Multi-Issue Opinion Diffusion under Constraints

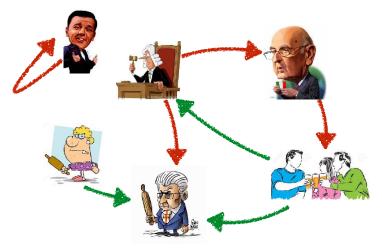
Umberto Grandi

IRIT - University of Toulouse

4 December 2018

Joint work with Sirin Botan (Amsterdam) and Laurent Perrussel (Toulouse)

Social influence as aggregation



Are Salvini and Di Maio fit to govern?

・ロト ・四ト ・モト ・モト

э

Related work: qualitative/quantitative opinions

Most models of opinion diffusion are based on quantitative opinions in [0,1]:

- De Groot (1974) and Lehrer-Wagner (1981): individuals take the weighted average of the opinions of their neighbours
- First recent study involving logical constraints by Friedkin et al. (2016)
- Epidemics models: SIR models, cascades, ising spin...

Much less work exists on discrete opinons:

- Threshold models by Granovetter and Schelling (1978): 0/1 yes/no opinions, updated if the proportion of neighbours with the opposite opinion raises above a certain threshold
- Voter models (Holley and Ligget, 1975, Clifford and Sudbury, 1973): a random individual takes the opinion of random neighbour
- Aggregation of binary views (AAMAS-15,-17), preferences as linear orders over alternatives (IJCAI-16), and belief bases as sets of propositional formulas (Schwind et al. 2015, 2016)

One single issue (or multiple issues without constraints)

The model:

- *n* agents on a network *E* (directed/undirected)
- each agent has a 0/1 opinion
- the update is typically done by setting a threshold for each agent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One single issue (or multiple issues without constraints)

The model:

- *n* agents on a network *E* (directed/undirected)
- each agent has a 0/1 opinion
- the update is typically done by setting a threshold for each agent

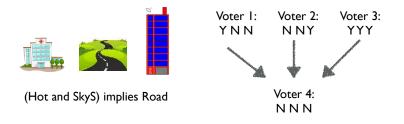
Results known from the literature:

- Goles and Olivos (1980) showed that the process either terminates, or cycles with period 2
- Characterisations of profiles, networks, and aggregators that guarantee termination (previous work AAMAS-2015, Christoff and Grossi, 2017)
- Many papers characterise initial opinion distribution to reach consensus (including distinguished paper at IJCAI-2018)

• Strategic manipulation to maximise a given opinion (Bredereck and Elkind, 2017)

Constrained collective choices

Four individuals are deciding to build a skyscraper (S), a new road (R), or a hospital (H). Law says that if S and H are built then R also should be built.



What can happen:

- If voter 4 asks her influencers on 3 issues at the time then the update is blocked by inconsistent issue-by-issue majority (Y N Y) (yes, this is an instance of the discursive dilemma).
- If voter 4 asks questions on a single issue to her influencers then the result can either be (Y N N) or (N N Y)

・ロット (雪) (日) (日) (日)

Outline

- 1. A quick summary of related work + diffusion as aggregation (done)
- 2. Aggregation-based opinion diffusion on multiple issues with constraints

・ロト・日本・モート モー うへぐ

- 3. Propositionwise updates and geodetic constraints
- 4. Termination results
- 5. Conclusions and perspectives

Basic definitions

In virtually all settings there are common features:

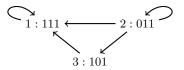
- A finite set of individuals $\mathcal{N} = \{1, \dots, n\}$
- A finite set of issues or questions $\mathcal{I} = \{1, \dots, m\}$
- A directed graph $E \subseteq \mathcal{N} \times \mathcal{N}$ representing the trust network
- Individual opinions as vectors of yes/no answers $B \in \{0,1\}^{\mathcal{I}}$
- An integrity constraint $IC \subseteq \{0, 1\}^{\mathcal{I}}$

Basic definitions

In virtually all settings there are common features:

- A finite set of individuals $\mathcal{N} = \{1, \dots, n\}$
- A finite set of issues or questions $\mathcal{I} = \{1, \dots, m\}$
- A directed graph $E \subseteq \mathcal{N} \times \mathcal{N}$ representing the trust network
- Individual opinions as vectors of yes/no answers $B \in \{0, 1\}^{\mathcal{I}}$
- An integrity constraint $IC \subseteq \{0, 1\}^{\mathcal{I}}$

A first example of the problems we consider:



Diffusion as aggregation

Some further notation:

- $Inf(i) = \{j \mid (i, j) \in E\}$ is the set of influencers of individual i on E.
- Profile of opinions are $\boldsymbol{B} = (B_1, \ldots, B_n)$.

An aggregation function for individual opinion updates Each individual $i \in \mathcal{N}$ is provided with a suitably defined F_i that merge the set of opinions of its influencers into an aggregated view $F_i(\mathbf{B} \upharpoonright_{Inf(i)})$.

Examples: F_i is the majority rule, a distance-based operator...examples can be found in the literature on judgment and binary aggregation (see Endriss, 2016)

We assume every F_i to be unanimous: if $B_i = B$ for all $i \in \mathcal{N}$ then $F(\mathbf{B}) = B$. No negative influence is possible in unanimous profiles.

When clear from the context F can represent an aggregation function or a profile of aggregation functions F_{i} , on for each agent.

Definition - Propositional opinion diffusion

Given network G and aggregators F, we call propositional opinion diffusion (POD) the following transformation function:

$$\begin{split} \text{POD}_F(\boldsymbol{B}) = & \{ \boldsymbol{B}' \mid \exists M \subseteq \mathcal{N} \\ & \text{s.t.} \quad B'_i = F_i(\boldsymbol{B}_{\textit{Inf}(i)}) \text{ if IC-consistent and } i \in M \\ & \text{ and } B'_i = B_i \text{ otherwise.} \} \end{split}$$

Update on subsets of issues

Definition - *F*-updates

Let F be an aggregation function, and let $(B|_{\mathcal{I}\setminus S}, B'|_{S})$ be the opinion obtained from B with the opinions on the issues in S replaced by those in B'.

$$F\text{-}\mathrm{UPD}(\boldsymbol{B}, i, S) = \begin{cases} (B_i \upharpoonright_{\mathcal{I} \setminus S}, F_i(\boldsymbol{B}_{\mathsf{Inf}(i)}) \upharpoonright_S) & \text{if IC-consistent} \\ B_i & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition - F-updates

Let F be an aggregation function, and let $(B|_{I \setminus S}, B'|_{S})$ be the opinion obtained from B with the opinions on the issues in S replaced by those in B'.

$$F\text{-}\mathrm{UPD}(\boldsymbol{B}, i, S) = \begin{cases} (B_i \upharpoonright_{\mathcal{I} \setminus S}, F_i(\boldsymbol{B}_{\mathsf{Inf}(i)}) \upharpoonright_S) & \text{if IC-consistent} \\ B_i & \text{otherwise.} \end{cases}$$

Definition - Propositionwise opinion diffusion

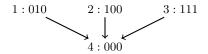
Given network G, aggregation functions F, and $1 \le k \le |\mathcal{I}|$, we call k-propositionwise opinion diffusion the following transformation function:

$$PWOD_{F}^{k}(\boldsymbol{B}) = \{\boldsymbol{B}' \mid \exists M \subseteq \mathcal{N}, S : M \to 2^{\mathcal{I}} \text{ with } |S(i)| \leq k,$$

s.t. $B'_{i} = F\text{-}UPD(\boldsymbol{B}, i, S(i)) \text{ for } i \in M$
and $B'_{i} = B_{i} \text{ otherwise.}\}$

Example

An influence network between four agents, with $IC = (S \land H \rightarrow R)$:

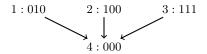


If F_4 the strict majority rule, then $F_4(B_1, B_2, B_3) = 110$. We have that:

• $POD_F(B) = \{B\}$, we say that B is a termination profile for POD_F

Example

An influence network between four agents, with $IC = (S \land H \rightarrow R)$:



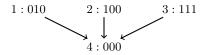
If F_4 the strict majority rule, then $F_4(B_1, B_2, B_3) = 110$. We have that:

• POD_F(**B**) = {**B**}, we say that **B** is a termination profile for POD_F

• $PWOD_F^1(B) = \{(010, 100, 111, 010), (010, 100, 111, 100), B\}.$

Example

An influence network between four agents, with $IC = (S \land H \rightarrow R)$:



If F_4 the strict majority rule, then $F_4(B_1, B_2, B_3) = 110$. We have that:

• POD_F(**B**) = {**B**}, we say that **B** is a termination profile for POD_F

- $PWOD_F^1(B) = \{(010, 100, 111, 010), (010, 100, 111, 100), B\}.$
- $\operatorname{PWOD}_F^2(\boldsymbol{B}) = \operatorname{PWOD}_F^1(\boldsymbol{B})$

Problematic example

Let there be two issues and $IC = p XOR q = \{01, 10\}$. Consider the following:

1:
$$01 \longrightarrow 2$$
: 10

Whatever the unanimous F:

- $POD_F(B) = \{B, B'\}$ where $B'_1 = B'_2 = (0, 1)$
- $\operatorname{PWOD}_F^1(\boldsymbol{B}) = \{\boldsymbol{B}\}\$

Problematic example

Let there be two issues and $IC = p XOR q = \{01, 10\}$. Consider the following:

1:
$$01 \longrightarrow 2$$
: 10

Whatever the unanimous F:

- $POD_F(B) = \{B, B'\}$ where $B'_1 = B'_2 = (0, 1)$
- $\operatorname{PWOD}_F^1(\boldsymbol{B}) = \{\boldsymbol{B}\}$

Question

Can we characterise the set of integrity constraints on which $PWOD_F^k$ -reachability corresponds to POD_F -reachability?

Digression: k-geodetic integrity constraints

Observe that a constraint IC can be seen as a boolean function, and define:

Definition

The k-graph of IC is given by $\mathcal{G}_{IC}^k = \langle IC, E_{IC}^k \rangle$, where:

- 1. the set of nodes is the set of $B \in IC$,
- 2. the set of edges E_{IC}^k is defined as follows: $(B, B') \in E_{\text{IC}}^k$ iff $H(B, B') \leq k$, for any $B, B' \in \text{IC}$.

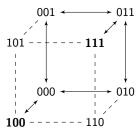
Where the Hamming distance H(B, B') is the number of disagreements between two ballots B and B'.

Definition - Geodetic integrity constraints

An integrity constraint IC is *k*-geodetic if and only if for all *B* and *B'* in IC, at least one of the shortest paths from *B* to *B'* in \mathcal{G}^k_{\top} is also a path of $\mathcal{G}^k_{\mathrm{IC}}$.

Examples I

• $IC = \{(000), (001), (010), (100), (011), (111)\}$ is 2-geodetic but not 1-geodetic, as can be seen on \mathcal{G}_{IC}^1 :



• Our running example $IC = S \land H \rightarrow R = \{(000), (001), (010), (011), (100), (101), (111)\}$ is 1-geodetic, as only one model is missing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preferences. Let a > b be a set of binary questions for candidates a, b, c...The constraints are that of transitivity, completeness and anti-symmetry. This set of constraints is 1-geodetic, since two distinct linear orders always differ on at least one adjacent pair.

Budget constraints. Enumerate all combinations of items that exceed a given budget. They are *negative formulas*, ie. one DNF representation only has negative literals: a sufficient condition for 1-geodeticity.

More examples of 1-geodetic boolean function/constraints in:

Ekin, Hammer, and Kogan. On Connected Boolean Functions. Discrete Mathematics, 1999.

Reachability result

Theorem

Let IC be an integrity constraint. Any profile B' that is POD_F -reachable from an IC-consistent initial profile B is also $PWOD_F^k$ -reachable from B if and only if IC is k-geodetic.

Proof sketch.

 \Rightarrow) If **B**' is reachable by updating all issues at the same time, then by k-geodeticity it is also reachable by updates on sets of issues of size k.

 \Leftarrow) If IC is not *k*-geodetic there are two disconnected models. Construct a problematic example such as the one seen before (assumption of unanimity of *F* used here).

The complexity of k-geodeticity

Theorem

Let IC be a constraint over m issues and k < m. Checking whether IC is k-geodetic is co-NP-complete.

Proof sketch.

For membership: Guess two models B and B' and check if all shortest paths connecting them start with a non-model of IC (this can be done in time polynomial in parameter k);

For completeness: use a result by Hegedus and Megiddo (1996) on classes of boolean functions that have the projection property.

Termination of POD and PWOD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given a transformation function POD_F or $PWOD_F^k$, we can consider:

Asynchronous opinion diffusion when only one agent at the time updates Synchronous opinion diffusion when all agents at the same time update

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Given a transformation function POD_F or $PWOD_F^k$, we can consider:

Asynchronous opinion diffusion when only one agent at the time updates Synchronous opinion diffusion when all agents at the same time update

Two termination notions are possible:

Universal termination: there exists no sequence of *effective* updates (ie when $B_{t+1} \neq B_t$)

Asymptotic termination: from any IC-consistent profile there exists a sequence of updates to reach a termination profile

Universal termination

Ballot-Monotonicity: for all profiles $B = (B_1, \ldots, B_n)$, if $F(B) = B^*$ then for any $1 \le i \le n$ we have that $F(B_{-i}, B^*) = B^*$.

Theorem

Let G be the complete graph. Synchronous POD_F terminates universally, and asynchronous POD_F terminates universally if F is ballot-monotonic.

Universal termination

Ballot-Monotonicity: for all profiles $B = (B_1, \ldots, B_n)$, if $F(B) = B^*$ then for any $1 \le i \le n$ we have that $F(B_{-i}, B^*) = B^*$.

Theorem

Let G be the complete graph. Synchronous POD_F terminates universally, and asynchronous POD_F terminates universally if F is ballot-monotonic.

Monotonicity: for any $j \in \mathcal{I}$ and any profiles B, B', if $B_i(j)=1$ entails $B'_i(j)=1$ for all $i \in \mathcal{N}$, and for some $s \in \mathcal{N}$ we have that $B_s(j)=0$ and $B'_s(j)=1$, then F(B)(j)=1 entails F(B')(j)=1

Theorem

If G is the complete graph and F is monotonic, then both synchronous and asynchronous $PWOD_F^k$ terminate universally.

Termination of asynchronous processes

A well-known construction generalises to k-geodetic integrity constraints.

Definition

A pair (\mathbf{B}^0, G) , where \mathbf{B}^0 is a profile and G a network, has the local IC-consistency property if for all profiles \mathbf{B} reachable from \mathbf{B}^0 and each $i \in \mathcal{N}$ we have that $F(\mathbf{B}_{Inf(i)})$ is IC-consistent.

Theorem

If (\mathbf{B}^0, G) satisfies the local IC-consistency property, then asynchronous POD_F and PWOD_F^k terminate asymptotically.

Proof sketch

Fix an ordering of the issues. For each issue perform two following rounds:

• First round of updates: all individuals who disagree with their influencers and have opinion 0 update their opinion to 1

• Second round of updates: all individuals who disagree with their influencers and have opinion 1 update their opinion to 0

Conclusions

In this work:

- We started by viewing opinion diffusion as iterated aggregation on a network, adding integrity constraints
- We characterised the set of integrity constraints for which reachability when updating on all the issues implies propositionwise reachability (and assessed the gain in terms of Hamming distance)
- We showed initial results on the termination of such processes

Lots of open problems to be attacked:

- Can we relax the local consistency property? What is the class of constraints on which termination is guaranteed?
- Any relation between constraints and network structure to guarantee termination?

- Generalise to uncertain agents (yes-no-don't know)
- Strategic influence?

References

Previous work on the topic:

S. Botan, UG and L. Perrussel. Multi-issue Opinion Diffusion Under Constraints. In *Proceedings of the 7th International Workshop on Computational Social Choice* (COMSOC), 2018.

UG, E. Lorini, A. Novaro and L. Perrussel. Strategic Disclosure of Opinions on a Social Network. In *Proceedings of the 16th International Conference in Autonomous Agents and Multiagent Systems (AAMAS)*, 2017.

M. Brill, E. Elkind, U. Endriss, and UG. Pairwise Diffusion of Preference Rankings in Social Networks. In *Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI)*, 2016.

UG, E. Lorini and L. Perrussel. Propositional Opinion Diffusion. In *Proceedings of the 14th International Conference in Autonomous Agents and Multiagent Systems* (AAMAS), 2015.

Existing work on power indexes defined an influence function: what is the set of individuals whose unanimous decision influences the one of a given individual (= winning coalitions, simple game...)

Grabisch and Rusinowska. Different approaches to influence based on social networks and simple games. In *Collective Decision Making*, 2010.

Grabisch and Rusinowska. A model of influence in a social network. Theory and Decision, 2010.

Gene regulation modelled as a boolean network, with each node using a boolean function to decide activation (=winning coalitions, simple game...)

D. Cheng, Z. Li, and H. Qi. A survey on boolean control networks: A state space approach. In *Three Decades of Progress in Control Sciences*, 2010.