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Abstract

In this paper we tackle the challenge of Multi Agents Reinforcement
Learning (MARL) in a situation of collective social choice. We evaluate
the learning performance of multiple independent learning agents inter-
acting in an iterative plurality voting game, which is a competitive game
where each agent has her private ordered preferences over a number of
questions, the players submit their voting action, and the winner has the
highest number of votes calculated with plurality rule. Agents receive a
reward signal depending on the winner of the previous iteration. Each
agent’s goal is to maximize her individual long term reward. We show
in our simulations that the population of agents learn to make a better
collective decision. We model each voting agent as a multi-armed bandit
machine and discuss the parameters that affect the outcome of the elec-
tions conducted by agents exploring under e-greedy and Upper Confidence
Bound (UCB) learning strategies with respect to a variant of Borda score,
namely Aggregated Score Index (ASI) that reflects the overall satisfaction
and the quality of the winner according to social choice criteria. We il-
lustrate the effect of two different reward functions on the exploration
strategies and discuss the impact of the size of action space and number
of agents on the learning process.

Keywords: Reinforcement learning, Multi-agents, Iterative voting, Game
theory

1 Introduction

Reinforcement learning (RL) has a growing value because of its potential to
solve a considerable number of sequential decision making tasks with feedback
like games, control and recommender systems; it is proposed to solve many
challenges in game theory and multiagent systems. Repeated games have been
studied for a long time because of their easy rules and they provide a very
good setting for multiple artificial intelligence tasks. RL challenges planning
approaches like tree search by approximating a value function, proposed by
(Shannon, [1950)) for chess, these value function approximators were represented



as a feature vector for states, and a weight vector that is learned by deep neu-
ral networks to approximate the value function (DQN)(Mnih et al.| [2015), also
employed in Alpha-go by (Silver et al.l [2016]) where the game was learned using
two deep neural networks to approximate the value function and the policy and
achieved super human results.

Social choice theory is concerned with methods used in decision making to
choose an alternative among different candidates, in referendum elections vot-
ers submit their ballots on multiple proposals simultaneously, a paradoxical
outcome is the separability problem, it happens when the winner is the last
preference of every voter. Iterative voting is the setting where election is re-
peated so that voters can revise their policy depending on the winner of the
previous iteration which indicates the current state of election. It is proposed
to solve the separability problem since voters can change their sincere view and
vote strategically in order to obtain a better collective result. (Bowman et al.|
2014). The iterative voting is a repeated games and can be modeled as a mu-
tiarmed bandit (MAB) to assess the learning capabilities of voting agents to
make a good collective decision(Airiau et al., [2017)).

In this work we propose a multi agent reinforcement learning (MARL) set-
ting with independent learning agents playing an iterative voting game. We
study the learning performance of the agents following ¢ — greedy and Upper
Confident Bound (UCB) exploration policies, with two proposed reward func-
tions. We show that our agents learn to make a better collective decision under
social quality measurements. We discuss the effect of the reward signal, the size
of action space and the number of agents on the quality of the voting result
with these approaches.

Outline: The rest of the report is organized as follows. Section [2| presents
principles of reinforcement learning, multi-armed bandits, multi-agents rein-
forcement learning, repeated games and iterative voting. Section [3] introduces
the problem we are tackling and how we formalize it, Section [] explains the
simulations environment and presents the results of the experiments. Finally
we conclude in section [5l

2 Preliminaries

2.1 Classical Reinforcement Learning

7 All goals and purposes can be well thought of as the maximization of the
expected value of the cumulative sum of a received scalar signal (called reward)”
(Sutton and Bartol|2018]). The concept of reinforcement learning is that an agent
learns how to map states and actions by sufficient trial-and-error contact with
its environment. To formalize a reinforcement learning task: we represent the
environment as a Markov Decision Process (MDP), then formulate the learning
objective by assigning an intermediate reward for each step which specify the



policy to be learned, and finally solve an optimization problem to find the
optimal policy. At each discrete time step t the agent receives an observation
that represents the environment’s state s;; the agent then takes an action a;
that transits the environment to a new state and receives a scalar reward signal
ry that indicates the quality of this transition. However the signal might be
delayed or assigned to a sequence of actions. The environment is modeled as a
Markov Decision Process (MDP).

Definition 2.1. A finite Markov decision process is a tuple < S, A, P, R,y >
S is a finite set of environment states.

A is a finite set of agent’s actions.

P is state transition probability matrix,P%, = P[S;41 = §'|S; = s, A, = a].

R is a reward function, R? = E[R;11|S: = s, A+ = al, the expected reward of
taking action a in state s

~v is a discount factor, v € [0, 1] which avoids infinite sum.

Figure [I]shows a representation of this interaction.
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Figure 1: Agent-Environment interaction in Markov decision process

An information state (Markovian) contains all useful information from the
history; “The future is independent of the past given the present”.

Definition 2.2. Markov property: A state S; is Markovian if and only if:
P[Si41]St] = P[Si41|S1 - -+ St

The trajectory or the episode is a sequence of states, actions, rewards like:
S0, @0, T0,51,01,71,52,02,72, "

Definition 2.3. The return G; is the sum of the discounted reward from
timestep t onward
Gi=Ris1 +YRiyo + - = SV Reviia

A reinforcement Learning agent may include one or more of these compo-
nents: Policy, Value Function, Model.
The behaviour of the agent is identified by its policy w. The policy indicates
how the agent chooses its action depending on the current environment state.



Definition 2.4. A policy 7 is a distribution over actions, given states 7(a|s) =
P[A; = a|S; = §]

The goal of the agent is to maximize her long term reward. The traditional

techniques allow a single agent to learn the optimal policy by trial-and-error
interaction with the environment, assuming that if the agent has enough in-
teractions with the environment or a sufficient load of trajectories, it ensures
convergence to the optimal policy 7* (Nowe et al., [2012).
Most reinforcement learning algorithms aim to learn the optimal value function
q* for control tasks, or to estimate the value function of an action, a state or
a pair (state,action) under a given policy ¢r; which indicates how good it is to
take this action in the current state; that is an expectation of the discounted
future rewards or the return.

Definition 2.5. The state action value function for policy 7 denoted ¢, (s, a) is
defined using the bellman equation by (Bellman 1957) as the expected return
for taking action a in state s following policy m :

qﬂ(s,a) = Eﬂ—[thst = S7At = a} = Eﬂ[zzozo’yth+k+1|St = S7At = a]

The value function is usually estimated from trajectories using Monte Carlo

methods that learns from complete episodes and estimate the value as the mean
return, or Temporal-Difference TD learning that learns online from incomplete
trajectories by bootstrapping and updating an estimated return at each time
step. As the number of trajectories approach infinity these estimation converges
to the true value function.
Solving the reinforcement learning problem means for the optimal policy 7* that
corresponds to the optimal value function, we achieve that by the principle of
optimality (Bellmanl [1957)) which is the basis for value iteration algorithms to
compute ¢*

qi(s,a) = max gr(s,a) = max E, [EzozokatJrkJrﬂSt =s,A4: = d]

If we have the MDP model < S,Q, P, R,y > and we are following a policy 7
that we want to evaluate, our task is to find the value function ¢, (s, a) corre-
sponding to this policy. Improving a policy is attained by acting greedily with
respect to the value function.n’(s) = argmaz,cag-(s,a). An optimal policy 7*
can be divided into an optimal first action ¢* and an optimal policy behaviour
from the new state s'.

2.2 K-armed Bandit Problem

A famous reinforcement learning problem is the multi-armed bandit, where we
need to learn the best action (bandit).

Definition 2.6. A multi-armed bandit is a tuple < A, R >
A is a set of k different actions.
R*(r)= P[r|a] is unknown probability distribution of rewards over actions.



At every time step t the agent selects an action arm a; € A, receives a reward
from the environment r; € R*. The objective of the agent is to maximize the
cumulative reward over a period of time 3t _ 7,

In the multi-armed bandits problem each arm has an expected mean re-
ward that represents the estimated value of this action ¢;(a) and we would like
this estimation to be close to the optimal value ¢*(a). The simplest action se-
lection is the greedy which picks the action with the highest estimated value
function; we can write it formally as A; = argmax, ¢:(a). Greedy policy always
exploits and maximize the immediate reward. A critical choice in online deci-
sion making between k different actions is between exploitation and exploration.
Exploitation means taking the best available known action given the current
data. Exploration is to take an action with less certainty value to collect new
information in order to find the best overall behaviour that enhances the final
result. Finding the right balance is generally difficult as the returns from ex-
ploration actions are less certain and might be more preferable after a certain
history or in specific runs (Marchl [1991))

There exists different exploration principles, a simple but efficient one is the
€ — greedy strategy, which usually acts greedy but with a small probability it
chooses an action randomly independently from its estimated value, and with
similar probabilities for all actions. This policy guarantees with time testing all
possible actions and will converge to the optimum value function ¢.(a) (Sutton
and Bartol, [2018)

4, — Jaremax, qi(a), with probability 1 — e
*7 ) a random action, with probability e

Upper Confidence Bound (UCB) is an exploration strategy that selects
the actions which are more likely to be optimal by taking into consideration
both their estimation and the the uncertainty of their values.

A; = argmax
a

Ni(a)

qi(a) + lnt}

Where Int is the natural logarithm of ¢ the total number of iterations, N¢(a) is
the number of times action a has been selected. The uncertainty of an action
decreases as Ny(a) increases.

2.3 Multi-Agents Reinforcement Learning

A multiagent system is defined as a collection of autonomous entities interacting
in a shared environment. In this case applying the traditional RL methods
usually do not succeed, because the convergence requirements are not satisfied.
There are many challenges in the simplest case where agents are learning in
a shared environment with a single state because the environment becomes
non-stationary and the markov property does not hold, therefore each agent is



pursuing a moving target (Busgoniu et al., |2010)).

The interaction between multiple agents within an environment is shown in
figure [2| from (Nowe et al., [2012), each agent selects its action and they are
all submitted as a joint action to the environment. The environment responses
with a reward and a new state for each agent. In multiagent system the state
transitions and the rewards at time step ¢ depend on the joint action of all
agents, a; = [a14,- - ,a;¢] where ¢ denotes the number of active agents in the
environment.
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Figure 2: Multiple Agents Interacting in the Same Environment

(—erﬂgZOI—<ZITI]

We distinguish two main settings of multi agent learning,independent learn-
ing which reduces the multi agent learning problem into one agent learning by
ignoring other agents and considering them as a part of the environment; in this
approach we can still apply classical RL algorithms like Q-Learning by (Watkins
and Dayan, |1992)). The convergence features are not guaranteed; nevertheless
independent learners result in good performance under many multiagent set-
tings. A general multi-agent Q learning algorithm for stateless game is given
below.

Algorithm 1 Multi-Agent Q Learning Algorithms in Stateless Games
t =0 grx(a) = 0Vk,a

repeat

for all agents k do:

select action ay(t)

execute joint action a = (a1, ,ay)

observe rewards 7y,

for all agents k do:

ar(a) = (@) + % [rx(a) — a(a)]

until termination




The second setting for multiagent learning is referred to as joint-action
learning; here the MDP model is usually not sufficient when multiple agents
interact, other approaches include improving a policy or approximating the value
function of a joint action that is a combination of each agent’s action. At every
time step each agent updates its approximation with respect to the reward it
got for this joint action.

The complexity of the problem grows when the environment is dynamic with
more than a single state or requires a series of decision making; here the agents
need to coordinate and identify the state of the environment, moreover it be-
comes even more difficult when the agents don’t have sufficient information
about the scheme because they usually can not recognize other agents’ actions
and rewards; although these actions take part of their own reward. In those
cases either the agent is not informed of the existence of other agents, or the
agent has all the information over other agent.

The key challenge in the multi-agent reinforcement learning (MARL) is defining
a good learning goal; with two main identified objectives; stability of the agents’
dynamics and adjustment to other agents’ behaviour (Busoniu et al., 2008).

2.4 Repeated Games

Multi-agent reinforcement learning has a strong connection with game theory
which studies strategic interactions between multiple players trying to maxi-
mize their individual payoffs, most of the results are concerned with stateless
environments or repeated games, a static stateless game has empty state set
S = &, and normal form games where agents select their actions at the same
time(Busoniu et al., [2008)).

Stateless games usually provide a basic setting to experiment with MARL,
specifically for independent learning agents and to question coordination frame-
works. The learning question in this setting also rises from interacting with
other agents. The difference in the reward of an action is determined only by
the changes of other agents’ policies, therefore the game is iterated to improve
the policy over time. A fundamental difference from reinforcement learning, is
that in RL the game rules are unknown and the learners have no prior knowledge
of the reward function. Many RL methods suppose that the learner can model
its opponents by observing their actions or rewards, while other approaches as-
sume that these information could be unavailable.

Usually there are two kinds of games in cooperative games the agents share a
common goal and they all try to maximize a shared reward signal, coordinating
between agents is critical to reach optimum. The second case is competitive
games, the agents have conflicting goals and a clear optimum may no longer
reside. In this case,the optimal policy for a player is called best response if other
players fix their policies. An equilibrium between agents is usually looked for,
which is the case when no player benefits from playing any different policy, and
it is the best response for all players.



2.5 Iterative Voting

Computational social choice is concerned with combining information from in-
dividuals into one collective perspective. In voting theory, agents have their
personal preferences over a set of alternatives, these preferences are usually
modelled as utility functions. Social choice offers techniques of aggregating these
preferences for collective decision making. In collective choice, we differentiate
between two voting behaviours, sincere voting is when the agent submits her
truthful preference order, and strategic voting is when the voter manipulates
and submits a ballot that is not sincere in hope for a better collective outcome.
There are different voting rules that serve this objective, the most common vot-
ing rule is the plurality voting which assigns the winner as the alternative who
is ranked at top position by the largest number of voters. This role is perfect
for two candidates and is easy to implement with good convergence features,
paradoxes are probable for more than two alternatives. It is however practical
in an iterative voting setting in which the election has sequential phases, at
each iteration voters are allowed to change their ballots after being exposed to
the winner of the previous iteration. This setting is useful and guaranteed to
converge at equilibrium (Meir et al., [2010).

In the paper Learning agents for Iterative Voting by (Airiau et all, [2017),
authors formulate iterative voting as a repeated game and estimate the learning
abilities of agents in a collective decision making setting, where agents engage
in an iterated plurality election, every agent has their individual preferences
regarding a number of alternatives. The winner of the ballot defines the reward
signal for the learning algorithm. The authors restrict the information available
to the agents in the environment to the winner of the previous iteration and
allow agents to change their votes simultaneously. The authors evaluate the
scalability of decisions made by the learning agents modelled as multi-armed
bandit case and show that the agents learn to make better collective choice
by assessing the winner under standard quality measures like Borda score and
Condorcet efficiency. They estimate utility (reward) function for each candidate
and control exploration using simple ”optimism in face of uncertainty”.

3 Problem definition

In referendum elections voters usually submit their votes on multiple proposals
simultaneously. This type of multiple elections can lead to paradoxical out-
comes, namely the separability problem which occurs when the favoured
outcome on one proposal depends on the result of other proposals (Brams et al.|
1997)), the problem happens when the winner turns to be the last preference of
every voter which fails to represent the will of the electorate.

An example of the separability problem is shown below with three voters sub-
mitting their vote as a sincere preference indicated by the first row of each
matrix. The vote is binary where 1 represents yes and 0 represent no. For
example having the top row as 110 means that the voter’s sincere preference is



for the first and second proposal to pass, and the third to fail. in this example
the winner of this iteration for sincere voters is 111 calculated by the majority
vote, which is the last preference of every voter (Bowman et al.| [2014)
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Let num_quest denote the number of binary questions in the voting game, the
number of possible answers is 27%™-74¢st  an ordered preference profile is pre-
sented by a matrix 27%m-94¢st x num_quest where the ith row represents the
voters ith preferred outcome.

Borda score is assigned to the winner in each profile preference matrix, the
scores range between 0 and 2"“™-9%¢st _ 1 A winner in row i for a profile p will

receive a score
Bp(Z) — 2num,quest —

The Borda’s score for our example with num_quest=3 is between 0 and 7, the
score of the winner is shown below with respect to the profile preference of the
first voter in our example.
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To assess the global satisfaction of the society in the result of the election, we use
the Aggregate Score Index, ASI defined by (Hodge and Schwallier, 2006)),
which is an average of all agents’ Borda scores and was used by (Airiau et al.
2017). The aggregated score index of a winner w is denoted ASI(w) is the
averaged scores for all voters. Submitting the sincere preference here that is the
first row in each of the preference matrices for the voters will end up with the
winner being 111 that has a score of 0 for each profile and therefore ASI(111)
= 0. An outcome 101 will have ASI(101) = I+5 = 6.



Problem Formalisation

We want to study and assess the learning capabilities of agents playing a strate-
gic iterative voting game and acting as independent learners, each agent ignores
other agents and they all follow similar learning policies.

In our simulations we create an iterative voting game with num_quest is the
number of questions in the election, num_agents is the number of voting agents.
Every agent has a preference profile matrix that represents their choices or-
dered by the desired outcome. Agents submit their votes simultaneously and
the result is an aggregation of these votes by majority vote on each question.
We use an odd number of voters throughout the work to avoid tie situations.
To map the iterative voting game with the reinforcement learning setting, we
need to define the actions and rewards for the voting agents. Each row of the
preference matrix is a possible answer of the ballot and defines a single action
for the respective agent; each of these actions is assigned a unique reward that
is distributed after aggregating the actions and finding the winner by majority
vote, each reward is proportional to the position of the winner in the respective
preference matrix.

More precisely, we represent each agent by a multi-arm bandit machine follow-
ing previous research (Airiau et al [2017). We associate the bandits of each
machine with the actions of the corresponding agent, each action being a ban-
dit. The action space of an agent is mapped with its profile of preferences. At
each iteration, agents cast their votes by submitting their actions simultane-
ously. The environment collects the joint action and calculates the winner of
the current iteration using majority voting rule. The rank of the winner in one
agent’s profile affects her reward in two proposed reward functions. The counter
and the g-value of the selected action-bandit is updated at each iteration for
every agent depending on the reward signal.

We measure the ASI of the winner in each iteration, as the average of all agents’
Borda scores, and observe the development of the score as the agents learn their
best response in the non stationary environment.

1
ASI = 7ZnumfagentsBa

num_agents 2!

Different rewards showed different exploration effect in single agent learning by
(Tijsma et all [2016]). To study this effect in a MARL setting we define two
reward functions that reflect the goodness of a winner in the agents’ preference
profiles.

Linear Reward

We define the linear reward for an agent as the Borda score of the winner in
the profile matrix of the respective agent as explained earlier, that means the
ASI is the average of the linear rewards for the learning agents. Precisely: Let
the winner be on the ith row of the profile matrix for agent a, then the linear
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reward is defined:
Rflinear (Z) _ Ba (’L) — 2num,quest — 3

The linear reward ranges between 0 for the case when the winner is rated last
in the profile matrix and 2"“™-94¢s¢t _ 1 for a winner in the first position.

Exponentially Decaying Reward (EDR)

We define the reward for agent a for a winner in the row i as

. 1 i
() = 55 =27
This reward decreases exponentially with respect to 4 the position of the winner
in the profile matrix for agent a.

4 Simulations Settings

To evaluate the performance of our learning agents in iterative voting game, we
explore the toolkits that implement reinforcement learning environments like
OpenAl Gym by (Brockman et al., [2016) which provides an abstract more fo-
cusedd on deep reinforcement learning environment’s observations and rewards
and implements a collection of environments classes like Atari games, algorith-
mic and classic control reinforcement learning tasks. We also examine RLib by
(Liang et al., |2017)) which is a library more entitled with distributed reinforce-
ment learning that proposes methods to enhance performance of RL algorithms.
Finally we develop our own scheme MARL-I VE| that implements the specifica-
tions of an iterative voting game. We develop the needed methods to create
preference profiles for the agents and the dynamics of the environment to cal-
culate the plurality winner of an iteration and distribute the rewards to the
agents. We implement the agent as a MAB entity, and the exploration policies:
greedy, e-greedy and upper confidence bound (UCB).

We run simulations of an iterative voting game on elections where agents sub-
mit their votes on multiple binary proposals simultaneously. We calculate the
winner and distribute the rewards, we execute the election iteratively to mon-
itor the behaviour of ASI over time steps. The sole information available to
each agent is the reward of the previous iterations. This information is used to
repeatedly update the g-value of the bandits.

4.1 Experiments

We will measure the ASI score of each iteration and average 500 voting games per
setting. We tune number of iterations for the voting game, num_iterations =

LCode available on github https://github.com/Loujainl/iterative_vote
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2000 and expect the ASI score to increase and stabilize.

To analyze the performance of our MARL model for iterative voting game, we
run the simulations under different parameters and observe the behaviour of ASI
obtained by the learning agents following e-greedy and UCB, we tune € = 0.1
to be a sufficient noise for exploration in the greedy approach. We plot the
ASI over the iterations and examine the main parameters affecting the learning
process, we run our simulations to average 500 voting games.

4.2 Results

The number of questions in the ballot determines the complexity of the learning
process because the action space is exponential with respect to the number of
questions: num_actions = 2"4m-9%¢st and the maximum attainable ASI score in
this election is AST max = 2"¥™-2uest _ 1. We reason about the size of action
space and the type of reward on the collective behaviour of the voting agents.

4.2.1 Number of Questions = 3

We detail here the influence of the number of agents and the type of the reward
signal on the learning process for € — greedy and UC B exploration policies of 3
agents voting on 3 proposals, here num_actions = 22 = 8 and ASI_max =7

Number of Agents = 3

By observing the averaged ASI obtained by 3 learning agents voting on a bal-
lot with 3 questions, we notice that these agents learn to take decisions with
improved results. In the blue curve is obtained by the agents following the
e—greedy strategy with € = 0.1, and the orange curve is for the agents exploring
under UCB’s optimism in the face of uncertainty principle.

We detect that in this action space UCB learns faster than € — greedy under
the linear reward signal and produces a higher and more stable collective out-
come. To the contrary, with the EDR signal in [3b] we recognize that € — greedy
learning agents achieve an optimum in a small number of iterations, while UCB
exploration is slower and takes a longer time to learn.

12
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Figure 3: Average ASI Obtained by 3 Learning Agents Voting on 3 Questions Following
e — greedy and UC B Exploration Policies and Receiving Different Reward Signals

Number of Agents = 15

With a larger number of agents, it is a more difficult task to learn, we run our
iterative voting game with 15 agents and notice with the linear reward in [4a]
the improvement in the ASI score takes longer time for the community of 15
agents, agents exploring under UCB still result in a better collective decision
making than € — greedy agents . With the EDR in [b| e — greedy does not
make significant improvement over time, the UCB agents take more iterations
to improve the quality of the collective decision over time and still does not
outperforms € — greedy.
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Figure 4: Average ASI Obtained by 15 Learning Agents Voting on 3 Questions Following
€ — greedy and UC B Exploration Policies and Receiving Different Reward Signals

4.2.2 Number of Questions = 4

With 4 Questions, the action space size per agent is 2* = 16 action, and
AST_max = 15. We clone the previous setting for the new ballot and observe
the effect for different number of voting agents and reward signals.
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Number of Agents = 3

We add in this setting a comparison for the performance of classical greedy
algorithm and random action selection with € — greedy and UCB. In figure [f
we show the averaged ASI score obtained by three agents submitting their votes.
In blue is the score of agents selecting their actions randomly which results in a
low arbitrary ASI; the greedy algorithm in green gets stuck in a local optimum,
under the linear reward in [pal € — greedy policy behaves similar to the setting
with 3 Questions. Also UCB agents still manage to explore efficiently in this
action space and stabilize with a good collective score in few epochs. With
the exponentially decreasing reward, UCB suffers for a long time again before
reaching the result obtained rapidly by € — greedy agents.

Average ASI by Learning Policies Average AS| by Learning Policies

11.0
10

10.5

10.0
9

o |

— random — random
5] — epsilon_greedy —— epsilon_greedy
7| — greedy 6 —— greedy

70 — ubL — ucbl

Average AS|
©
5
Average AS|
o

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration

(a) Linear Reward (b) EDR

Figure 5: Average ASI Obtained by 3 Learning Agents Voting on 4 Questions Following
€ — greedy and UCB Exploration Policies and Receiving Different Reward Signals

Number of Agents = 5

In this setting we have 5 agents voting iteratively, each with 16 action options.
We observe in [7a] that the ASI for agents exploring with linear reward using
€ — greedy policy slightly surpass the performance of UCB for the first setting
after sufficient number of interactions between the agents, UCB converges to
a stabilized outcome and less exploration. In [6D] a clearly slow but steady
learning behaviour is shown for UCB agents, and a repetitive reasoning with
the group of € — greedy agents that reach a considerably satisfying collective
result in a short run, illustrating that the performance of UCB is notably less
significant for multiple agents learning with low rewards similarly to the single
agent learning discussed by (Garivier and Cappél [2011)).
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Figure 6: Average ASI Obtained by 5 Learning Agents Voting on 4 Questions Following
e — greedy and UC B Exploration Policies and Receiving Different Reward Signals

Number of Agents = 15

Each agent adds her own input to the joint action and it is evidently more
challenging to learn. But we observe that both UCB and € — greedy agents re-
ceiving the linear reward still learn to increase the ASI with time. No important
improvement in the ASI for the EDR in [7h]
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Figure 7: Average ASI Obtained by 15 Learning Agents Voting on 4 Questions Following
e — greedy and UC B Exploration Policies and Receiving Different Reward Signals

4.2.3 Number of Questions = 6

The size of action space for 6 questions is 26 = 64 actions, and AST_max = 63.
This is already a big number of alternatives for a stateless game with a single
agent learning problem. We run the iterative voting game with multi agents

learning using € — greedy and UCB policies and monitor the features of the
outcome.
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Number of Agents = 3

In the figure [§] we show the average ASI score obtained by three agents submit-
ting their votes on 6 Questions. The EDR does not show worthy improvement
in ASI score. While it’s remarkable for the linear reward in that the agents
following € — greedy learn to make an important increase in the ASI after an
adequate number of iterations.
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Figure 8: Average ASI Obtained by 3 Learning Agents Voting on 6 Questions Following
e — greedy and UC B Exploration Policies and Receiving Different Reward Signals

Number of Agents = 15

Interestingly in this setting with 15 agents playing iterative voting game on
6 Questions, the e — greedy agents receiving linear reward in [Ja] consistently
improve the ASI score with time as they are exploring the action space and

adapting to the environment change caused by other agents.
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Figure 9: Average ASI Obtained by 15 Learning Agents Voting on 6 Questions Following
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e — greedy and UC B Exploration Policies and Receiving Different Reward Signals
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5 Conclusion

Our experiments show that multiple independent learning agents in the setting
of iterative plurality voting learn to produce in this environment a good global
result measured according to an aggregated score that indicates the level of
social satisfaction in the winner of the election. We contribute a discussion of
the parameters that influence the learning progress of two famous exploration
policies, e-greedy and UCB in a multi-armed bandit model. We remark the dif-
ference in the collective ASI obtained and illustrate the variance in performance
with respect to two different reward functions. We show that in a small action
space and with a linear reward, UCB produced a better collective outcome than
€ — greedy. While in large action spaces with small reward signal, UCB is slow
and does not produce important improvement. On the other hand we show that
agents following € — greedy and a linear reward learn to improve in large action
space and obtain good collective decision and that this result is scalable and
robust with respect to the number of actions for a small number of agents. The
number of agents influence the number of sufficient iterations needed to reach
an optimum.

17



References

S. Airiau, U. Grandi, and F. S. Perotto. Learning agents for iterative voting. In
J. Rothe, editor, Algorithmic Decision Theory, pages 139-152, Cham, 2017.
Springer International Publishing. ISBN 978-3-319-67504-6.

R. Bellman. A markovian decision process. Journal of mathematics and me-
chanics, pages 679-684, 1957.

C. Bowman, J. K. Hodge, and A. H. yan Yu. The potential of iterative voting to
solve the separability problem in referendum elections. Theory and Decision,
77:111-124, 2014.

S. J. Brams, D. M. Kilgour, and W. Zwicker. Voting on Referenda: The
Separability Problem and Possible Solutions. Working Papers 97-15, C.V.
Starr Center for Applied Economics, New York University, 1997. URL
https://ideas.repec.org/p/cvs/starer/97-15.html.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of mul-
tiagent reinforcement learning. IEFE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2):156-172, March 2008.
ISSN 1094-6977. doi: 10.1109/TSMCC.2007.913919.

L. Busoniu, R. Babuska, and B. De Schutter. Multi-agent reinforcement learn-
ing: An overview. In Innovations in multi-agent systems and applications-1,
pages 183—221. Springer, 2010.

A. Garivier and O. Cappé. The kl-uch algorithm for bounded stochastic bandits
and beyond. In Proceedings of the 24th annual conference on learning theory,
pages 359-376, 2011.

J. K. Hodge and P. Schwallier. How does separability affect the desirability of
referendum election outcomes? Theory and Decision, 61(3):251-276, 2006.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Y. Goldberg, J. Gonzalez,
M. I. Jordan, and I. Stoica. Rllib: Abstractions for distributed reinforcement
learning. In ICML, 2017.

J. G. March. Exploration and exploitation in organizational learning. Organi-
zation science, 2(1):71-87, 1991.

R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings. Convergence to
equilibria in plurality voting. In Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, 2010.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

18


https://ideas.repec.org/p/cvs/starer/97-15.html

A. Nowe, P. Vrancx, and Y.-M. De Hauwere. Game Theory and Multi-agent
Reinforcement Learning, pages 441-470. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. ISBN 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-3_
14. URL https://doi.org/10.1007/978-3-642-27645-3_14.

C. E. Shannon. Xxii. programming a computer for playing chess. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41
(314):256-275, 1950.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529
(7587):484, 2016.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018.

A. D. Tijsma, M. M. Drugan, and M. A. Wiering. Comparing exploration
strategies for g-learning in random stochastic mazes. In 2016 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pages 1-8. IEEE, 2016.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279-292,
1992.

19


https://doi.org/10.1007/978-3-642-27645-3_14

	Introduction
	Preliminaries
	Classical Reinforcement Learning
	K-armed Bandit Problem
	Multi-Agents Reinforcement Learning
	Repeated Games
	Iterative Voting

	Problem definition
	Simulations Settings
	Experiments
	Results
	Number of Questions = 3
	Number of Questions = 4
	Number of Questions = 6


	Conclusion

