From Individual to Collective Rationality:
 a Systematic Study in Binary Aggregation

Umberto Grandi
Institute for Logic, Language and Computation University of Amsterdam

20 October 2011

Everything Starts From a Paradox

In 1785 Monsieur le Marquis de Condorcet pointed out that:

???

- Why is this a paradox?
- Why does this happen?

Outline

1. What is a paradox?

- Various notions of individual rationality
- A propositional language for rationality assumptions
- Binary aggregation with integrity constraints
- General definition of paradox

2. Why do paradoxes come about?

- Languages for integrity constraints
- Collective rationality and axiomatic properties
- Characterisation Results
- An answer to M.Condorcet: the majority rule

3. Conclusions and related work

Part I:

Individual Rationalities and Paradoxes

Individual Rationality in Decision Theory

$\begin{array}{ll}\text { The problem: } & \text { Individuals choosing over a set of alternatives } \mathcal{X} \\ \text { Rational behaviour: } & \text { Maximise a weak order over } \mathcal{X} \\ & \text { (transitive, complete and reflexive binary relation) }\end{array}$

- Linear orders to avoid ties
- Partial orders over large domains
- Acyclic relations defined from choice functions

Individual Rationality in Decision Theory

The problem:
Rational behaviour:

Individuals choosing over a set of alternatives \mathcal{X} Maximise a weak order over \mathcal{X} (transitive, complete and reflexive binary relation)

- Linear orders to avoid ties
- Partial orders over large domains
- Acyclic relations defined from choice functions

Remark: we do not talk about uncertainties.

Many Rationalities?

Judges in a court (cf. judgment aggregation):
"O.J.Simpson is guilty" "O.J.Simpson wore bloody gloves" "If O.J.Simpson wore the glove then he is guilty"

Rational judges?
Consistent and complete judgment sets

Many Rationalities?

Judges in a court (cf. judgment aggregation):

"O.J.Simpson is guilty" "O.J.Simpson wore bloody gloves" "If O.J.Simpson wore the glove then he is guilty"

Rational judges?
Consistent and complete judgment sets

Committee deciding over multiple issues:

"Cut pensions" "Cut the number of MPs" "Cut funding to local provinces"

Rational members?
No political power to enforce all three austerity measures: Ballots with at most 2 yes

Binary Aggregation with Integrity Constraints

"Everything is binary"

- Individuals express yes/no ballots over a finite set of issues \mathcal{I}
- A propositional language can be interpreted over ballots
- Rationality assumptions/integrity constraints are formulas in this language

Binary Aggregation

Ingredients:

- A finite set N of individuals
- A finite set $\mathcal{I}=\{1, \ldots, m\}$ of issues
- A boolean combinatorial domain: $\mathcal{D}=D_{1} \times \cdots \times D_{m}$ with $\left|D_{i}\right|=2$

Definition

An aggregation procedure is a function $F: \mathcal{D}^{N} \rightarrow \mathcal{D}$ mapping each profile of ballots $\mathbf{B}=\left(\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right)$ to an element of the domain \mathcal{D}.

Binary Aggregation

Ingredients:

- A finite set N of individuals
- A finite set $\mathcal{I}=\{1, \ldots, m\}$ of issues
- A boolean combinatorial domain: $\mathcal{D}=D_{1} \times \cdots \times D_{m}$ with $\left|D_{i}\right|=2$

Definition

An aggregation procedure is a function $F: \mathcal{D}^{N} \rightarrow \mathcal{D}$ mapping each profile of ballots $\mathbf{B}=\left(\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right)$ to an element of the domain \mathcal{D}.

Example: Science Park

- $N=\{1,2,3\}$
- $\mathcal{I}=\{$ University, Sportcentrum, Food supply $\}$
- Individuals submit ballots in $\mathcal{D}=\{0,1\}^{3}$
$B_{1}=(0,1,1)$ the first individual wants to have a good meal after the gym.

Integrity Constraints

A propositional language \mathcal{L} to express integrity constraints on $D=\{0,1\}^{m}$

- One propositional symbol for every issue: $P S=\left\{p_{1}, \ldots, p_{m}\right\}$
- $\mathcal{L}_{P S}$ closing under connectives $\wedge, \vee, \neg, \rightarrow$ the set of atoms $P S$

Given an integrity constraint IC $\in \mathcal{L}_{\text {PS }}$, a rational ballot is $B \in \operatorname{Mod}($ IC $)$

Integrity Constraints

A propositional language \mathcal{L} to express integrity constraints on $D=\{0,1\}^{m}$

- One propositional symbol for every issue: $P S=\left\{p_{1}, \ldots, p_{m}\right\}$
- $\mathcal{L}_{\text {PS }}$ closing under connectives $\wedge, \vee, \neg, \rightarrow$ the set of atoms $P S$

Given an integrity constraint IC $\in \mathcal{L}_{P S}$, a rational ballot is $B \in \operatorname{Mod}(I C)$

Example: Science Park (the true story)

If there is both a university and a sport center then food supply is necessary
Propositional constraint: $\mathrm{IC}=\left(p_{U} \wedge p_{S}\right) \rightarrow p_{F}$
Individual 1 submits $B_{1}=(1,0,0)$: $\quad B_{1}$ satisfies IC \checkmark
Individual 2 submits $B_{2}=(1,1,1): \quad B_{2} \vDash \mathrm{IC} \checkmark$
Individual 3 submits $B_{3}=(0,1,0): \quad B_{3} \vDash \mathrm{IC} \checkmark$
Majority aggregation outputs $(1,1,0)$: IC not satisfied (as are all employees)

Paradoxes of Aggregation

Every individual satisfies the same rationality assumption IC... ...what about the collective outcome?

Definition

A paradox is a triple $(F, \mathbf{B}, I C)$, where:

- F is an aggregation procedure
- $\mathbf{B}=\left(B_{1}, \ldots, B_{n}\right)$ a profile
- IC $\in \mathcal{L}_{P S}$ an integrity constraint
such that $B_{i} \models I C$ for all $i \in \mathcal{N}$ but $F(\mathbf{B}) \not \vDash I C$.

Condorcet Paradox Revisited

Our definition of paradox:

- F is issue by issue majority rule
- the profile is the one described in the table
- IC that is violated is $p_{a b} \wedge p_{b c} \rightarrow p_{a c}$

Doctrinal Paradox

	α	$\alpha \rightarrow \beta$	β
Agent 1	1	1	1
Agent 2	0	1	0
Agent 3	1	0	0
Majority	1	1	$0!!$

Our definition of paradox:

- F is issue by issue majority rule
- profile described in the table
- IC that is violated is $\neg\left(p_{\alpha} \wedge p_{\neg \beta} \wedge p_{(\alpha \rightarrow \beta)}\right)$

Common feature: clauses of size 3

Part II:

Characterisation Results for Collective Rationality

Collective Rationality

Definition

F is collectively rational ($C R$) for IC $\in \mathcal{L}_{\text {Ps }}$ if for all profiles \mathbf{B} such that $\mathbf{B}_{i} \models I C$ for all $i \in N$ then $F(\mathbf{B}) \models I C$.
F lifts the rationality assumption given by IC from the individual to the collective level.

$$
\mathcal{C} \mathcal{R}[\mathcal{L}]=\left\{F: \mathcal{D}^{\mathcal{N}} \rightarrow \mathcal{D} \mid \mathcal{N} \text { is finite and } F \text { is } \mathrm{CR} \text { for all IC } \in \mathcal{L}\right\}
$$

where $\mathcal{L} \subseteq \mathcal{L}_{P S}$ is a sublanguage

Languages for Integrity Constraints

Definition

A language for integrity constraints is a subset $\mathcal{L} \subseteq \mathcal{L}_{P S}$ that is closed under conjunctions, logical equivalence and contains \top and \perp.

- if F is CR wrt. φ and to ψ then is CR wrt. $\varphi \wedge \psi$
- if F is CR wrt. φ then it is so for every equivalent formulas
- \top and \perp are trivial requirements for $C R$

Lemma

If \mathcal{L}_{1} and \mathcal{L}_{2} are languages for IC, then if $\mathcal{L}_{1} \neq \mathcal{L}_{2}$ then $\mathcal{C R}\left[\mathcal{L}_{1}\right] \neq \mathcal{C R}\left[\mathcal{L}_{2}\right]$

Languages and Axioms

Several languages for integrity constraints:

- cubes: conjunctions
- k-pclauses: positive disjunctions of size $\leqslant k$
- XOR: conjunctions of $p \leftrightarrow \neg q$
- ...

Several axioms to classify aggregation procedures:

- Unanimity (U): For any profile $\mathbf{B} \in X^{N}$ and any $x \in\{0,1\}$, if $\mathbf{B}_{i, j}=x$ for all $i \in N$, then $F(\mathbf{B})_{j}=x$.
- Independence, Neutrality...

Characterisation Results

Different lists of axioms AX define classes of functions:

$$
\mathcal{F}_{\mathcal{L}}[\mathrm{AX}]=\left\{F: \mathcal{D}^{\mathcal{N}} \rightarrow \mathcal{D} \mid F_{\left\lceil\operatorname{Mod}(\mathrm{IC})^{N}\right.} \text { sat. AX for all IC } \in \mathcal{L}\right\}
$$

Recall that the class of $C R$ procedures for a language \mathcal{L} is:

$$
\mathcal{C R}[\mathcal{L}]=\left\{F: \mathcal{D}^{\mathcal{N}} \rightarrow \mathcal{D} \mid F \text { is } \mathrm{CR} \text { for all IC } \in \mathcal{L}\right\}
$$

$$
\begin{gathered}
\text { What we want: } \\
\mathcal{C} \mathcal{R}[\mathcal{L}]=\mathcal{F}_{\mathcal{L}}[\mathrm{AX}]
\end{gathered}
$$

Characterisation Results: Examples

Cubes (conjunctions of literals) are lifted iff the procedure satisfies unanimity:
Proposition
$\mathcal{C R}[$ cubes $]=\mathcal{F}_{\text {cubes }}[$ Unanimity $]$.
Similar results can be proven for language of equivalences (issue-neutrality), XOR formulas (domain-neutrality), positive implications (neutral-monotonicity).

Characterisation Results: Examples

Cubes (conjunctions of literals) are lifted iff the procedure satisfies unanimity:
Proposition
$\mathcal{C R}[$ cubes $]=\mathcal{F}_{\text {cubes }}[$ Unanimity $]$.

Similar results can be proven for language of equivalences (issue-neutrality), XOR formulas (domain-neutrality), positive implications (neutral-monotonicity).

For the axioms of independence we prove instead a negative result:

Proposition

There is no language $\mathcal{L} \subseteq \mathcal{L}_{P S}$ such that $\mathcal{C R}[\mathcal{L}]=\mathcal{F}_{\mathcal{L}}[\mathrm{I}]$.

The same result holds for the axiom of anonymity and monotonicity

Committee and Quota Rules

Interesting classes of procedures:

- Independence \rightarrow Committee rules Every issue j a decisive committee $N_{j} \subseteq \mathcal{N}$

$$
\mathcal{F}[I]=\text { Committee rules }
$$

- Anonymity \rightarrow Only size matter Committee of same size have same decision power
- Monotonicity \rightarrow Quota rules

Every issue j a quota q_{j}

$$
\mathcal{F}[\mathrm{I}, \mathrm{~A}, \mathrm{M}]=\text { Quota rules }
$$

Example: The majority rule has uniform quota $\left\lceil\frac{n+1}{2}\right\rceil$

Quota Rules and Languages of Clauses

Interesting results concerning positive/negative clauses, and a general equation:

Proposition

A quota rule is $C R$ with respect to a k-clause IC iff

$$
\begin{equation*}
\sum_{j \text { negative }} q_{j}+\sum_{j \text { positive }}\left(n-q_{j}+1\right)>n(k-1) \tag{1}
\end{equation*}
$$

for issues j that occur positive or negative in IC, or $q_{j}=0$ for some issue j that occurs positive in IC, or $q_{j}=n+1$ for issue j negative in IC.

Yet no characterisation result for general languages of clauses (for $k>2$):

$$
\mathcal{C R}[\text { k-clauses }] \cap \mathcal{Q R}=\emptyset
$$

My Answer to M. Condorcet:

The Majority Rule

Proposition

The majority rule does not generate a paradox with respect to IC if and only if IC is equivalent to a conjunction of clauses of size $\leqslant 2$.

$$
\mathcal{I C}(M a j)=2 \text {-clauses }
$$

Common feature of all paradoxes: clauses of size 3 are not lifted by majority

Part III:

Related Work and Conclusion

Are These Results Useful for Social Choice Theorists?

Yes, we can talk about orders:

Call an aggregation procedure imposed if there are two alternatives x and y such that x is collectively preferred to y in every profile:

Proposition

Any anonymous, independent and monotonic aggregation procedure for more than 3 alternatives and 2 individuals is imposed.

Proof sketch:

- Translate preference aggregation into BA with IC
- Study the syntactic property of the $\mathrm{IC}<$
- Use a characterisation result!
- Go back to preference aggregation

Are These Results Useful for Computer Scientists?

Yes, we can talk about multi-agent systems:

Systems of automatic agents embedded with preferences or judgments to control and perform actions: need systematic theory of consistent aggregation!

Several applications:

- Preferential dependencies in elections
- Combinatorial vote
- Distance-based procedures

Airiau et al., Aggregating dependency graphs into voting agendas in multi-issue elections, IJCAI-11

Are These Results Useful for Philosophers?

Maybe.

A question: can we model a group of rational agents as a rational agent itself?

Proposition

F is $C R$ with respect to all IC in $\mathcal{L}_{P S}$ if and only if F copies the ballot of a (possibly different) individual in every profile.

This class includes:

- Classical dictatorships $F\left(B_{1}, \ldots, B_{n}\right)=B_{i}$ for $i \in \mathcal{N}$
- Distance-based generalised dictatorship: map $\left(B_{1}, \ldots, B_{n}\right)$ to the ballot B_{i} that minimises the sum of the Hamming distance to the others (a sort of "median voter"...). An interesting procedure!

Conclusions

Many notions of individual rationality:

- binary issues as a general model of individual expressions;
- rationality assumptions as propositional formulas;
- focus on syntactic properties of the rationality assumption.

Collective rationality:

- Unifying framework for paradoxes;
- Systematic study of collective rationality;
- Application in preference/judgment aggregation \& co.

Thanks for your attention!

Grandi and Endriss. Binary Aggregation with Integrity Constraints, IJCAI-2011, LIRA Yearbook-10. Grandi and Endriss. Lifting Rationality Assumptions in Binary Aggregation, AAAI-2010.

