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Everything Starts From a Paradox

In 1785 Monsieur le Marquis de Condorcet pointed out that:
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???
� Why is this a paradox?

� Why does this happen?



Outline

1. What is a paradox?

� Various notions of individual rationality
� A propositional language for rationality assumptions
� Binary aggregation with integrity constraints
� General definition of paradox

2. Why do paradoxes come about?

� Languages for integrity constraints
� Collective rationality and axiomatic properties
� Characterisation Results
� An answer to M.Condorcet: the majority rule

3. Conclusions and related work



Part I:

Individual Rationalities and Paradoxes



Individual Rationality in Decision Theory

The problem: Individuals choosing over a set of alternatives X
Rational behaviour: Maximise a weak order over X

(transitive, complete and reflexive binary relation)

� Linear orders to avoid ties

� Partial orders over large domains

� Acyclic relations defined from choice functions

Remark: we do not talk about uncertainties.
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Many Rationalities?

Judges in a court (cf. judgment aggregation):

“O.J.Simpson is guilty” “O.J.Simpson wore bloody gloves”
“If O.J.Simpson wore the glove then he is guilty”

Rational judges?
Consistent and complete judgment sets

Committee deciding over multiple issues:

“Cut pensions” “Cut the number of MPs”
“Cut funding to local provinces”

Rational members?
No political power to enforce all three austerity measures:
Ballots with at most 2 yes
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Binary Aggregation with Integrity Constraints

“Everything is binary”

� Individuals express yes/no ballots over a finite set of issues I
� A propositional language can be interpreted over ballots

� Rationality assumptions/integrity constraints are formulas in this language



Binary Aggregation

Ingredients:

� A finite set N of individuals

� A finite set I = {1, . . . ,m} of issues

� A boolean combinatorial domain: D = D1 × · · · ×Dm with |Di| = 2

Definition

An aggregation procedure is a function F : DN → D mapping each profile of
ballots B = (B1, . . . ,Bn) to an element of the domain D.

Example: Science Park

� N = {1, 2, 3}
� I = {University, Sportcentrum,Food supply}
� Individuals submit ballots in D = {0, 1}3

B1 = (0, 1, 1) the first individual wants to have a good meal after the gym.

Dokow and Holzman (2005), Grandi and Endriss (AAAI-2010)
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Integrity Constraints

A propositional language L to express integrity constraints on D = {0, 1}m

� One propositional symbol for every issue: PS = {p1, . . . , pm}
� LPS closing under connectives ∧, ∨ ,¬, → the set of atoms PS

Given an integrity constraint IC ∈ LPS, a rational ballot is B ∈ Mod(IC)

Example: Science Park (the true story)

If there is both a university and a sport center then food supply is necessary
Propositional constraint: IC = (pU ∧ pS)→ pF

Individual 1 submits B1 = (1, 0, 0): B1 satisfies IC X
Individual 2 submits B2 = (1, 1, 1): B2 |= IC X
Individual 3 submits B3 = (0, 1, 0): B3 |= IC X

Majority aggregation outputs (1, 1, 0): IC not satisfied (as are all employees)
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Paradoxes of Aggregation

Every individual satisfies the same rationality assumption IC...
...what about the collective outcome?

Definition

A paradox is a triple (F,B, IC), where:

� F is an aggregation procedure

� B = (B1, . . . , Bn) a profile

� IC ∈ LPS an integrity constraint

such that Bi |= IC for all i ∈ N but F (B) 6|= IC.



Condorcet Paradox Revisited

ab bc ac

Agent 1 1 1 1
Agent 2 0 1 0
Agent 3 1 0 0

Majority 1 1 0

Our definition of paradox:

� F is issue by issue majority rule

� the profile is the one described in the table

� IC that is violated is pab ∧ pbc → pac



Doctrinal Paradox

α α→ β β

Agent 1 1 1 1
Agent 2 0 1 0
Agent 3 1 0 0

Majority 1 1 0!!

Our definition of paradox:

� F is issue by issue majority rule

� profile described in the table

� IC that is violated is ¬(pα ∧ p¬β ∧ p(α→β))

Common feature: clauses of size 3



Part II:

Characterisation Results for Collective Rationality



Collective Rationality

Definition

F is collectively rational (CR) for IC ∈ LPS if for all profiles B such that
Bi |= IC for all i ∈ N then F (B) |= IC.

F lifts the rationality assumption given by IC
from the individual to the collective level.

CR[L]={F : DN → D | N is finite and F is CR for all IC ∈ L}

where L ⊆ LPS is a sublanguage



Languages for Integrity Constraints

Definition

A language for integrity constraints is a subset L ⊆ LPS that is closed under
conjunctions, logical equivalence and contains > and ⊥.

� if F is CR wrt. ϕ and to ψ then is CR wrt. ϕ ∧ ψ
� if F is CR wrt. ϕ then it is so for every equivalent formulas

� > and ⊥ are trivial requirements for CR

Lemma

If L1 and L2 are languages for IC, then if L1 6= L2 then CR[L1] 6= CR[L2]



Languages and Axioms

Several languages for integrity constraints:

� cubes: conjunctions

� k-pclauses: positive disjunctions of size 6 k

� XOR: conjunctions of p↔ ¬q
� ...

Several axioms to classify aggregation procedures:

� Unanimity (U): For any profile B ∈ XN and any x ∈ {0, 1}, if Bi,j = x
for all i ∈ N , then F (B)j = x.

� Independence, Neutrality...



Characterisation Results

Different lists of axioms AX define classes of functions:

FL[AX] = {F :DN→ D | F�Mod(IC)N sat. AX for all IC∈L}

Recall that the class of CR procedures for a language L is:

CR[L] = {F : DN → D | F is CR for all IC ∈ L}

What we want:

CR[L] = FL[AX]



Characterisation Results: Examples

Cubes (conjunctions of literals) are lifted iff the procedure satisfies unanimity:

Proposition

CR[cubes] = Fcubes[Unanimity].

Similar results can be proven for language of equivalences (issue-neutrality),
XOR formulas (domain-neutrality), positive implications (neutral-monotonicity).

For the axioms of independence we prove instead a negative result:

Proposition

There is no language L ⊆ LPS such that CR[L] = FL[I].

The same result holds for the axiom of anonymity and monotonicity
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Committee and Quota Rules

Interesting classes of procedures:

� Independence → Committee rules
Every issue j a decisive committee Nj ⊆ N

F[I] = Committee rules

� Anonymity → Only size matter
Committee of same size have same decision power

� Monotonicity → Quota rules
Every issue j a quota qj

F[I,A,M] = Quota rules

Example: The majority rule has uniform quota dn+1
2
e



Quota Rules and Languages of Clauses

Interesting results concerning positive/negative clauses, and a general equation:

Proposition

A quota rule is CR with respect to a k-clause IC iff∑
j negative

qj +
∑

j positive

(n− qj + 1) > n(k − 1) (1)

for issues j that occur positive or negative in IC, or qj = 0 for some issue j
that occurs positive in IC, or qj = n+ 1 for issue j negative in IC.

Yet no characterisation result for general languages of clauses (for k > 2):

CR[k-clauses] ∩QR = ∅



My Answer to M. Condorcet:
The Majority Rule

Proposition

The majority rule does not generate a paradox with respect to IC if and only if
IC is equivalent to a conjunction of clauses of size 6 2.

IC(Maj) = 2-clauses

Common feature of all paradoxes:
clauses of size 3 are not lifted by majority



Part III:

Related Work and Conclusion



Are These Results Useful for Social Choice Theorists?

Yes, we can talk about orders:

Call an aggregation procedure imposed if there are two alternatives x and y
such that x is collectively preferred to y in every profile:

Proposition

Any anonymous, independent and monotonic aggregation procedure for more
than 3 alternatives and 2 individuals is imposed.

Proof sketch:

� Translate preference aggregation into BA with IC

� Study the syntactic property of the IC<

� Use a characterisation result!

� Go back to preference aggregation



Are These Results Useful for Computer Scientists?

Yes, we can talk about multi-agent systems:

Systems of automatic agents embedded with preferences or judgments to
control and perform actions: need systematic theory of consistent aggregation!

Several applications:

� Preferential dependencies in elections

� Combinatorial vote

� Distance-based procedures

Airiau et al., Aggregating dependency graphs into voting agendas in multi-issue elections, IJCAI-11



Are These Results Useful for Philosophers?

Maybe.

A question: can we model a group of rational agents as a rational agent itself?

Proposition

F is CR with respect to all IC in LPS if and only if F copies the ballot of a
(possibly different) individual in every profile.

This class includes:

� Classical dictatorships F (B1, . . . , Bn) = Bi for i ∈ N
� Distance-based generalised dictatorship: map (B1, . . . , Bn) to the ballot
Bi that minimises the sum of the Hamming distance to the others (a sort
of “median voter”...). An interesting procedure!



Conclusions

Many notions of individual rationality:

� binary issues as a general model of individual expressions;

� rationality assumptions as propositional formulas;

� focus on syntactic properties of the rationality assumption.

Collective rationality:

� Unifying framework for paradoxes;

� Systematic study of collective rationality;

� Application in preference/judgment aggregation & co.

Thanks for your attention!

Grandi and Endriss. Binary Aggregation with Integrity Constraints, IJCAI-2011, LIRA Yearbook-10.
Grandi and Endriss. Lifting Rationality Assumptions in Binary Aggregation, AAAI-2010.


