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A Remark and Future Work
First-order formalisations of Arrow’s Theorem already exist: Nipkow and Wiedijk (2008, 2007) used
higher-order automated theorem checker to formalise different proofs in the finite case. However, these
systems require all axioms of set theory and on the practical side have a very limited level of automation.
T. Nipkow, Social Choice Theory in HOL. JAR, 2008. F. Wiedijk, Arrow’s Impossibility Theorem. Formalized Mathematics, 2007.

This work can be extended in a number of ways:

� Experiment with other automated provers (E, Vampire..)

� Formalise other (im)possibility results (Sen’s Liberal Paradox, Gibbard-Satterthwaite’s and Black’s
Theorem...). Test unknown (im)possibility results automatically on a weaker version of our axioms.

Automated Reasoning
We proved that in principle Arrow’s Theorem can be proved automatically, despite not in its full generality:

� fixing the number of individuals and proving Tn
SWF
` ¬(UN ∧ IIA ∧NDIC), or

� proving the axioms of the Kirman-Sondermann Theorem from TARROW.

We easily implemented our axiomatisation in Prover 9 (successor of Otter) syntax:

%LINp

(I(z) & S(u) & A(x) & A(y)) -> (p(z,x,y,u)|p(z,y,x,u)|x=y).

(I(z) & S(u) & A(x)) -> -p(z,x,x,u).

(I(z) & S(u) & A(x) & A(y) & A(v) & p(z,x,y,u) & p(z,y,v,u) ) -> p(z,x,v,u).

...

%UN

(S(u) & A(x) & A(y)) -> (( all z (I(z) -> p(z,x,y,u))) -> w(x,y,u)).

We ran several experiments using both Prover9 and E theorem prover:

� Negative results: even the easiest case of 3 alternatives and 2 individuals exceeds the search space
limits;

� Positive results: we obtained a basic proof of a property called non-imposition from the unanimity
condition on an instantiated domain (without using the axiom of permutation).

Dealing with the Infinite
In order to use automated reasoning techniques we look for a sentence that can be derived formally from
our theory and represent Arrow’s Theorem. The main difficulty is that:

If I is infinite then there exists a SWF for I and |A| > 3 that
satisfies UN, IIA and NDIC (Fishburn, 1970)

⇓
TARROW is consistent.

P. Fishburn, Arrow’s Theorem: Concise Proof and Infinite Voters. Journal of Economic Theory, 1970.

Fix the number of individuals

Define the theory Tn
SWF

adding new constants i1, . . . , in and axioms:

� ik 6= ij for every k 6= j and I(i1) ∧ · · · ∧ I(in);
� I(z) → (z = i1) ∨ · · · ∨ (z = in).

A completeness result analogous to Proposition 1 holds. Using Lemma 1 we can prove the following:

Proposition 2. If w is a SWF for A and I with |A| > 3 and |I| = n thenMw |= ¬(UN∧IIA∧NDIC).
Therefore for every n:

Tn
SWF
` ¬(UN ∧ IIA ∧NDIC)

Drawback: possibly different proofs for different n.

Kirman-Sondermann

Kirman and Sondermann (1972) proved the following generalisation of Arrow’s Theorem:

If a SWF satisfies UN and IIA, then the collection of “winning coalitions”, those subsets
J ⊆ I such that if xPjy for every j ∈ J then x w(P ) y, is an ultrafilter.

We can translate this statement into a set of first-order formulas proved by TARROW, and conclude by
noting that the condition of non-dictatorship corresponds to requiring the ultrafilter to be free; if the
set of individuals is finite this is an unsatisfiable requirement. This finally formalises the argument of
Fishburn (1970): if a SWF satisfies UN, IIA and NDic, then the number of individuals must be infinite.

A. Kirman and D. Sondermann. Arrow’s Theorem, many agents, and invisible dictators. Journal of Economic Theory, 1970.

Axiomatizability Results
To every SWF w for |A| > 3 and I we can associate a model Mw of TSWF

(see Table 1); if the set A is finite this model is unique.

Proposition 1 (Completeness).M is a model of TSWF if and only if there
exist two non empty sets A and I , with |A| > 3, and a SWF w for A and
I such that M = Mw.

Define the theory TARROW by adding Arrow’s conditions UN, IIA and NDIC
to TSWF. Arrow’s Theorem can now be restated as:

Theorem 2. TARROW has no finite models.

LINp: p is a linear order for every individual in every situation LINw: w is a linear order in every situation:
– I(z) ∧ S(u) ∧ A(x) ∧ A(y) → (p(z, x, y, u) ∨ p(z, y, x, u) ∨ x = y) – S(u) ∧ A(x) ∧ A(y) → (w(x, y, u) ∨ w(y, x, u)) ∨ x = y
– I(z) ∧ S(u) ∧ A(x) → ¬p(z, x, x, u) – S(u) ∧ A(x) → ¬w(x, x, u)
– I(z) ∧ S(u) ∧ A(x1) ∧ A(x2) ∧ A(x3) ∧ p(z, x1, x2, u)∧ – S(u) ∧ A(x1) ∧ A(x2) ∧ A(x3) ∧ w(x1, x2, u) ∧ w(x2, x3, u) → w(x1, x3, u)
∧p(z, x2, x3, u) → p(z, x1, x3, u)

MIN: A and I are non-empty and there are at least 3 alternatives
DEF: the arguments of p and w are of the correct type: – A(a1) ∧ A(a2) ∧ A(a3) ∧ I(i1) ∧ S(s1)
– p(z, x, y, u) → (I(z) ∧ A(x) ∧ A(y) ∧ S(u)) – ¬(a1 = a2) ∧ ¬(a1 = a3) ∧ ¬(a2 = a3)
– S(u) ∧ A(x1) ∧ A(x2) ∧ A(x3) ∧ w(x1, x2, u) ∧ w(x2, x3, u) → w(x1, x3, u)

INJ: two different situations encode different orders
PERM: a hidden hypothesis is the condition of universal domain: – S(u) ∧ S(v) ∧ (u 6= v) → ∃z, x, y [I(z) ∧ A(x) ∧ A(y)∧
– p(z, x, y, u) → ∃v {S(v) ∧ p(z, y, x, v)∧ ∧p(z, x, y, u) ∧ p(z, y, x, v)]
∀x1[p(z, x, x1, u) ∧ p(z, x1, y, u) → p(z, x1, x, v) ∧ p(z, y, x1, v)]∧
∀x1[(p(z, x1, x, u) → p(z, x1, x, v)) ∧ (p(z, y, x1, u) → p(z, y, x1, v))]∧ PART: I , A and S form a partition
∀x1∀y1[(x1 6= x) ∧ (y1 6= y) ∧ p(z, x1, y1, u) → p(z, x1, y1, v)]∧ – A(x) → (¬I(x) ∧ ¬S(x)) – I(x) → (¬A(x) ∧ ¬S(x))
∀z1, x, y [(z1 6= z) ∧ I(z1) ∧ A(x) ∧ A(y) → (p(z1, x, y, u) ↔ p(z1, x, y, v))]} – S(x) → (¬I(x) ∧ ¬A(x)) – A(x) ∨ I(x) ∨ S(x)

Table 1: Axioms of TSWF

�UN: S(u) ∧ A(x) ∧ A(y) → [(∀z I(z) → p(z, x, y, u)) → w(x, y, u)]

� IIA: S(u1) ∧ S(u2) ∧ A(x) ∧ A(y) →
[(∀z I(z) → (p(z, x, y, u1) ↔ p(z, x, y, u2))) → (w(x, y, u1) ↔ w(x, y, u2))]

�NDIC: I(z) → [∃x, y, u A(x)∧A(y)∧(x 6= y)∧S(u)∧p(z, x, y, u)∧w(y, x, u)]⇒
⇒� Unanimity (UN): if aPib for every i ∈ I then aw(P )b;

� Independence of Irrelevant Alternatives (IIA): given two preference profiles P and
Q, if aPib if and only if aQib for every i ∈ I , then aw(P )b if and only if aw(Q)b;

� Non-dictatorship (NDIC): there is no individual i such that for every profile P the
social order w(P ) = Pi.

Arrow’s Conditions in First-Order Logic

First-Order Logic
First-order logic is a natural language to talk about linear orders and first-order automated theorem
provers are more developed than for other systems. At first sight Arrow’s conditions contain several uni-
versal quantifications over preference profiles: a second-order quantification over linear orders. Following
Lin and Tang (2008), we solve this problem introducing a set of situations, to be used as “names” for
preference profiles, denoting with P s the preference profile associated to a situation s.

The first-order signature we introduce is thus composed by:

� three unary relations to mark individuals I(z), alternatives A(x) and situations S(u);

� constant symbols a1, a2, a3 for 3 alternatives, i1 and s1 for an individual and a situation;

� a relation p(z, x, y, u) to represent the linear order Pu
z of z in situation u;

� a relation w(x, y, u) to represent the social outcome w(Pu) for every situation u.

L = {a1, a2, a3, i1, s1, I(1), A(1) , S(1), w(3), p(4)}

Arrow’s Theorem
Let I be a set of individuals expressing preferences over a set A of alternatives. For every i ∈ I represent
these preferences as a linear order Pi and call L(A) the set of all linear orders on A.

A social welfare function (SWF) for A and I is a function w : L(A)I −→ L(A)

A SWF w associate to every preference profile P = (P1, . . . , Pn) a “social order” w(P ).

Theorem 1 (Arrow, 1950). If A and I are finite and non-empty, and |A| > 3, then there is no social
welfare function for I and A that satisfies UN, IIA and NDIC.

Lin and Tang (2008) present an inductive proof of the theorem, proving the base case automatically.
We generalise one of their lemmas to cover the case of an infinite number of alternatives:

Lemma 1. If there exists a SWF for |A| > 3 and I that satisfies UN, IIA and NDIC then there exists
a SWF for |A′| = 3 and I that satisfies the same properties.

F. Lin and P. Tang. Computer-Aided Proofs of Arrow’s and other Impossibility Theorems. AAAI 2008.

In the long run, we hope that this formalisation can serve as the basis for a
fully automated proof of Arrow’s Theorem and similar results in social choice
theory. We prove that this is possible in principle, at least for a fixed number of
individuals, and we report on initial experiments with automated reasoning tools.

Arrow’s Theorem is a central result in social choice theory. It states that, under
certain natural conditions, it is impossible to aggregate the preferences of a finite set
of individuals. We formalise this result in the language of first-order logic, reducing
it to a statement saying that a set of formulas does not possess a finite model.
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