Pronunciation assessment of Japanese learners of French with GOP scores and phonetic information

Vincent Laborde¹, Thomas Pellegrini¹, Lionel Fontan², Julie Mauclair¹/³, Halima Sahraoui¹, Jérôme Farinas¹

¹ (1) IRIT - Université de Toulouse, 31062, Toulouse, France, (2) Archean Technologies, 1899 av. d’Italie, 82000, Montauban, France (3) Université Paris Descartes, Paris, France, (4) Octogone-Lordat - Université de Toulouse, 31058, Toulouse, France

thomas.pellegrini@irit.fr, lfontan@archean.fr, sahraoui@univ-tlse2.fr

Abstract

Automatic pronunciation assessment experiments at phone-level Japanese speakers learning French as a foreign language Three approaches compared: Goodness Of Pronunciation scores, LDA and logistic regression models

Two typical errors of Japanese speakers were considered: /ö/ and /v/

Abstract

Pronunciation assessment of Japanese learners of French with GOP scores and phonetic / phonological features

In this study, segmental level: one score per expected phone

– Recognition scores: raw [1], likelihood ratios [3]

– Addition of extra phonetic and phonological features

– Comparison between both methods + use of a classifier

– F-GOP alike [2]

In this study, segmental level: one score per expected phone

– Linear discriminant analysis (LDA) and recognition scores: raw [1], likelihood ratios [3]

– High accuracy is key in CAPT

– Computer-assisted pronunciation training (CAPT) on a second language (L2)

– High accuracy is key in CAPT

– In this study: – Comparison between both methods + use of a classifier – Addition of extra phonetic and phonological features

1 Introduction

• Computer-assisted pronunciation training (CAPT) on a second language (L2)

• In this study, segmental level: one score per expected phone

• Two types of approaches:

 – Recognition scores: raw [1], likelihood ratios [3]

 – Classification methods on acoustic features: linear discriminant analysis (LDA) and alike [2]

• High accuracy is key in CAPT

• In this study:

 – Comparison between both methods + use of a classifier

 – Addition of extra phonetic and phonological features

2 Baseline: the forced-GOP algorithm

3 Logistic Regression: f-GOP + LR

• Linear classifier: \(P(y = +1) = 1/(1 + \exp(-\theta x)) \)

• Input: F-GOP scores and extra features

• Pros: no decision thresholds to set, feature importance given by the weights

4 Speech material

• BREF: read speech corpus recorded from French native speakers, 100 hours, 120 speakers

• Artifical pronunciation errors were introduced in BREF

• PHON-IM: disyllabic words repeated by FSL Japanese native speakers, 1 hour, 23 speakers

5 Additional input features

1. Identity of the recognized phone

2. Log-likelihoods of the expected and recognized phones

3. Number of distinctive phonological features that differ between the two phones

4. Identity of the left and right phone neighbors, if any

5. Ratio between the phone duration and the duration of the middle state of the HMM

6 Results

• HTK, context-independent acoustic models — 39 monophones

• Scoring accuracy: \(SA = \frac{(CA + CR)}{(CA + CR + FA + FR)} \times 100 \)

– Global SA: f-GOP (63.8%) < LDA (69.6%) < best LR (77.1%)

– R/ SA: LDA (62.4%) < f-GOP (68.5%) < best LR (69.1%)

– /v/ SA: f-GOP (58.7%) < LDA (59.4%) < best LR (85.8%)

– /ö/ recognition: 55% as [ø], 13% as [e] and 9% as a pause

– /v/ recognition: 25% as [v], 41% as [f], 1% as [b]

– Best extra features: the identity of the recognized phone, the number of distinctive phonological features, the phone neighbor identity

7 Conclusions

– LDA with acoustic features is better than standard f-GOP

– Best performance: f-GOP scores and phonetic / phonological features as input to LR (77% accuracy)

– Future experiments: add acoustic features to LR, deep neural networks

References

<table>
<thead>
<tr>
<th>Corpus</th>
<th>BREF</th>
<th>PHON-IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonemes</td>
<td>/e/</td>
<td>/e/</td>
</tr>
<tr>
<td>Duration</td>
<td>21K</td>
<td>5K</td>
</tr>
<tr>
<td>Consistency</td>
<td>16K</td>
<td>3K</td>
</tr>
<tr>
<td>Accuracy</td>
<td>128</td>
<td>50</td>
</tr>
<tr>
<td>Initial</td>
<td>47.3%</td>
<td>74.8%</td>
</tr>
<tr>
<td>Interlocutor</td>
<td>88.3%</td>
<td>50.5%</td>
</tr>
</tbody>
</table>