
Multiagent Ranked Delegations
in Liquid Democracy

Umberto Grandi

IRIT – University of Toulouse

12 January 2020

Joint work with Rachael Colley and Arianna Novaro

Delegations in voting - proxies

Delegating one’s voting power to a proxy is common in shareholders’ meetings:

Classical studies are Miller (1969) and Tullock (1992).

Delegations in voting - liquid

Liquid democracy allows a proxy to delegate her voting power and the delegated
voting power received to another voter. Delegations becomes transitive:

By Ilmari Karonen CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=23953030

The term liquid actually comes from the fact that delegations can be
withdrawn at any time during deliberation.

First implementation: https://liquidfeedback.org/

https://liquidfeedback.org/

Delegations in voting - liquid

Liquid democracy allows a proxy to delegate her voting power and the delegated
voting power received to another voter. Delegations becomes transitive:

By Ilmari Karonen CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=23953030

The term liquid actually comes from the fact that delegations can be
withdrawn at any time during deliberation.

First implementation: https://liquidfeedback.org/

https://liquidfeedback.org/

Intermezzo I: preference aggregation

Voting rules can be used to aggregate the preferences or tastes of a set of
individuals over a set of alternatives:

� �

� �

� �

Borda winner is STV winner is

1 friend

4 friends

4 friends

How to decide which rule to use? Typically by checking its axiomatic
properties, such as unanimity, resistance to clones, Condorcet consistency...but
also its computational ones.

Intermezzo II: reconstructing the truth

The same voting rules can be used to track a ground truth starting noisy
estimates by a set of individuals.

The classical result is Condorcet’s jury theorem:

• two alternatives c and c̄, with c the correct one

• each voter has an independent probability p to guess the correct alternative

• if p > 1/2 the probability that the majority vote is the correct alternative
tends to 1 increasing the size of the electorate

We can also say that the majority rule is the maximum likelyhood estimator for
the noise model described above.

Liquid democracy

Liquid democracy has been studied under both perspectives.

1. As a maximum likelihood estimator by Green-Armytage (2015), Kahng et
al (2018), and Cohensius et al, 2017.
No definitive answer: unless modified substantially liquid democracy does
not seem to be a better estimator than voting without delegations.

2. As a preference aggregator:

• How much power should be given to the delegates?
(Boldi et al 2009, Kotsialou and Riley, 2020, Gölz et al 2018)

• How to delegate on parts of a voter ballot, when voting on more than one
issue or with preferences over alternatives?
(Grossi and Christoff 2017, Brill and Talmon 2018)

• Analyse the delegation game defined by expressing rankings over delegates
or when voters have types unknown to them.
(Bloembergen et al 2019, Escoffier et al 2020)

Liquid democracy

Liquid democracy has been studied under both perspectives.

1. As a maximum likelihood estimator by Green-Armytage (2015), Kahng et
al (2018), and Cohensius et al, 2017.
No definitive answer: unless modified substantially liquid democracy does
not seem to be a better estimator than voting without delegations.

2. As a preference aggregator:

• How much power should be given to the delegates?
(Boldi et al 2009, Kotsialou and Riley, 2020, Gölz et al 2018)

• How to delegate on parts of a voter ballot, when voting on more than one
issue or with preferences over alternatives?
(Grossi and Christoff 2017, Brill and Talmon 2018)

• Analyse the delegation game defined by expressing rankings over delegates
or when voters have types unknown to them.
(Bloembergen et al 2019, Escoffier et al 2020)

Time permitting quick examples of the three last work.

My encounter with liquid democracy

• A reading group on e-democracy and interactive democracy in Toulouse in
2016: www.irit.fr/~Umberto.Grandi/teaching/directdem/

• Markus Brill forwarded me ”The principles of Liquid Feedback”:
https://principles.liquidfeedback.org/

Lots of discussions with Markus and Davide Grossi. At the time I was very
skeptical about going towards more direct democracy given the experience of
the “5 star movement” in Italy (they are big fan of liquid feedback but use a
direct democracy platform called Rousseau, which is not open. They were the
first party in the last 2018 election with around 30% of votes).

• At the industry day in COMSOC 2016 we invited a member of the
Iterakive Demokratie foundation. Workshop on eDemocracy in 2017:
www.irit.fr/~Umberto.Grandi/e-democracy2017/.

• Meeting with the creators of Liquid Feedback in Berlin with Markus Brill.
Very interesting, but their foundation is based on volunteering. Unclear if
they want their system to be used again in politics.

• The rest you hear in this talk, mostly ongoing PhD of Rachael Colley

www.irit.fr/~Umberto.Grandi/teaching/directdem/
https://principles.liquidfeedback.org/
www.irit.fr/~Umberto.Grandi/e-democracy2017/

Motivation I: elicit social influence

Research in opinion diffusion and social influence starts from a given network
and a given model of social influence:

• Threshold models, independent cascades, deGroot model...

• In recent work we studied the diffusion of constrained opinions and
preferences, using aggregation functions to model social influence. For an
introduction see the second part of the IJCAI-2020 tutorial:
https://sites.google.com/view/opinionaggregationmas/home

Question

How to elicit the social influence structure from voters (both network and
arbitrary influence functions)?

Liquid democracy can be seen as a social influence elicitor: the result is a
network where social influence copies the opinion of the delegate.

https://sites.google.com/view/opinionaggregationmas/home

Motivation II: solve cycles
In the Liquid Feedback implementation cycles of influence are ignored:

Figure by Markus Brill

• Problem first identified by Grossi and Christoff (2017), cycles result in
complete abstentions, propose back-up votes to solve the problem.

• Kotsialou and Riley (2020) use ranked delegations. Two ways of breaking
cycles of first delegations: breadth-first, depth-first.

Question

Are there other polynomial procedures to break cycles with ranked delegations
and back-up votes? How to assess them as preference aggregators?

Motivation III: smart contracts

Electronic institutions can be developed and run using distributed ledgers and
smart contracts (= self-executable code). Elections are one such example:

• Dhillon et al. (2019) give a detailed plan of the infrastructure required for
a decentralised online voting platform, detailing strengths and weaknesses

• Kotsialou et al (2020) observe that during the COVID-19 pandemic having
a reliable system of electronic distance voting would have been helpful!

Question

Expressing delegations in voting should be left on the user side (the voter).
What are general languages for smart ballot expressions?

Two possible implementations in mind: decentralised for full transparency and
accountability (issues with vote secrecy and buying), or with a central trusted
authority (interesting computational question of providing certificates)

Overview

I will now present our setting for multiagent ranked delegations in voting:

1. Basic definitions of (valid) smart ballots

2. Unravelling procedures: optimal and greedy

3. Examples of greedy unravelling

4. Algorithmic, complexity, and (preliminary) axiomatic results

Rachael Colley, Umberto Grandi, and Arianna Novaro. Smart Voting. In Proceeding of the the
29th International Joint Conference on Artificial Intelligence (IJCAI), 2020.
+ working paper with optimal procedures and complexity results under preparation.

The overall vision of smart voting

1. Agents create and send their smart ballots, containing votes and ranked
multiagent delegations;

2. We check if the ballots are valid, i.e. that they abide by the rules of the
election;

3. The smart ballots are turned into a “standard” voting profile by an
unravelling procedure;

4. A standard voting rule gives the collective decision (e.g. plurality,
majority).

For the record, a webpage with the same name already exists using Ardor blockchain

(not developed by us, not necessarily using delegations): https://smartvoting.net/

https://smartvoting.net/

Formal model

• N , a set of n agents.
Running example: N = { , , , }

• I, a set of m issues.
Running example: I = {�}

• for each i ∈ I, there is a domain of alternatives for this issue i, D(i).
Running example: D(�) = {�, x}

Smart ballots

Smart ballot, B , �

Smart ballots are linear orders consisting of:

• Ranked delegations, each consisting of a set of agents, { , , } and an
aggregation function, F ({ , , }).

• Final back-up direct vote: x ∈ D(�)

Valid smart ballot

Basic requirements:

i No repetitions in the ranking: no two aggregations with same domain and
same function.

ii An agent cannot delegate to themselves.

Smart ballots

Smart ballot, B , �

Smart ballots are linear orders consisting of:

• Ranked delegations, each consisting of a set of agents, { , , } and an
aggregation function, F ({ , , }).

• Final back-up direct vote: x ∈ D(�)

Valid smart ballot

Basic requirements:

i No repetitions in the ranking: no two aggregations with same domain and
same function.

ii An agent cannot delegate to themselves.

Smart ballot example

 , , and , wonder whether to try a new takeaway restaurant (x) or to
cook at home (�).

N = { , , , }, I = {�} and Dom(�) = {�, x}.

Here are some possible valid smart ballots that could give (omitting
domains):

• Boolean function: B , � = ∧ (∨) > >x.

• Ranked single-agent: B , � = > > >x.

• Thresholds: B , � = Maj({ , , }) >x.

Smart ballot example

 , , and , wonder whether to try a new takeaway restaurant (x) or to
cook at home (�).

N = { , , , }, I = {�} and Dom(�) = {�, x}.

Here are some possible valid smart ballots that could give (omitting
domains):

• Boolean function: B , � = ∧ (∨) > >x.

• Ranked single-agent: B , � = > > >x.

• Thresholds: B , � = Maj({ , , }) >x.

Smart ballot example

 , , and , wonder whether to try a new takeaway restaurant (x) or to
cook at home (�).

N = { , , , }, I = {�} and Dom(�) = {�, x}.

Here are some possible valid smart ballots that could give (omitting
domains):

• Boolean function: B , � = ∧ (∨) > >x.

• Ranked single-agent: B , � = > > >x.

• Thresholds: B , � = Maj({ , , }) >x.

Unravelling procedures

Definition: Unravelling procedure

An unravelling procedure U for issue i ∈ I and agents in N is any function

U : (B1i × · · · ×Bni)→ D(i)n.


B , � = (∧ (∨) >x)
B , � = (x)
B , � = (Maj({ , , }) > �)
B , � = (> > �)

 →


�
x
�
�



Two optimal unravelling procedures

A consistent certificate c for profile B is a vector of delegation ranks for the
voters not leading to cycles. Example: certificate (1, 3, 1) implies that the first
and last voters use their first ranked delegation or direct vote, and the second
voter uses her third ranked delegation or direct vote (cycles to be checked).

Definition - OPT

The optimal unravelling minimises the sum of the ranks of the delegations used:

Opt(Bi) := {Xc | c ∈ arg min
c∈C(Bi)

(rank(c))}.

Definition - MINMAX

The minmax unravelling minimises the rank of the worst-off delegation:

MinMax(Bi) := {Xc | c ∈ arg min
c∈C(Bi)

max(c)}.

Four greedy unravelling procedures

We define four iterative unravelling procedures following two criteria:

(D) Direct vote priority: prioritise the expression of direct votes (eventually
back-ups) over delegations

(R) Random voter selection: add only one voter delegation or direct vote at
the time

The resulting rules:

Without (D) With (D)
Without (R) U DU
With (R) RU DRU

Example of Unravel(U)

1st 2nd 3rd

A ({B,C}, B ∧ C) ({D}, D) 1
B 1 - -
C ({D}, D) 0 -
D ({A}, A) ({B}, B) 0

There exists a delegation cycle in the agents’ first preferences:
A→ C → D → A

Example of Unravel(U)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D A B 0

Unravel(U)

Step 1: X = (∆,∆,∆,∆)
We take the direct vote from agent B.

Example of Unravel(U)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D A B 0

Unravel(U)

Step 2: X = (∆, 1,∆,∆)

Example of Unravel(U)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D A B 0

Unravel(U)

Step 2: X = (∆, 1,∆,∆)

• No votes can be found at the first preference level.

• At the second preference level, we can add the direct vote of agent C, as
well as D’s delegation to to B.

Example of Unravel(U)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D A B 0

Unravel(U)

Step 3: X = (∆, 1, 0, 1)

Example of Unravel(U)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D A B 0

Unravel(U)

Step 3: X = (∆, 1, 0, 1)

• Add A’s first preference delegation, where B ∧ C evaluates to 0.

Example of Unravel(U)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D A B 0

Unravel(U)

Unravel(U) = (0, 1, 0, 1)

Example of Unravel(RU)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D E 1 -
E A B 0

A 1

B ∧ C C 0B 1

D 1E 0

Unravel(RU)

Step 1: X = (∆,∆,∆,∆,∆)
We take the direct vote from agent B.

Example of Unravel(RU)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D E 1 -
E A B 0

A 1

B ∧ C C 0B 1

D 1E 0

Unravel(RU)

Step 2: X = (∆, 1,∆,∆,∆)

Example of Unravel(RU)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D E 1 -
E A B 0

A 1

B ∧ C C 0B 1

D 1E 0

Unravel(RU)

Step 2: X = (∆, 1,∆,∆,∆)

• As there are no votes can be added from the first preference, we can add
either C, D or E’s vote.

Choosing C
Unravel(RU) =
(0, 1, 0, 0, 0)

Choosing D
Unravel(RU) =
(1, 1, 1, 1, 1)

Choosing E
Unravel(RU) =
(1, 1, 1, 1, 1)

Example of Unravel(RU)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D E 1 -
E A B 0

A 1

B ∧ C C 0B 1

D 1E 0

Unravel(RU)

Step 2: X = (∆, 1,∆,∆,∆)

• As there are no votes can be added from the first preference, we can add
either C, D or E’s vote.

Choosing C
Unravel(RU) =
(0, 1, 0, 0, 0)

Choosing D
Unravel(RU) =
(1, 1, 1, 1, 1)

Choosing E
Unravel(RU) =
(1, 1, 1, 1, 1)

Example of Unravel(RU)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D E 1 -
E A B 0

A 1

B ∧ C C 0B 1

D 1E 0

Unravel(RU)

Step 2: X = (∆, 1,∆,∆,∆)

• As there are no votes can be added from the first preference, we can add
either C, D or E’s vote.

Choosing C
Unravel(RU) =
(0, 1, 0, 0, 0)

Choosing D
Unravel(RU) =
(1, 1, 1, 1, 1)

Choosing E
Unravel(RU) =
(1, 1, 1, 1, 1)

Example of Unravel(RU)

1st 2nd 3rd

A B ∧ C D 1
B 1 - -
C D 0 -
D E 1 -
E A B 0

A 1

B ∧ C C 0B 1

D 1E 0

Unravel(RU)

Step 2: X = (∆, 1,∆,∆,∆)

• As there are no votes can be added from the first preference, we can add
either C, D or E’s vote.

Choosing C
Unravel(RU) =
(0, 1, 0, 0, 0)

Choosing D
Unravel(RU) =
(1, 1, 1, 1, 1)

Choosing E
Unravel(RU) =
(1, 1, 1, 1, 1)

Results

We focused on three types of results:

• Algorithmic analysis of unravelling procedures:
Do the procedures always terminate?
Are the procedures different?

• Computational complexity problems:
How hard is it to check that a ballot is valid?
In how many steps a procedure terminates?

• Comparison with liquid democracy (with multiple delegations):
What is the relation with “classical” liquid democracy?
Are agents better off by participating (or receiving delegations)?

Algorithmic analysis

Theorem - Different outcomes

There exists a valid smart profile B for which the four greedy unravelling
procedures and the two optimal procedures give different outcomes.

Also, the breadth-first and depth-first procedures by Kotsialou and Riley are
different from the ones we propose, mainly in their treatment of abstentions.

Theorem - Termination of greedy unravelling

The algorithms of the four greedy unravelling procedures always terminate on
valid smart profiles.

Theorem - Unravelling on single agent delegations

The four greedy unravelling procedures and Opt coincide for liquid democracy
profiles (one single-agent delegation per agent). MinMax differs.

Algorithmic analysis

Theorem - Different outcomes

There exists a valid smart profile B for which the four greedy unravelling
procedures and the two optimal procedures give different outcomes.

Also, the breadth-first and depth-first procedures by Kotsialou and Riley are
different from the ones we propose, mainly in their treatment of abstentions.

Theorem - Termination of greedy unravelling

The algorithms of the four greedy unravelling procedures always terminate on
valid smart profiles.

Theorem - Unravelling on single agent delegations

The four greedy unravelling procedures and Opt coincide for liquid democracy
profiles (one single-agent delegation per agent). MinMax differs.

Algorithmic analysis

Theorem - Different outcomes

There exists a valid smart profile B for which the four greedy unravelling
procedures and the two optimal procedures give different outcomes.

Also, the breadth-first and depth-first procedures by Kotsialou and Riley are
different from the ones we propose, mainly in their treatment of abstentions.

Theorem - Termination of greedy unravelling

The algorithms of the four greedy unravelling procedures always terminate on
valid smart profiles.

Theorem - Unravelling on single agent delegations

The four greedy unravelling procedures and Opt coincide for liquid democracy
profiles (one single-agent delegation per agent). MinMax differs.

Language Restrictions

Various restrictions can be imposed on the agents’ smart ballots:

• Liquid: language of ranked single delegations

• Bool: language of (contingent) propositional formulas in DNF

• Bool+: language of (contingent) positive propositional formulas in DNF

• Lk: language L where voters express at most k delegations

B = (({B,C}, B ∧ C), ({D}, D), 1) belongs to Bool2.

B = (({B}, B), ({C}, C), ({D}, D), 1) belongs to Liquid.

Liquid1 is the basic liquid democracy setting (+ backup vote).

Complexity of greedy unravelling

Theorem - Greedy unravelling is polynomial

Unravelling a smart profile with procedures U,DU,RU,DRU takes at most
O(n2 ·maxp(B) ·maxϕ(B)) time steps for Bool.

Expected result. Still it is true in the most general ballot language.

Complexity of Opt

BoundedOpt
Instance: Profile B in Bool, M ∈ N
Question: Is there a consistent certificate that

unravels B with sum of ranks below M?

Theorem

BoundedOpt is NP-complete.

Proof sketch. For membership guess a certificate, test consistency and rank
bound. For completeness reduction from SAT-DNF.

Theorem

An outcome of Opt can be found in polynomial time if ballots are LIQUID.

Proof sketch. Non-trivial use of Edmonds algorithm for minimum spanning
arborescence tree.

Complexity of Opt

BoundedOpt
Instance: Profile B in Bool, M ∈ N
Question: Is there a consistent certificate that

unravels B with sum of ranks below M?

Theorem

BoundedOpt is NP-complete.

Proof sketch. For membership guess a certificate, test consistency and rank
bound. For completeness reduction from SAT-DNF.

Theorem

An outcome of Opt can be found in polynomial time if ballots are LIQUID.

Proof sketch. Non-trivial use of Edmonds algorithm for minimum spanning
arborescence tree.

Complexity of MinMax

BoundedMinMax
Instance: Profile B in Bool, M ∈ N
Question: Is there a consistent certificate that

unravels B with maximal rank below M?

Theorem

BoundedMinMax is NP-complete.

Proof sketch. For membership guess a certificate, test consistency and rank
bound. For completeness reduction from SAT-DNF.

Theorem

An outcome of MinMax can be found in polynomial time if ballots are LIQUID.

Proof sketch. Direct proof.

Complexity of MinMax

BoundedMinMax
Instance: Profile B in Bool, M ∈ N
Question: Is there a consistent certificate that

unravels B with maximal rank below M?

Theorem

BoundedMinMax is NP-complete.

Proof sketch. For membership guess a certificate, test consistency and rank
bound. For completeness reduction from SAT-DNF.

Theorem

An outcome of MinMax can be found in polynomial time if ballots are LIQUID.

Proof sketch. Direct proof.

Participation results for liquid democracy

Liquid democracy participation axioms for voting rules:

• Cast-participation: a direct voter is always better off by voting directly
rather than delegating.

• Guru-participation: a direct voter always benefits from receiving
delegations from other agents.

Theorem: Cast-participation monotonic rules

Any monotonic rule paired with any of our unravelling procedures satisfies
cast-participation in ranked liquid democracy.

Theorem: Guru-participation relative majority

Relative majority paired with any of our unravelling procedures does not satisfy
guru-participation in ranked liquid democracy.

Conclusions

We started from three research questions:

1. elicit the social influence structure with multiagent delegations

2. break cycles with ranked delegations and back-up votes

3. define languages for expressing complex delegations on the user side

We presented a setting for multi-agent ranked delegations where:

• a smart ballot is a ranked list of multiagent delegations plus a backup vote

• an unravelling procedure transforms a profile of smart ballots into a
standard voting profile

• two optimal and four greedy unravelling procedures

• algorithmic, computational, and (preliminary) axiomatic study

Rachael Colley, Umberto Grandi, and Arianna Novaro. Smart Voting. In Proceeding of the the
29th International Joint Conference on Artificial Intelligence (IJCAI), 2020.
+ working paper with optimal procedures and complexity results under preparation.

Conclusions

We started from three research questions:

1. elicit the social influence structure with multiagent delegations

2. break cycles with ranked delegations and back-up votes

3. define languages for expressing complex delegations on the user side

We presented a setting for multi-agent ranked delegations where:

• a smart ballot is a ranked list of multiagent delegations plus a backup vote

• an unravelling procedure transforms a profile of smart ballots into a
standard voting profile

• two optimal and four greedy unravelling procedures

• algorithmic, computational, and (preliminary) axiomatic study

Rachael Colley, Umberto Grandi, and Arianna Novaro. Smart Voting. In Proceeding of the the
29th International Joint Conference on Artificial Intelligence (IJCAI), 2020.
+ working paper with optimal procedures and complexity results under preparation.

References

• Grammateia Kotsialou, Amrita Dhillon, Peter McBurney, and Luke Riley. Long
read: how blockchain can make electronic voting more secure. USApp–American
Politics and Policy Blog, 2020.

• Amrita Dhillon, Grammateia Kotsialou, Peter McBurney, Luke Riley, et al.
Introduction to voting and the blockchain: some open questions for economists.
Technical report, Competitive Advantage in the Global Economy (CAGE), 2019.

• James Green-Armytage. Direct voting and proxy voting. Constitutional Political
Economy, 26(2):190–220, 2015.

• Gordon Tullock. Toward a mathematics of politics. Ann Arbor: University of
Michigan Press, 1967.

• Gal Cohensius, Shie Mannor, Reshef Meir, Eli A. Meirom, and Ariel Orda. Proxy
voting for better outcomes. In Proc. of the 16th Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 2017.

• James C Miller. A program for direct and proxy voting in the legislative process.
Public choice, 7(1):107–113, 1969.

• J. Behrens, A. Kistner, A. Nitsche, and B. Swierczek. Principles of Liquid
Feedback. Interacktive Demokratie, 2014.

References

• Zoè Christoff and Davide Grossi. Binary voting with delegable proxy: An analysis
of liquid democracy. In Proc. of the 16th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK), 2017.

• Markus Brill and Nimrod Talmon. Pairwise liquid democracy. In Proc. of the
27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

• Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna. Viscous
democracy for social networks. Communications of the ACM, 54(6):129–137,
2011.

• Anson Kahng, Simon Mackenzie, and Ariel D Procaccia. Liquid democracy: An
algorithmic perspective. In Proc. of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 2018.

• Bruno Escoffier, Hugo Gilbert, and Adéle Pass-Lanneau. Iterative delegations in
liquid democracy with restricted preferences. In Proc. of the 34th AAAI
Conference on Artificial Intelligence (AAAI), 2020.

• Grammateia Kotsialou and Luke Riley. Incentivising participation in liquid
democracy with breadth-first delegation. In Proc. of the 19th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2020.

• Daan Bloembergen, Davide Grossi, and Martin Lackner. On rational delegations
in liquid democracy. In Proc. of the 33rd AAAI Conference on Artificial
Intelligence (AAAI), 2019.

	Algorithmic analysis

