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Outline

1. Majority rule over interconnected issues: paradoxes cannot be avoided

• Binary aggregation with constraints / Judgment aggregation
• Condorcet paradox and characterisation results

2. Dynamic social choice: collective decisions as games

• Judgment aggregation games
• Bad Nash equilibria cannot be avoided

3. Pre-play negotiations can be used to avoid bad equilibria

• Endogenous games
• No paradox realized at equilibrium



Everything Starts From Paradoxical Situations

Three parties A,B,C need to decide on building nuclear power plants (P),
buying nuclear energy from the foreign market (F), anddeveloping atomic
weapons (W). If importing nuclear technology from abroad is not an option,
the development of atomic weapons involves the construction of a power plant.

W F P

Party A Yes No Yes
Party B Yes Yes No
Party C No No No

Majority Yes No No

What is the collective choice on building a nuclear power plant?

• A majority think atomic weapons should be developed.

• A majority think energy should not be bought from the foreign market.

• But: a majority is against building a power plant!



Binary Aggregation

Ingredients:

• A finite set N of individuals

• A finite set I = {1, . . . ,m} of issues

• A boolean combinatorial domain: D = {0, 1}I

Definition

An aggregation procedure is a function F : DN → D mapping each profile of
ballots B = (B1, . . . , Bn) to an element of the domain D.

Example: Nuclear power plant?

• N = {1, 2, 3}
• I = {W,F , P}
• Individuals submit ballots in D = {0, 1}3

Wilson (1975), Dokow and Holzman (2010)
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Integrity Constraints

A propositional language L to express integrity constraints on D = {0, 1}m

• One propositional symbol for every issue: PS = {p1, . . . , pm}
• LPS closing under connectives ∧, ∨ ,¬, → the set of atoms PS

Given an integrity constraint IC ∈ LPS, a rational ballot is B ∈ Mod(IC)

Example: Nuclear power plant?

Build a power plant if you do not want to import technology.
Propositional constraint: IC = (pW ∧ ¬pF )→ pP

Individual 1 submits B1 = (1, 0, 1): B1 satisfies IC X
Individual 2 submits B2 = (1, 1, 0): B2 |= IC X
Individual 3 submits B3 = (0, 0, 0): B3 |= IC X

Majority aggregation outputs (1, 0, 0): IC not satisfied.
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Paradoxical situations cannot be avoided

The notorious Condorcet paradox in binary aggregation...

4 �1 # �1 �
� �2 4 �2 #
# �3 � �3 4

4 � # � � � 4

	

4# #� 4�
Agent 1 1 1 1
Agent 2 0 1 0
Agent 3 1 0 0

Maj 1 1 0

...is not an isolated case:

Proposition

The majority rule does not generate a paradox with respect to IC if and only if
IC is equivalent to a conjunction of clauses of size ≤ 2 (i.e., 2-CNF)

Similar characterisations can be obtained for various aggregation procedures:

Grandi and Endriss, Lifting Integrity Constraints in Binary Aggregation. AIJ, 2013.
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Where are decisions actually taken?

Ok, paradoxes cannot be avoided... ...but we do take decisions!

How? Offline (Italian expression: “in the corridors”)
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Vision

Pre-vote dynamics
create consensus and avoid paradoxes!

– deliberation, negotiation, bribery, power and authority, opinion polls –

Dryzek and List, Social Choice Theory and Deliberative Democracy: A reconciliation. BJPS, 2003.

List, Group Communication and the Transformation of Judgment. JPP, 2011.



Structure of the results

We model collective decision making as a game:

• players have preferences/goals over collective outcomes

• strategies are voting ballots

• framework of boolean games and endogenous games

Question

Can a paradoxical situation be a Nash equilibrium?

Harrenstein, van der Hoek, Meyer, Witteveen. Boolean games. TARK-2001.

Jackson and Wilkie. Endogenous Games and Mechanisms: Side Payments among Players. Review

of Economic Studies, 2005



Aggregation Games

To model the dynamic aspect of social choice we first model it as a game:

Definition [Aggregation game]

An aggregation game is a tuple A =
〈
N , I, IC,maj , {γi}i∈N

〉
such that:

• 〈N , I, IC〉 is a binary aggregation structure;

• maj is the majority rule;

• the individual goals γi are IC-consistent propositional formulas in LPS;

Focus on consistent game:
∧
i γi ∧ IC is consistent.



How do equilibria look like?

Good news: there always exists an IC-consistent equilibrium, i.e, a profile
B in which no individual has incentive to deviate and maj (B) |= IC
(truthful strategies are weakly dominant in aggregation games for majority)

Bad news: there are games with inefficient NE (no individual goal satisfied)

Very bad news: there are games with inefficient and IC-inconsistent NE



Discursive dilemma as an inconsistent NE

• Three parties A,B,C

• Three issues W,F, P

• Integrity constraint IC = (W ∧ ¬F )→ P

Individual goals:

γA =W

γB = F

γC = ¬P

The discursive dilemma/docrinal paradox is an IC-inconsistent NE:

W F P

Party A 1 0 1
Party B 1 1 0
Party C 0 0 0

Majority 1 0 0



Aggregation Games with Payoff

Let us give individuals more expressive preferences:

• goals γi represent uncompromising positions

• any two states which both satisfy or both falsify the goal γi can be
compared by looking at the payoff function πi

Definition[Aπ games]

An aggregation game with payoff is a tuple
〈
A, {πi}i∈N

〉
where A is an

aggregation game and πi : Mod(IC)N → R is a payoff function.



How do equilibria look like?

Bad news: inefficient and IC inconsistent equilibria still exists...

Good news: for every consistent aggregation game A we can build payoff
functions such that

〈
A, {πi}i∈N

〉
has no inefficient NE!



Endogenous Aggregation Games

We model pre-vote negotiations in two phases:

• A pre-vote phase: starting from a uniform Aπ-game players make
simultaneous transfers of payoff to their fellow players

• A vote phase: players play the original Aπ-game, updated with transfers

Definition [AT -games]

An endogenous aggregation game is defined as a tuple 〈A, {πi}i∈N , {Ti}i∈N 〉
where 〈A, {πi}i∈N 〉 is a uniform Aπ game, and each Ti is the set of all transfer
functions τi : Mod(IC)N ×N → R+

Paolo Turrini. Endogenous Boolean Games. Proceedings of IJCAI-2013.



Pre-vote Negotiation avoids Inefficient Equilibria

A profile B is a surviving NE if there are transfer functions τi that sustain it:
(τ,B) = (τ1, . . . , τn, B1, . . . , Bn) is an equilibrium of the two-phase game

Proposition

Every goal-efficient NE of an AT -games is a surviving NE.

Proposition

Every surviving NE of a consistent AT -games is goal-efficient.

Good news: individuals can redistribute payoff to reach goal-efficient NE!



Are we avoiding paradoxes?

It is possible to avoid paradoxes:

Corollary

Every consistent AT -game has an IC-consistent NE that is surviving.

If at least one individuals has coherence as a goal it is also guaranteed:

Corollary

Every surviving NE of an AT -game such that
∧
i γi |= IC is IC-consistent.



Preplay negotiations avoid paradoxical situations

Individual goals:

γA =W

γB = F

γC = ¬P

The discursive dilemma/docrinal paradox is not surviving!:

W F P

Party A 1 0 1
Party B 1 1 0
Party C 0 0 0

Majority 1 0 0

Party B can transfer utility to either Party A or Party B to get issue F accepted!



Conclusions

1. Collective decisions on logically interconnected issues can be paradoxical
Notorious examples: Condorcet paradox, discursive dilemma...

2. When voters are strategic (read self-interested) the collective decision at
equilibrium may be undesirable or irrealistic

3. Pre-vote negotiation rules out undesirable equilibria!

• The model: two phase-games, first negotiate then vote

• Main result: surviving equilibria iff they satisfy the goals of each voter

• Corollary: there always exists a consistent equilibria which is surviving

If you want to know more:

U. Grandi, D. Grossi, P. Turrini. Pre-vote Negotiations and Binary Voting with Constraints.

11th Conference on Logic and the Foundations of Game and Decision Theory, 2014.

ESSLLI 2014 course on ”Logical Frameworks for Multiagent Aggregation”

Tübingen, 11–15 August — Student grants available!


