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Overview

1. Basic definitions of social choice theory

2. Main motivation: proof assistance and theorem discovery

3. Propositional logic and SAT solvers

4. Modal logic and higher-order logics

5. First-order logic

6. Possible intersections with AGAPE



Social welfare functions

• I a set of individuals, A a set of alternatives

• Pi P LpAq is a linear order over alternatives A

Definition

A social welfare function (SWF) for A and I is a function w : LpAqI Ñ LpAq

w associate to every preference profile P “ pP1, . . . , Pnq a “social order” wpP q

Arrow’s conditions:

• Unanimity (UN): if aPib for every individual i then awpP qb;

• Independence of Irrelevant Alternatives (IIA): the relative social
ranking of two alternatives a and b depends only on the relative ranking of
a and b by the individuals;

• Non-dictatorship (NDIC): there is no individual i such that for every
profile P the social order wpP q “ Pi.
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Two famous theorems in social choice

Arrow’s Theorem (1950)

If A and I are finite and non-empty, and |A| ě 3, then there is no social
welfare function for I and A that satisfies UN, IIA and NDIC.

The original proof contained a mistake! Pointed out by Blau (1957) and fixed
in the second edition of the book. This motivated the use of automated
proof-checkers based on higher-order logic (say a lighter version of set theory)
like Isabelle (Nipkow, 2009) and Mizar (Wiedijk, 2007).

Let now a voting rule be a function r : LpAqI Ñ A associating a winning
alternative to every profile of linear orders:

Strategy-proofness: There is no profile P , voter i, and linear order P 1i such
that rpP´i, P

1
i q Pi rpP q.

Gibbard-Sattertwaite Theorem (1973-1975)

If A and I are finite and non-empty, and |A| ě 3, then any voting rule for I
and A that is onto and strategy-proof is a dictatorship.
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Proof assistance and theorem discovery

Most proofs in social choice theory are combinatorial: voters and alternatives
are finite discrete sets, no probability is involved in classical setting, properties
and axioms are almost expressed in relational language. Observations:

1. Theorems and proofs often hinges on specific modelling hypothesis: should
we consider linear orders, weak orders, partial orders? A social welfare
function or social choice rule? Potentially many declinations of Arrow’s
theorem, each with a different proof. This is good for paper writing, but
can the process be automated?

2. Some combinatorial proofs are very hard and resisted researchers for a long
time. Computer aided proofs could prove useful.

3. On a completely different perspective, what is the logic of social welfare
functions (social choice rules)? Can we come up with a formalism and
some axioms so that Arrow’s and similar theorems can be derived in these
logics? Teaser: independence and strategy proofness have an intriguing
universal quantifier on profiles (linear orders)...



Propositional Logic and SAT solvers

Tang and Lin (2009) proposed an inductive proof of Arrow’s theorem:

If there exists a SWF for |A| “ m` 1 and |I| “ n satisfying Arrow’s conditions
then there exists a SWF for |A| “ m and |I| “ n satisfying the same properties.

ó

If Arrow’s Theorem holds for |A| “ 3 and |I| “ n
then it holds for |A| “ m and |I| “ n for every m

Followed by a model-check of the base case of 3 alternatives and 2 individuals
feeding a SAT solver with instantiations of formulas like the Pareto axiom:

FORALL a, b, srFORALL x ppx, a, b, sqs Ñ wpa, b, sq

Some numbers: there are „ 1028 social welfare functions for the base case, the
SAT solver gave an answer in ă 1 second for 35k variables and 100k clauses.

Tang and Lin. Computer-Aided Proofs of Arrow’s and other Impossibility Theorems. AIJ, 2009.
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Theorem discovery via SAT solvers and more

• Geist and Endriss (2011), in the setting of ranking sets of objects, proved
an inductive step for a class of formulas in a logical language that encodes
classical axioms, and run SAT on the base case of all combinations of
axioms, finding 84 axiom-minimal impossibilities.

• Felix Brandt’s research group in Munich took over, several papers regularly
published typically with inductive proofs + MUS extraction to produce a
human-readable proof. Close up on how they model strategy-proofness:

• Interesting literature for AGAPE: Frechette et al. (2016) encoded the
reverse spectrum auction with SAT solvers, Caminati et al. (2015) verified
combinatorial Vickrey auctions with HOL provers.

Geist and Endriss. Automated Search for Impossibility Theorems in Social Choice Theory:
Ranking Sets of Objects. JAIR, 2011. IJCAI-JAIR Best Paper Prize 2016

Geist and Peters. Computer-Aided Methods for Social Choice Theory. In Trends in Computational

Social Choice, U. Endriss (ed), 2017.
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Modal logic

Troquard et al. (2011) (follow-up by Ciná and Endriss), consider reported
profiles of preferences as possible worlds of a Kripke model:

• atomic variables pixąy controlled by each agent i

• atoms x P A to specify the winning alternative (encoding the voting rule)

• 3Cϕ stands for coalition C has a strategy such that ϕ holds provided all
players outside C stick to their current strategies

• ˛iϕ stands for i prefers a profile where ϕ is true to the current one

Strategy-proofness of a voting rule r looks like this:

ρprq Ñ
ľ

all profiles ă over A

rtruepăq Ñ DOMqs

Where ρprq states that the model correctly encodes r, truepăq “reifies” the
sincere preference profile ă of the agents, and

DOM “
ľ

i

2Nzi

ł

xPA

px^ 2i ˛i xq

How to read this: ”for any agent i, for any deviation of all other agents, there exists an alternative

x that is the winner at the reported profile, and for all unilateral deviations of i, i prefers x.
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Modal logic - Discussion

Pros:

• Strategy-proofness for voting rules can be equivalent to other axiomatic
properties (more formalisation-friendly)!

• Off-the-shelves techniques in epistemic logic might be easier to plug.
After-all, strategy-proofness depends on the information available to agents

Cons:

• The number of voters and alternatives has to be specified in the language
(this is almost unavoidable, and probably not a big issue?)

• Universal quantifications on profiles are exogenously coded with big
conjunctions (n players and m alternatives means pm!qn profiles!)

• Logics are “ad-hoc”, dedicated solvers typically do not exist

Troquard, van der Hoek, and Wooldridge. Reasoning about social choice functions. Journal of
Philosophical Logic, 2011.
Agotnes, van der Hoek, and Wooldridge. On the logic of preference and judgment aggregation.
Autonomous Agents and Multiagent Systems, 2011

Ciná and Endriss. Proving Classical Theorems of Social Choice Theory in Modal Logic.

Autonomous Agents and Multiagent Systems, 2016.



Dynamic Logic of Propositional Assignments

An interesting formalism: it can be used to write complex axioms easily, which
are then transformed into (long) propositional formulas ready for a SAT solver.

• Variables pixąy, p
r
xąy for individual preferences and outcomes

• Constraints enforcing linear, weak, or partial orders...

• Basic program flipping variables, complex programs are able to encode
most existing voting rules, and verify their axiomatic properties

Main problems:

• Automated translation sofware not existing yet

• Need to specify the number of players and alternatives in the language

• Impossibility theorems not provable (voting rules are programs, and
quantification over programs is not possible)

Arianna Novaro, Umberto Grandi and Andreas Herzig. Judgment Aggregation in Dynamic Logic

of Propositional Assignments. Journal of Logic and Computation, 2018.
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First-order logic

First-order logic is a natural language to talk about orders and first-order
automated theorem provers are more developed than for other systems.

PROBLEM
Second-order quantification?

UN: @ preference profile P @ alternatives x, y
(@ individual i xPiy)Ñ pxwpP qyq

SOLUTION
Introduce a set of situations as “names” for preference profiles:
s is an element of the model domain associated to profile P s.

UN: (@ situation s @ alternatives x, y (@ individual i xP s
i y)Ñ pxwpP s

qyq)
It is now almost a first-order sentence.

Grandi and Endriss. First-Order Logic Formalisation of Impossibility Theorems in Preference

Aggregation. Journal of Philosophical Logic, 2013.
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Language

To express statements of this kind we need:

• guards for individuals Ipzq, alternatives Apxq and situations Spuq

• constants a1, a2, a3 for 3 alternatives, plus i1 and s1

• a 4-ary relation ppz, x, y, uq to represent the linear order Pu
z of individual z

in situation u

• a 3-ary relation wpx, y, uq to represent the social outcome wpPu
q

L “ ta1, a2, a3, i1, s1, Ip1q, Ap1q , Sp1q, wp3q, pp4qu

Axioms:

LINp: p is a linear order for every individual in every situation

• Ipzq ^ Spuq ^Apxq ^Apyq Ñ pppz, x, y, uq _ ppz, y, x, uq _ x “ yq

• Ipzq ^ Spuq ^Apxq Ñ  ppz, x, x, uq

• Ipzq ^ Spuq ^Apx1q ^Apx2q ^Apx3q ^ ppz, x1, x2, uq ^ ppz, x2, x3, uq Ñ
ppz, x1, x3, uq

• ppz, x, y, uq Ñ pIpzq ^Apxq ^Apyq ^ Spuqq
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Axioms II: Permutation

A hidden hypothesis in our formulation of Arrow’s Theorem is universal domain:
a SWF is defined on every possible preference profile in LpAqI .

This property is translated in the next PERM axiom:

• ppz, x, y, uq Ñ Dv. tSpvq ^ ppz, y, x, vq ^
@x1.rppz, x, x1, uq ^ ppz, x1, y, uq Ñ ppz, x1, x, vq ^ ppz, y, x1, vqs^
@x1.rpppz, x1, x, uq Ñ ppz, x1, y, vqq ^ pppz, y, x1, uq Ñ ppz, x, x1, vqqs^
@x1.@y1.rpx1 ‰ xq ^ px1 ‰ yq ^ py1 ‰ yq ^ py1 ‰ xq Ñ pppz, x1, y1, uq Ø
ppz, x1, y1, vqqs ^ @z1.@x1.@y1. rpz1 ‰ zq Ñ pppz1, x1, y1, uq Ø
ppz1, x1, y1, vqqsu

If in situation u the order of individual z is:

. . . x ą
u
z a ą

u
z b ą

u
z y . . .

then there exist a situation v where these two alternatives are swapped:

. . . y ą
v
z a ą

v
z b ą

v
z x . . .
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Axioms III: Arrow’s Conditions

Call TSWF the axioms presented so far.

Add the following axioms and call the resulting theory TARROW:

• UN: Spuq ^Apxq ^Apyq Ñ rp@z Ipzq Ñ ppz, x, y, uqq Ñ wpx, y, uqs

• IIA: Spu1q ^ Spu2q ^Apxq ^Apyq Ñ
rp@z Ipzq Ñ pppz, x, y, u1q Ø ppz, x, y, u2qqq Ñ pwpx, y, u1q Ø

wpx, y, u2qqs

• NDIC:
Ipzq Ñ rDx, y, u Apxq^Apyq^px ‰ yq^Spuq^ppz, x, y, uq^wpy, x, uqs

Arrow’s Theorem can be restated as:

Theorem

TARROW has no finite models.



First-order: conclusions and other works

Our FO axiomatisation of social welfare functions:

• Other well-known theorem still hold for infinite societies: Sen’s
impossibility of a Paretian liberal and Kirman-Sondermann theorem
translated as “theory TAX has no models”

• (for logic-geeks) the condition of universal domain is not FO-axiomatisable

• We did try using automated provers such as E and Prover 9: what we
could prove SAT could do much faster...

Researchers from KIT (Germany), Australia, and Denmark used FOL to:

• verify properties of existing voting rules with SMT solvers (example: does
STV satisfies proportional representation?)

• compute properties of a specific elections using software-bounded model
checking (margin computation: what is the minimal number of misfiled
votes to change the result of the election)

Beckert, Bormer, Gore, Kirsten, Schurmann. An introduction to voting rule verification. In Trends

in Computational Social Choice, U. Endriss (ed), 2017.
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Recap and lessons learned for AGAPE

1. The main motivation is different: assist the researcher and eventually
discover new theorems. However this kind of formalism could inspire
languages for strategic reasoning in auctions.

2. AGAPE seems to be closer to agent-based automated reasoning than
theorem proving. However: if an agent faces an auction and wants to
know if it’s strategy proof, the agent has to prove a theorem!

3. Payoff vs ordinal preferences: the approches described above work very
well for preferences as orders or discrete objects. Can we study auctions
without money?

4. Universal domain: same as above, to know if something is strategy proof
all possible situations must be tested. A general difficulty for this kind of
reasoning?

Thank you for your attention!
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