We observe
that the degradation factor is always far from the value of
the upper bound achieved when γ is zero. However, there
are some values of α where the degradation factor is high.
An example is α = 1.25, which is a typical value found in

10 IEEE TRANSACTIONS ON NETWORKING

K n xM D(K,n) 95% CI
10 2 2 2.0026 [1.9847, 2.0205]

10 2.0554 [2.0249, 2.0858]
100 2.2786 [2.2501, 2.3070]
1000 2.7236 [2.4292, 3.0181]

5 2 5.0528 [5.0208, 5.0847]
10 5.4128 [5.3488, 5.4769]
100 6.5810 [6.4216, 6.7403]
1000 9.6124 [9.0108, 10.2140]

10 2 10.601 [10.472, 10.730]
10 11.211 [10.907, 11.516]
100 14.851 [14.411, 15.291]
1000 24.151 [23.467, 24.835]

100 2 2 5.9275 [5.5965,6.2585]
10 5.9187 [5.4806,6.3569]
100 5.3444 [4.4209,6.2679]
1000 4.4991 [3.7681,5.2302]

5 2 29.175 [27.404,30.947]
10 28.194 [26.686,29.701]
100 24.103 [21.012,27.194]
1000 18.992 [15.619,22.364]

10 2 67.422 [63.454,71.391]
10 64.850 [61.334,68.365]
100 57.803 [51.491,64.115]
1000 56.800 [49.168,64.431]

20 2 134.53 [126.47,142.59]
10 134.52 [126.92,142.11]
100 134.91 [121.78,148.04]
1000 155.36 [138.27,172.45]

50 2 343.58 [322.95,364.22]
10 351.04 [326.80,375.28]
100 394.06 [347.62,440.49]
1000 561.26 [499.83,622.70]

100 2 720.00 [677.49,762.50]
10 731.46 [679.92,783.00]
100 858.45 [743.30,973.60]
1000 1339.2 [1171.5,1506.9]

TABLE II: Sample mean and 95% confidence interval of the
degradation factor of JSQ for different values of K, n and xM .

computer and networking systems [17]. As it can be seen,
for this instance, the degradation factor is equal to 4149 for
n = 100, to 2.537 · 107 for n = 500 and to 4.0481 · 108

for n = 1000. We also observe that the upper bound gets
tighter when n = 1000. Besides, when α = 1, the upper
bound is infinity and the degradation factor is 1.2311 · 1010

for n = 1000.
2) Two Points when K > 2 and l is not multiple of n:

In Section VII-B, we show that the degradation factor equals
one for K > 2 when l is multiple of n. We now assume that
l is not multiple of n and we study the degradation factor for
this case.

We assume that K = 1000 and n = K. In Figure 2,
we analyze the evolution of the degradation factor when we
vary the value of γ from one to 10−3 and we consider four
different values of l:10 (dashed line), 300 (solid line), 500
(dotted and dashed line) and 750 (dotted line). We note that,
for all the cases, the value of l is not a multiple of n.
As it can be observed, the value of the degradation factor
grows unboundedly for all the instances under consideration.
Therefore, we conclude that the results of Proposition 6,
Proposition 7 and Proposition 8 extend to systems with more
than two servers.

3) Degenerate Hyper-exponential: We consider a system
with SITA-E policy and Degenerate Hyper-exponential dis-

tributed job sizes. This distribution with probability p is an
exponential of rate µp and with probability 1 − p it is an
exponential with rate infinity. Interestingly, the mean of the
Degenerate Hyperexponential distribution is 1/µ, which does
not depend on p and the second moment is 1

pµ2 . The coefficient
of variation is C = 2/p − 1 and it belongs to [1,∞) as p
varies. Therefore, we study the degradation factor (7) for this
distribution when p varies.

In Figure 3, we consider λ = µ = 1 and we depict the
evolution of the degradation factor when p varies from 0.01 to
0.99 in a system with: (i) two servers and two groups; (ii) four
servers and four groups, (iii) eight servers and eight groups;
(iv) eight servers and four groups and (v) eight servers and two
groups. We observe that the degradation factor decreases with
p in all the cases. In fact, when p decreases, the variability
of jobs increases and this implies that the difference in the
performance of both systems increases. We also see that, as
expected, the degradation factor is always higher than one,
which means that the performance of both systems never
coincides. Furthermore, when p = 0.01, the coefficient of
variation is 199 and the degradation obtained in a system
with eight servers and eight groups for this case is 41.4. We
have done more experiments changing the value of the system
parameters, for example µ, and the obtained results confirm
that the performance degradation is also significant and that
the degradation increases as the variability of jobs increases.

C. SITA-Opt Degradation Factor

We now study the degradation factor of SITA-Opt, which
is a SITA policy where the thresholds are chosen to optimize
the performance of the system. We consider a system with
two servers and we compare SYS-(2,2,λ) and SYS-(2,1,λ) for
Bounded Pareto distributed job size. In this case, the ratio of
performances is said to be the degradation factor of SITA-
Opt. According to the result of [17], in a two server system,
the degradation factor we study in this paper coincides with
the degradation factor of SITA-Opt when α = 1. Besides, the
analytical computation of the optimal thresholds seems to be
intractable even in a system with two servers. Therefore, we
explore here numerically the degradation when α 6= 1.

Our objective is to assess the performance degradation
of SITA-Opt and to compare it with the degradation factor
obtained with (11). The authors in [17] consider a two-
server system and they obtain numerically the ratio of the
performance of SITA-E policy over the performance of SITA-
Opt policy. We obtain the degradation factor of SITA-Opt for
the same parameters as theirs by multiplying the performance
ratio they obtain with the degradation factor obtained in (11).
Hence, in Table IV, we represent the degradation factor of
SITA-Opt for low load (ρ = 0.005), medium load (ρ = 0.5)
and high load (ρ = 0.8) and for different values of α. We
also show in this table the degradation obtained using (11) for
different values of α. As it can be observed, the degradation
factor has a symmetry since we have obtained the same results
for α and 2−α. For SITA-Opt, we know that that the symmetry
sends the cutoffs of the SITA-Opt to the cutoffs of the SITA-
Opt of the dual distribution, see [3] for full details on this

DONCEL et al.: PERFORMANCE DEGRADATION IN PARALLEL-SERVER SYSTEMS 11

n = 100 n = 500 n = 1000

DBP (α)(K,n, γ) n
1

|1−α| DBP (α)(K,n, γ) n
1

|1−α| DBP (α)(K,n, γ) n
1

|1−α|

α = 0.25 89.0317 464.15 755.68 3968.5 1.9033 · 103 9.999 · 103
α = 0.5 5263.6 104 1.3158 · 105 25 · 104 5.2631 · 105 106

α = 0.75 4149 108 2.537 · 107 6.25 · 1010 4.0481 · 108 1012

α = 1 2.0183 ∞ 1.4775 · 104 ∞ 1.2311 · 1010 ∞
α = 1.25 4149 108 2.537 · 107 6.25 · 1010 4.0481 · 108 1012

α = 1.5 5263.6 104 1.3158 · 105 25 · 104 5.2631 · 105 106

α = 1.75 89.0317 464.15 755.68 3968.5 1.9033 · 103 9.999 · 103

TABLE III: Degradation factor for Bounded Pareto distributed job sizes when K = 1000 and γ = 9
1014 compared with n

1
|1−α| .

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
T

P
(l)

(K
,n

,.
)

0

100

200

300

400

500

600

700

800

900

1000

l=500, n=1000
l=750, n=1000
l=300, n=1000
l=10, n=1000

Fig. 2: Degradation factor for two points distributed job sizes
with K > 2 and l not multiple of n when p varies.

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
eg

ra
da

tio
n

F
ac

to
r

0

5

10

15

20

25

30

35

40

45

K=2, n=2
K=4, n=4
K=8, n=8
K=8, n=4
K=8, n=2

Fig. 3: Degradation factor for Degenerated Hyperexponential
distributed job sizes when p varies.

Degradation Factor
SITA-Opt SITA-E

ρ = 0.005 ρ = 0.5 ρ = 0.8
α = 0.25 333.74 87.77 8.6594 2.52
α = 0.5 2.24 · 104 4219.9 18.7679 4
α = 0.75 3.36 · 105 1.31 · 105 133.88 15.96
α = 1.25 3.36 · 105 1.31 · 105 133.88 15.96
α = 1.5 2.24 · 104 4219.9 18.7679 4
α = 1.75 333.74 87.77 8.6594 2.52

TABLE IV: Degradation factor in a system with two servers.

symmetry property. Furthermore, we observe in Table IV that
the degradation factor of SITA-Opt is very high in some
instances, whereas for SITA-E it is not that high. For example,
when α = 1.25 and when α = 1.5, the degradation factor of
SITA-Opt for ρ = 0.005 is, respectively, 3.3604 · 105 and
2.2476 · 104 and for the degradation factor considering SITA-
E is 15.96. The reason for this big difference is that, for
the SITA-Opt threshold, the load is unbalanced very heavily
toward one of the servers.

D. M/M/K and M/G/K Systems Degradation Factor

We now analyze the performance degradation in an M/M/K
system. In this system, there is a central queue that dispatches
the incoming jobs to the servers that are idle. We consider
an M/M/10 system and an M/M/100 system with µ = 1 and
ρ = 0.8 and we present in Table V the degradation of these
systems for different values of n. We observe that the degra-
dation factor is higher than one for all the considered cases
and that the degradation increases with n. Besides, for K = 10

Degradation Factor
K = 10 K = 100

n = 2 2.7084 n = 2 8.8517
n = 5 8.6895 n = 5 65.172
n = 10 19.5513 n = 10 208.27

n = 20 564.08
n = 50 1809.8
n = 100 4072.0

TABLE V: Degradation factor for M/M/K systems over n.

servers, the degradation is 19.5513 when n = 10, which is not
very large. However, for 100 servers, the degradation factor is
very large, specially when n = 50 and n = 100. In fact, when
K is large, the mean waiting time of an M/M/K system is very
small since, for all the incoming jobs, the probability of having
an idle queue is very close to one; this explains the large values
obtained for the degradation factor when K = 100.

We now focus on M/G/K systems with Bounded Pareto
distributed job sizes and α = 1.25. We remark that the
degradation of M/G/k systems coincides with that of Join the
Shortest Workload policy. We assume that xm = 1, xM = 10
and ρ = 0.8. For K = 10 and K = 100 and different values
of n, we have performed for five independent runs each with
106 arriving jobs and, in Table VI, we write as D(K,n) the
sample mean of the degradation factor and the numbers in
brackets denote the corresponding 95% confidence interval.
As it can be observed in Table VI, the degradation factor for
K = 10 is, respectively, 2.7239 and 8.835 when n = 2 and
n = 5, whereas for K = 100 the degradation is high (for
instance, when n = 100 it is 3856.3).

12 IEEE TRANSACTIONS ON NETWORKING

Degradation Factor
K = 10 K = 100

n D(K,n) 95% CI n D(K,n) 95% CI
2 2.7239 [2.6769,2.7708] 2 8.8020 [7.1825,10.421]
5 8.8350 [8.6935,8.9765] 5 63.457 [56.626,70.288]
10 19.607 [19.039,20.175] 10 197.36 [174.38,220.34]

20 539.51 [472.31,606.71]
50 1713.2 [1514.0,1912.4]
100 3856.3 [3389.0,4323.7]

TABLE VI: Degradation factor for M/G/K systems over n.

Degradation Factor
K = 10 K = 100

n D(K,n) 95% CI n D(K,n) 95% CI
2 2.13 [2.08,2.17] 2 6.02 [5.22,6.82]
5 5.52 [5.33,5.72] 5 27.64 [25.43,29.85]
10 11.11 [10.87,11.35] 10 65.08 [59.58,70.57]

20 138.8 [126.8,150.9]
50 357.8 [327.3,388.2]
100 736.7 [678.9,794.5]

TABLE VII: Degradation factor for JSQ policy over n.

E. JSQ Degradation Factor

We now analyze the degradation factor for the JSQ dis-
patching policy. We have performed simulations of parallel
server system with 10 and 100 servers and different values of
n in each case. We assume that the service time distribution
is exponential with load ρ = 0.8. For each value of K and
n we have performed five independent runs each with 106

arriving jobs. The results presented in Table VII are based on
5 independent runs each with 106 arriving jobs. We observe
that the degradation factor is 2.13 for K = 10 and n = 2,
but for K = 100 the value of the degradation factor is much
higher, specially when n is high. For example, when n = 100,
the degradation factor for Join the Shortest Queue dispatching
policy is 736.7. We also observe that the degradation factor
for JSQ and exponentially distributed job sizes is smaller that
the degradation for M/M/k systems.

IX. DEGRADATION WITH REAL TRACES

In this section, we study the degradation when the job sizes
follow the distribution of jobs that have been submitted to real
data centers. The distribution of the jobs sizes are discrete and
does not satisfy the conditions of the distributions we have
considered in the previous sections. The distributions under
consideration here are characterized by a vector of job sizes
x = (xm, . . . , xM) and a probability distribution of these jobs
sizes p.

One might think that the degradation factor always increases
with n. In the Supplementary Material, we present an example
that shows that, for discrete job sizes distributions, this is not
always true.

We aim to analyze the degradation factor when the job
sizes follow the distribution of the jobs submitted to real
parallel machines. Hence, we obtain the values of x and p
of several data centers, that is, the vector of the job sizes and
a probability distribution of the job sizes, from the repository
[1]. The details about the archive and the handling of the data
provided in this repository are available in [9].

The parallel machines we consider here are the High Per-
formance Computing Center North (HPC2N), the San Diego

10 0 10 1 10 2 10 3

#10 4

0

1

2

3

4

5

6

7

8

9

Fig. 4: HPC2N system. In the x-axis we represent the size of
the submitted jobs (in bytes) and in the y-axis the number of
jobs of each size.

Supercomputing Center (SDSC) Datastar and the RIKEN Inte-
grated Cluster of Clusters (RICC). In each case, we consider a
system with K servers and K/n servers and, using the values
of x and p of each parallel machines system, we first compute
numerically the proportions of jobs to be executed in each
server to ensure that the load of all the servers is equalized and
also that the thresholds c0, c1, . . . , cR, cR+1 must constitute a
nondecreasing sequence, that is, if jobs of size xi−1 and of
size xi+1 are executed in the same server, all the jobs of size
xi are executed in that server. Then, using these proportions,
we compute the performance of each of the systems to get
insights of the degradation factor when the job sizes follow
the distribution of the jobs submitted to real parallel machines.

A. HPC2N Data Center

The High Performance Computing Center North is a parallel
machine system that is in Sweden. The traces we analyze here
consist of more than 200, 000 jobs submitted between July
2002 until January 2006. In Figure 4, we represent the number
of jobs submitted of each size. As it can be observed, job sizes
vary from 1 byte to 200 bytes. Besides, the majority of jobs
are of small size, for example, the number of jobs of size 1
byte is almost 90,000 and of size 2 bytes is 40,000.

We analyze the degradation factor when the job sizes follow
the distribution of Figure 4. The number of servers is 10,000
and we present in Table VIII the values of the degradation
factor for several values of n between 1 and 10,000. We
observe that the degradation factor when n = 200 is higher
that that of n = 250, which confirms that the degradation
factor for discrete job sizes distributions does not always
increase with n. In the rest of the values of n, we see
that there is a partial monotonicity on n for the degradation
factor. Besides, as it can be observed in Table VIII, the
degradation factor is lower bounded by 1 and upper bounded
by the D(K,K, xm, xM), which coincides with the result of
Corollary 1.

DONCEL et al.: PERFORMANCE DEGRADATION IN PARALLEL-SERVER SYSTEMS 13

HPC2N SDSC RICC
K = 10000 Degradation Factor K = 10000 Degradation Factor K = 10000 Degradation Factor
n = 1 1 n = 1 1.0001 n = 10 1.0001
n = 10 1.0001 n = 10 1.0001 n = 10 1.0007
n = 50 1.0012 n = 50 1.0010 n = 10 1.0031
n = 100 1.0034 n = 100 1.0019 n = 100 1.0048
n = 200 1.0067 n = 200 1.0063 n = 200 1.0137
n = 250 1.0060 n = 250 1.0051 n = 250 1.0184
n = 500 1.0219 n = 500 1.0163 n = 500 1.0487
n = 1000 1.0476 n = 1000 1.0658 n = 1000 1.1238
n = 10000 4.0365 n = 10000 5.7973 n = 10000 7.5531

TABLE VIII: Degradation factor of HPC2N, SDSC and RICC systems for K = 10000 when n varies from 1 to 10000.

10 0 10 1 10 2 10 3 10 4

#10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 5: SDSC Datastar. In the x-axis we represent the size of
the submitted jobs (in bytes) and in the y-axis the number of
jobs of each size.

B. SDSC Datastar

The San Diego Supercomputing Center is a high perfor-
mance computing system devoted to scientific research. We
investigate the traces of this system that consist of almost
100,000 jobs submitted from March 2004 to March 2005. In
Figure 5, we illustrate the number of jobs of each size that
has been submitted to this system. We see that the difference
between the smallest job size and the largest is higher than in
the HPC2N system since the smallest job is of size 8 bytes and
the largest of 1480 bytes. We also observe that the majority
of jobs are of size 8 bytes, 32 bytes and 64 bytes.

Our goal is to analyze the degradation factor when the
job sizes follow the distribution represented in Figure 5. We
assume that the number of servers is K = 10, 000 and the
number of groups n varies from 1 to 10000. We present
in Table VIII the values of the degradation factor for the
considered cases. We observe that the degradation factor is
the degradation factor is partially monotone on n and when
n = 200 the degradation is higher than that of n = 250.
Furthermore, the result of Corollary 1 also holds for this
case, since the degradation factor is lower bounded by one
and upper bounded by D(K,K, xm, xM).

C. RICC System

The RIKEN Integrated Cluster of Clusters is a system
of RIKEN, which is a research institution of the Japanese

10 0 10 1 10 2 10 3 10 4

#10 5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 6: RICC system. In the x-axis we represent the size of
the submitted jobs (in bytes) and in the y-axis the number of
jobs of each size.

government. The traces we analyze in this part of the work
consist of almost 500,000 jobs that have been submitted to
RICC system from May 2010 to September 2010. The size
of the smallest job is 1 byte and the largest 8192 bytes,
therefore the difference on the size between the smallest and
the largest is higher than in SDSC system. We plot in Figure 6
the number of jobs submitted of each size. We observe that
almost 350, 000 jobs are of size 1 byte.

We are interested in studying the degradation factor when
the sizes of job follow the distribution shown in Figure 6. We
assume that the number of servers is K = 10000 and also the
values of n varying from 1 to 10000. In Table VIII we present
the values of the degradation factor for the instances under
consideration. We observe that the degradation factor is lower
bounded by 1 and upper bounded by 7.5531, which is the
degradation obtained when n = 10000. Besides, we observe
that for this case, the degradation factor increases with n.

X. CONCLUSIONS

In this work, we have analyzed the performance of multi-
servers systems where dispatchers operate under SITA-E pol-
icy. We compare the performance of SYS-(K,n,λ), which is a
system formed by K servers, n > 1 dispatcher and arrival rate
λ with the performance of SYS-(K,1,λ). We first show that the
performance of SYS-(K,n,λ) is the same as the performance of
SYS-(K/n,1,λ/n). As a consequence, the performance analysis
we perform in this article can be seen as the economies
of scaling up the number of servers and the arrival rate

14 IEEE TRANSACTIONS ON NETWORKING

proportionally in a system with a single dispatcher. We define
the degradation factor as the ratio between the performance of
SYS-(K,1,λ) and the performance of SYS-(K/n,1,λ/n). For an
arbitrary distribution, we show that the degradation factor is
lower-bounded by one and upper-bounded by the ratio between
the performance of SYS-(K,1,λ) and of SYS-(1,1,λ/K). For
uniformly distributed job sizes, we show that the degradation
factor is upper bounded by 4/3, whereas for Bounded Pareto
distributed job sizes we show that it is unbounded from above
for the following cases: (i) α = 0 and (ii) α 6= 1 and
K → ∞. For α ∈ (0, 1) ∪ (1, 2) and finite K, assuming
that the degradation factor decreases with γ, we show that
the degradation factor is upper-bounded by K

1
|1−α| . We also

consider the two point job size distribution and show that, for
two servers, the degradation factor is unbounded from above.

For future work, an interesting extension of the degradation
factor analysis performed in this work would be to consider
other popular load balancing policies such as Power of two,
Join the Shortest Queue or the SITA policy with optimal
thresholds. Another possible future research is considering
other metrics for the performance of these systems, such
as tail-probabilities or second moment of the waiting time.
Finally, we would like to analyze the performance degrada-
tion of multiservers systems considering a model with less
restrictions, for instance, when the servers are heterogeneous
and not necessarily FCFS.

REFERENCES

[1] http://www.cs.huji.ac.il/labs/parallel/workload/index.html.
[2] E. Altman, U. Ayesta, and B. J. Prabhu. Load balancing in processor

sharing systems. Telecommunication Systems, 47(1), 2011.
[3] E. Bachmat. Mathematical adventures in performance analysis.

Springer-Birkhauser, 2014.
[4] E. Bachmat and H. Sarfati. Analysis of SITA policies. Performance

Evaluation, 67(2):102–120, 2010.
[5] C. H. Bell and S. Stidham. Individual versus social optimization in

the allocation of customers to alternative servers. Management Science,
29:831–839, 1983.

[6] G. Ciardo, A. Riska, and E. Smirni. Equiload: a load balancing policy
for clustered web servers. Performance Evaluation, 46(2), 2001.

[7] J. Doncel, S. Aalto, and U. Ayesta. Economies of scale in parallel-server
systems. In IEEE Infocom, 2017.

[8] J. Doncel, U. Ayesta, O. Brun, and B. Prabhu. Is the price of anarchy the
right measure for load-balancing games? ACM Transactions on Internet
Technology (TOIT), 14(2-3):18, 2014.

[9] D. G. Feitelson, D. Tsafrir, and D. Krakov. Experience with using
the parallel workloads archive. Journal of Parallel and Distributed
Computing, 74(10):2967 – 2982, 2014.

[10] H. Feng, V. Misra, and D. Rubenstein. Optimal state-free, size-
aware dispatching for heterogeneous M/G/-type systems. Performance
Evaluation, 62(1-4):475–492, Oct. 2005.

[11] R. D. Foley and D. R. McDonald. Join the shortest queue: Stability and
exact asymptotics. Annals of Applied Probab., 11(3), 2001.

[12] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis
of join-the-shortest-queue routing for web server farms. Performance
Evaluation, 64(9):1062–1081, 2007.

[13] M. Harchol-Balter. Task assignment with unknown duration. In
International Conference on Distributed Computing Systems, 2000.

[14] M. Harchol-Balter. Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge Univ. Press, 2013.

[15] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task
assignment policy for a distributed server system. Journal of Parallel
and Distributed Computing, 59(2):204 – 228, 1999.

[16] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. Surprising re-
sults on task assignment in server farms with high-variability workloads.
In Proceedings of SIGMETRICS, 2009.

[17] M. Harchol-Balter and R. Vesilo. To balance or unbalance load
in size-interval task allocation. Probability in the Engineering and
Informational Sciences, 24(2):219–244, Apr. 2010.

[18] M. Haviv and T. Roughgarden. The price of anarchy in an exponential
multi-server. Operations Research Letters, 35:421–426, 2007.

[19] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg. Join-
idle-queue: A novel load balancing algorithm for dynamically scalable
web services. Performance Evaluation, 68(11):1056–1071, 2011.

[20] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Trans. on Parallel and Distr. Systems, 12(10), 2001.

[21] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multiuser
communication networks. 1(5):510–521, 1993.

[22] A. W. Richa, M. Mitzenmacher, and R. Sitaraman. The power of two
random choices: A survey of techniques and results. Handbook of
Randomized Computing, 1, 2001.

[23] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of
the ACM, 49(2):236–259, 2002.

[24] B. Schroeder and M. Harchol-Balter. Evaluation of task assignment
policies for supercomputing servers: The case for load unbalancing and
fairness. Cluster Computing, 7(2):151–161, 2004.

[25] F. Semchedine, L. Bouallouche-Medjkoune, and D. Aissani. Task
assignment policies in distributed server systems: A survey. Journal
of Network and Computer Applications, 34(4):1123 – 1130, 2011.

[26] R. Vesilo. Asymptotic analysis of load distribution for size-interval
task allocation with bounded pareto job sizes. In IEEE International
Conference on Parallel and Distributed Systems., 2008.

[27] T. Wang, Z. Su, Y. Xia, and M. Hamdi. Rethinking the data center
networking: Architecture, network protocols, and resource sharing. IEEE
Access, 2:1481–1496, 2014.

[28] R. R. Weber. On the optimal assignment of customers to parallel servers.
Journal of Applied Probability, 15(2):406–413, 1978.

[29] W. Whitt. Understanding the efficiency of multi-server service systems.
Management Science, 38(5):708–723, 1992.

[30] W. Whitt. How multiserver queues scale with growing congestion-
dependent demand. Operations Research, 51(4):531–542, 2003.

[31] A. Williams, M. Arlitt, C. Williamson, and K. Barker. Web Workload
Characterization: Ten Years Later, pages 3–21. Springer US, Boston,
MA, 2005.

[32] W. Winston. Optimality of the shortest line discipline. Journal of Applied
Probability, 14(1):181–189, 1977.

Josu Doncel obtained from the University of the Basque Country (UPV/EHU)
the Industrial Engineering degree in 2007, the Mathematics degree in 2010
and, in 2011, the Master degree in Applied Mathematics and Statistics. He
received in 2015 the PhD degree in Computer Science from Université de
Toulouse (France). He is currently an assistant professor at the UPV/EHU. He
has previously held research positions at LAAS-CNRS (France), Inria Greno-
ble (France) and BCAM-Basque Center for Applied Mathematics (Spain),
teaching positions at ENSIMAG (France), INSA-Toulouse (France) and IUT-
Blagnac (France) and invited professor positions at David laboratory (France)
and Inria Paris (France).

Samuli Aalto received his M.Sc. and Ph.D. degrees in Mathematics from
the University of Helsinki in 1984 and 1998, respectively. From 1984 to
1997, Dr. Aalto worked as a Research Scientist at VTT Technical Research
Centre of Finland. Since 1997, he has been with TKK Helsinki University
of Technology, which is now part of Aalto University. Currently he acts
as Senior University Lecturer leading the Performance Analysis Group in
the Department of Communications and Networking. Dr. Aalto’s research
interests include queueing theory, teletraffic theory, and performance analysis
of modern communications systems and networks.

Urtzi Ayesta received a PhD degree from Université de Nice-Sophia Antipolis
(France), a MS degree in Electrical Engineering from Columbia University
(US) and a BS/MS degree in Telecomunication Engineering from Nafarroako
Unibertsitate Publikoa-Universidad Publica de Navarra (Spain). His PhD
research was carried out at the research laboratories of INRIA Sophia-
Antipolis and France Telecom R&D. He is currently a CNRS researcher
at IRIT, Toulouse, and he also holds an adjunct lecturer position (part-time
appointment funded by Ikerbasque Foundation) in the Computer Science
Faculty at the University of the Basque Country.

APPENDIX

A. Proof of Lemma 2

Let H(x) =
� x

xm
zf(z)dz. Thus, we have that H(xm) = 0

and H(xM) = E(X). For SYS-(K,1,λ), it follows from (2)
that

H(xj) =
E(X) · j

K
, j = 0, . . . ,K.

Similarly, for SYS-(K/n,1,λ/n), we have

H(yj) =
E(X) · j
K/n

, j = 0, . . . ,K/n.

From these results, we conclude that for j = 0, . . . , K
n

H(yj) =
E(X) · j
K/n

=
E(X) · n · j

K
= H(xn·j). (15)

Since the thresholds of SITA-E policy are unique if f(x) >
0 for all x ∈ [xm, xM], then (15) implies that yj = xn·j , for
all j = 0, . . . ,K/n.

B. Proof of Lemma 3

First, (i) follows since F (x0) = 0 and F (xK) = 1. We
now show (ii). Under the routing policy under consideration,
the load of all the servers is the same, i.e., for j = 2, . . . , k, we
have that pj−1E[Xj−1] = pjE[Xj], where Xj is the service
time of jobs executed in server j. Now, since all the jobs
executed in server j are smaller that the jobs executed in server
j +1, it follows that the mean service time of server j is less
that that of server j + 1.

Finally, to prove (iii), we observe that for all j,� xn·(j+1)

xn·j
xf(x)dx =

� xn·j
xn·(j−1)

xf(x)dx. Therefore

sj+1 =

� xn·(j+1)

xn·j

x2f(x)dx

≥ xn·j

� xn·(j+1)

xn·j

xf(x)dx

= xn·j

� xn·j

xn·(j−1)

xf(x)dx

≥
� xn·j

xn·(j−1)

x2f(x)dx

= sj ,

where the inequalities are given since x2 is an increasing
function. And the desired result is proven.

C. Proof of Lemma 4

Let Z1 and Z2 be two discrete random variables for which
P (Z1 = si) = pi and P (Z2 = si) = 1/k, where i = 1, . . . , k.
From Lemma 3, it follows that Z1 is stochastically smaller
than Z2, that is, P(Z1 > si) ≤ P(Z2 > si), for all i =
1, . . . , k. Thus,

k�

i=1

pisi = E[Z1] ≤ E[Z2] =
1

k

k�

i=1

si,

and the desired result follows.

D. Proof of Lemma 5

First, we substitute the values of xj , f(x) and F (x) in (7)
and thus

DU (K,n, xm, xM) =

1

n

�K/n
j=1 (xn·j − xn·(j−1))(x

3
n·j − x3

n·(j−1))�K
j=1(xj − xj−1)(x3

j − x3
j−1)

.

Using that xj = xM zj , (9) follows by dividing the numerator
and denominator by x4

M and, since zj depends on xm and xM

only through γ, the desired result follows.

E. Proof of Lemma 6

We define f(x) = x
1
2 and g(x) = x

3
2 . We first observe that

for any x ≥ 0 and h = 0,

(f(x+ h)− f(x))(g(x+ h)− g(x)) = 0

and 4
3h

2 when h = 0 is also zero. Therefore, to show the
desired result, it is enough to show that, for any h ≥ 0,

∂

∂h
(f(x+ h)− f(x))(g(x+ h)− g(x)) ≥ 3

2
h. (16)

We have that

∂

∂h
(f(x+ h)− f(x))(g(x+ h)− g(x)) =

2(x+ h)− 3

2
x

1
2 (x+ h)

1
2 − 1

2
x

3
2 (x+ h)−

1
2 ,

and we define

u(h) = 2(x+ h)− 3

2
x

1
2 (x+ h)

1
2 − 1

2
x

3
2 (x+ h)−

1
2 .

We observe that (16) gives an equality when h = 0 since
u(0) = 0 and 3

2h when h = 0 is also zero. As a consequence,
(16) is verified if

u�(h) ≥ 3

2
. (17)

After some simplification, we obtain that

u�(h) = 2− 1

4
(2x+ 3h)x

1
2 (x+ h)

−3
2 .

For h = 0, it results that u�(0) = 3
2 , which implies that (17)

holds if u��(h) ≥ 0. Hence, we compute the second derivative
of u(h) and simplify and we obtain

u��(h) =
3

8
hx

1
2 (x+ h)

−5
2 ,

which is positive for any h ≥ 0. And the desired result is
proven.

F. Proof of Lemma 8

Prior to present the proof of Lemma 8, we give the following
result.

Lemma 12. The function n (1+γ
n
K)

(1−γ
n
K)

is an increasing function
of n.

Proof. The derivative of n (1+γ
n
K)

(1−γ
n
K)

with respect to n is posi-
tive if and only if

�
1 + γ

n
K + n

n

K
γ

n
K log γ

�
(1− γ

n
K)+

n (1 + γ
n
K)

n

K
γ

n
K log γ > 0.

After simplification, we obtain that

1− γ
2n
K + 2

n

K
γ

n
K log γ > 0.

Let L(γ,K, n) = 1− γ
2n
K +2 n

K γ
n
K log γ. We now observe

that limγ→1 L(γ,K, n) = 0. Therefore, since γ ∈ [0, 1], to
show the desired result, it is enough to prove that L(γ,K, n)
is decreasing with γ. Thus,

d

dγ
L(γ,K, n) < 0 ⇐⇒ 2n2

K2

γ
2n
K

γ
> 0.

And we observe that 2n2

K2
γ

2n
K

γ is always positive and the proof
is completed.

We are now showing Lemma 8.

Proof. The derivative of DBP (1)(K,n, γ) with respect to γ is
negative if and only if:

−n(1− γ
2n
K)(1− γ

1
K)2 + (1− γ

2
K)(1− γ

n
K)2 < 0.

Dividing this expression by (1 − γ
n
K)(1 − γ

1
K) and rear-

ranging both sides of the expression, we obtain that

n (1− γ
2n
K)

(1− γ
n
K)2

>
(1− γ

2
K)

(1− γ
1
K)2

.

Lemma 12 says that n (1+γ
n
K)

(1−γ
n
K)

is increasing with n and this
means that the previous inequality is always true. Hence, the
desired result follows.

G. Proof of Lemma 9

We aim to prove that (13) decreases with γ. Prior to that,
we give the following result:

Lemma 13. The equation 1−x
(1−x1−α)2xα/2 is

• decreasing with x if α < 1,
• increasing with x if α > 1.

Proof. The sign of the derivative of 1−x
(1−x)2xα/2 is the same as

the sign of

x
α
2

�
−(1− x1−α)− (1− x)

�
α

2

1

x
(1− x1−α)− (1− α)x−α

��
.

The sign of the above expression coincides with that of

−(1− x1−α)− (1− x)

�
α

2

1

x
(1− x1−α)− (1− α)x−α

�
,

which after small manipulations, gives

α

2
(1− x−α + x1−α)− 1 + x−α − α

2

1

x
.

This expression tends to zero when x → 1, therefore it is pos-
itive (resp. negative) if it is decreasing with x (resp. increasing

with x). Therefore, we study the sign of its derivative. Hence,
the derivative of the above expression is

(
α2

2
− 1)x−1−α +

α

2
(1− α)x−α +

1

2x2
,

whose sign coincides with that of

(
α2

2
− 1) +

1

2
(1− α)x+

xα−1

2
.

This expression equals zero when x = 0. Hence, its sign is
the opposite of that of its derivative:

1

2
(1− α)(1− xα−2),

which is negative if α < 1 and positive if α > 1 since
(1 − xα−2 > 0. Therefore, we have shown that the equation
decreases with x if α < 1 and increases with x if α > 1.

We now prove the result of Lemma 9.

Proof. We first observe that DBP (α)(∞,∞, γ) can be written
in the following way:

DBP (α)(∞,∞, γ) =
−(1− α)2

α · (2− α)
·
�
1−B(α, γ)2

�
,

where

B(α, γ) =
1− γ

γα/2(1− γ1−α)
.

Now, we note that the sign of B(α, γ) is given by the sign
of 1 − γ1−α, which is positive if α > 1 and negative if α <
1. Finally, from the result of Lemma 13, it follows that the
derivative of DBP (α)(∞,∞, γ) is always negative.

H. Proof of Lemma 10

First, we divide the numerator and denominator of (11)
by γ−α − 1 and we write the degradation factor as follows:

DBP (α)(K,n, γ) = 1
n

�K/n
j=1 mj�K
j=1 lj

, where

mj =
(z2−α

nj − z2−α
n(j−1))(z

−α
n(j−1) − z−α

nj)

γ−α − 1
,

for j = 1, . . . ,K/n and for j = 1, . . . ,K

lj =
(z2−α

j − z2−α
j−1)(z

−α
j−1 − z−α

j)

γ−α − 1
.

We now summarize how we prove the desired result. If
0 < α < 1, we show that, when γ → 0, then lK = (1/K)

2−α
1−α

and mK/n = (n/K)
2−α
1−α , while the rest of the terms are zero,

that is, lj = 0, for all j = 1, . . . ,K − 1, and mj = 0, for all
j = 1, . . . , K

n − 1. Thus,

lim
γ→0

DBP (α)(K,n, γ) = lim
γ→0

1

n
·
mK

n

lK
=

1

n
·
�
n
K

� 2−α
1−α

�
1
K

� 2−α
1−α

= n
1

1−α .

On the other hand, if , 1 < α < 2, we show that, when
γ → 0, then l1 = (1/K)

−α
1−α and m1 = (n/K)

−α
1−α , while the

rest of the terms are zero, i.e., lj = 0, for all j = 2, . . . ,K,
and mj = 0, for all j = 2, . . . ,K/n. Hence,

lim
γ→0

DBP (α)(K,n, γ) =
1

n
·m1

l1
=

1

n
·
�
n
K

� −α
1−α

�
1
K

� −α
1−α

=
1

n
·n −α

1−α = n
−1
1−α .

• The case 0 < α < 1: The denominator of lj tends to
infinity when γ → 0 for all j = 1, . . . ,K. Furthermore,
for all j = 1, . . . ,K−1, the numerator of lj when γ → 0,
tends to a finite value. Therefore, limγ→0 lj = 0, for
j = 1, . . . ,K − 1.
Besides, the denominator of mj tends to infinity when
γ → 0 for all j = 1, . . . ,K/n. And, for all j =
1, . . . , K

n − 1, the numerator of mj when γ → 0,
tends to a finite value. Therefore, limγ→0 mj = 0, for
j = 1, . . . , K

n − 1.
We now observe that zK = γ and z−α

K−1 tend to a finite
value, when γ → 0. Thus,

lim
γ→0

z−α
K − z−α

K−1

γ−α − 1
= lim

γ→0

γ−α − z−α
K−1

γ−α − 1
= 1.

We now observe that,

lim
γ→0

z2−α
K−1 − z2−α

K = (1/K)
2−α
1−α .

As a result,

lim
γ→0

lK =

�
1

K

� 2−α
1−α

.

For mK
n

, since z−α
K−n is finite when γ → 0, we have that

lim
γ→0

z−α
K − z−α

K−n

γ−α − 1
= lim

γ→0

γ−α − z−α
K−n

γ−α − 1
= 1,

and also that, limγ→0 z
2−α
K−n − z2−α

K = (n
K)

2−α
1−α .

Therefore, limγ→0 mK
n
=

�
n
K

� 2−α
1−α .

• The case 1 < α < 2: Using that 2−α
1−α < 0 if 1 < α < 2

and that γ1−α → ∞ when γ → 0, it follows that

lim
γ→0

z2−α
j → 0,

for all j = 1, . . . ,K. We recall that z0 = 1. Moreover,

z−α
j−1 − z−α

j

γ1−α − 1

tends to a finite value when γ → 0. Hence, for all j =
2, . . . ,K, limγ→0 lj is equal to a finite value times zero,
i.e., it is zero.
We observe that

z−α
j−n−z−α

j

γ1−α−1 also tends to a finite value for
all j = 2, . . . ,K/n. Therefore, for all j = 2, . . . ,K/n,
limγ→0 mj is equal to a finite value times zero which
means that it tends to zero.
We now focus on l1. We first give the value of z−α

1 −z−α
0

when γ → 0:

lim
γ→0

��
n
K γ1−α + K−n

K

� −α
1−α − 1

�

γ−α − 1
=

� n

K

� −α
1−α

,

which holds since γ−α → ∞ when γ → 0 and −α
1−α > 0.

Using that z2−α
0 − z2−α

1 tends to 1 when γ → 0, we
conclude that

lim
γ→0

mK =
� n

K

� −α
1−α

.

We now concentrate on m1 and, using the same reasoning
as before, we have that

lim
γ→0

��
1
K γ1−α + K−1

K

� −α
1−α − 1

�

γ−α − 1
=

�
1

K

� −α
1−α

.

We also observe that z2−α
0 −z2−α

n tends to 1 when γ → 0
and, thus,

lim
γ→0

lK =

�
1

K

� −α
1−α

.

I. Proof of Lemma 11

We first substitute p1 = pγ+(1−p)
2pγ in (14) and simplifying

we obtain the following equivalent expression:

γ(pγ2 + (1− p))

γ(pγ2 + (1− p))− (1− p)2(1− γ)2
.

The first derivative of this expression with respect to γ is
negative if and only if

(3pγ2 + (1− p))(γ(pγ2 + (1− p))− (1− p)2(1− γ)2)−
(3pγ2+(1−p)+2(1−γ)(1−p)2)(γ(pγ2+(1−p))) < 0.

Simplifying this expression, we obtain the following equiv-
alent one:

−(1− p)2(1− γ)(pγ2(3− γ) + (1− p)(1− γ)) < 0,

which is always negative for all γ < 1 and the desired result
follows.

J. Monotonicity counterexample

Consider the following discrete job size distribution: x =
[1, 10, 100] and p = [0.1, 0.1, 0.8] and also that K =
10000, n1 = 100 and n2 = 125. We aim to show that
D(K,n1,x,p) > D(K,n2,x,p). Let Xj be the random
variable of jobs executed in server j. From (7), it follows
that the denominator of D(K,n1,x,p) and of D(K,n2,x,p)
are the same and, therefore, it is enough check that

1

n1

K/n1�

j=1

E(Xj)

3�

i=1

qn1
ij pi >

1

n1

K/n2�

j=1

E(Xj)

3�

i=1

qn2
ij pi (18)

where qn1
ij (resp. qn2

ij) is the proportion of jobs of size xi,
i = 1, 2, 3, to be executed in server j when the system is
formed by n1 servers (resp. n2 servers) and pi is the i-th
component of vector p. We show the desired result below:

• The LHS of (18) can be seen as the performance of
a system with 100 servers and a single dispatcher. For
this system, we have that: (i) one server executes all the
smallest jobs and a proportion of 0.711 of the medium
size jobs, (ii) another server executes a proportion of

0.289 of the medium size jobs and a proportion of
0.006525 of the largest jobs, and (iii) all the remaining
98 servers execute only the largest jobs. Therefore, it
results that

(1/100) ∗ ((1− 0.006525)2 ∗ 0.82 ∗ 1002/98
+(0.289 ∗ 0.1 + 0.006525 ∗ 0.8)∗

(0.289 ∗ 0.1 ∗ 102 + 0.006525 ∗ 0.8 ∗ 1002)
+(0.1 + (1− 0.289) ∗ 0.1)∗

(0.1 ∗ 12 + (1− 0.289) ∗ 0.1 ∗ 102)),
which equals 0.6757.

• The RHS of (18) can be seen as the performance of
a system with 80 servers and a single dispatcher. For
this system, we have that: (i) one server executes all the
smallest jobs and a proportion of 0.9137 of the medium
size jobs, (ii) another server executes a proportion of
0.0863 of the medium size jobs and a proportion of
0.0116 of the largest jobs, and (iii) all the remaining 78
servers execute only the largest jobs. Therefore, it results
that

(1/125) ∗ ((1− 0.0116)2 ∗ 0.82 ∗ 1002/78
+(0.0863 ∗ 0.1 + 0.0116 ∗ 0.8)∗

(0.0863 ∗ 0.1 ∗ 102 + 0.0116 ∗ 0.8 ∗ 1002)
+(0.1 + (1− 0.0863) ∗ 0.1)∗

(0.1 ∗ 12 + (1− 0.0863) ∗ 0.1 ∗ 102)),
which equals 0.6688.

Hence, we have seen that the degradation factor does not
always increase with n for discrete job size distributions.

	TON2019_SITA
	SupplementaryMaterial

