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Introduction

e Embedded Real-Time systems
o Need for strong timing guarantees (WCET)
o Measurements/probabilities vs Static Analysis
m  Microarchitectural details (HW model) + execution model (Program semantics)
m  Mature techniques for CPU targets

e Models for static WCET analysis

o Hardware model
m Pipeline depth, number and latency of functional units, instruction queues, etc.
m Caches size and configuration
m  Memory hierarchy
m Predictors, prefetchers
m Traditionally obtained from the documentation

o  Software model
m Control Flow Graph of the disassembled binary program



Introduction

e Graphical Processing Units: highly parallel accelerators
o Major differences w.r.t. CPUs
m Built for average throughput maximization (vs latency minimization)
e Exploit parallelism to hide latencies
o Instruction Level Parallelism
o Data parallelism
e Many functional units (aka CUDA Cores — CCs)
e Feed the beast: complex memory hierarchy
m Handle thousands of threads:
e Hierarchical scheduler (kernels, blocks, warps)
e SIMT execution model
o Very efficient for e.g. matrix/tensor computations
m Embedded Al applications (e.g. autonomous vehicles)



Introduction

e Graphical Processing Units: highly parallel accelerators
o Major differences w.r.t. CPUs
m Built for average throughput maximization (vs latency minimization)
e Exploit parallelism to hide latencies
o Instruction Level Parallelism
o Data parallelism
e Many functional units (aka CUDA Cores — CCs)
e Feed the beast: complex memory hierarchy
m Handle thousands of threads:
e Hierarchical scheduler (kernels, blocks, warps)
e SIMT execution model
o Very efficient for e.g. matrix/tensor computations
m Embedded Al applications (e.g. autonomous vehicles)

Can we build an accurate model to predict the timing behavior of a program running on a GPU ’i
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A quick introduction to GPUs and CUDA nomenclature

e Coarse grain vision

Main program written and compiled for the CPU target
o Sequential or parallel
o Makes calls to GPU functions a.k.a. kernels

Kernels written and compiled for the GPU
o Inherently parallel
o  Written in C/C++ with extensions (e.g. CUDA, OpenCL, Vulkan)
o Multiple threads execute the same code on different data
m Each thread has a unique identifier




A quick introduction to GPUs and CUDA nomenclature

o Coarsed .. minni

£[2048] ;
*d t;
Prog cudaMalloc(d t, 2048*sizeof (int));
init_table<<<2,1024>>>(d_t, 2048);
CPU

cudaMemcpy (t, d_t, 2048*sizeof(int), cudaMemcpyDeviceToHost) ;
return 0;

__global init_table( * table, size_table) {
tx = X7

Kernel bx = X;
idxX = bx * .x + tx;
l i ;
GPU

if( idxX >= size_table)
return;
table[idxX] = O0;
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A quick introduction to GPUs and CUDA nomenclature

e Entering the GPU

CPU

_

GPU

Kernel

When calling a kernel, the programmer sets the number of threads to execute it
o Organized in thread blocks
o Each thread block is assigned a Streaming Multiprocessor
m Up to 32 blocks per SM

[

)

main () {
t[2048];
* d_t;
cudaMalloc(d_t, 2048*sizeof(int));

init_table<<<2,1024>>>(d_t, 2048);

cudaMemcpy (t, d_t, 2048*sizeof(int), cudaMemcpyDeviceToHost) ;
return 0;

[ CUpy erygnie
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A quick introduction to GPUs and CUDA nomenclature

Inside a SM

CPU

GPU

ICache

SM

DCache

SMP

SMP

DCache

SMP

SMP

Shared Memory
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A quick introduction to GPUs and CUDA nomenclature

e Inside a SM

e All threads of a block share a fast multi-banked SRAM called shared memory
e Threads belonging to the same block are organized in warps

CPU o Groups of 32 threads of consecutive IDs
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A quick introduction to GPUs and CUDA nomenclature

e Inside a SM

CPU

GPU

All threads of a block share a fast multi-banked SRAM called shared memory

Threads belonging to the same block are organized in warps
o Groups of 32 threads of consecutive IDs

o Warps are dispatched to SMPs
S

|
BlockO
~ I— (
Warp1
SM Block2 P\||| warp0 |SMP | i
U —
N -
N\
|§2\ Warp2 SMP Warp3
> | ry
Copy enging
\
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A quick introduction to GPUs and CUDA nomenclature

e Inside a SMP
/| Instruction buffer |
7 | Warp scheduler |
SR | Dispatcher | | Dispatcher |
, | Register bank |
7 ccllccllcclicc SFU|| Lsu
e ICache |cliccllcclicc||  |[sFul[ Lsu
P Cache
- —ccllccllcclicc SFU|| Lsu
SM SMP ccllccliccliccl| FP||SsFU|| LSuU
GPU \ — 64
DCache |ccllccllccllcc srul| Lsu
. \bz\ sMp | . | [cclcclec]ed]| |[sFul[ Lsu
\ \ —
. \-\ Shared Memolcclicclicciice SFU|| Lsu
\R Copy engin T~ llccllecllecllee sFul| Lsu




A quick introduction to GPUs and CUDA nomenclature

Inside a SMP

CPU

GPU

At each cycle, 1 warp executes on a SMP

/

Instruction buffer

Warp scheduler

Threads within a warp execute in lockstep / | | Dispatcher | | Dispatcher |
o  SIMT model /I | Register bank |
o Pascal: shared PC for each warp / collicclicalce srull LU

-~ ICache |colcclcclce  |[sFul| Lsu

| Cache
— {|CC||CC||CC||CC SFU LSU
SM Sl ccllcclicclicc|| FP||sFU|| LSU

\ — 64
| DCache |ccllccllcclicc|| ~ |[sFul[ Lsu
\bz\ sMp | . | [cclcclec]ed]| |[sFul[ Lsu
\ |
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A quick introduction to GPUs and CUDA nomenclature

e Inside a SMP

CPU

GPU

At each cycle, 1 warp executes on a SMP

/

Instruction buffer

Warp scheduler

Threads within a warp execute in lockstep / | | Dispatcher | | Dispatcher |
o  SIMT model / L[ : Sr~—~ister bank |
o Pascal: shared PC for each warp / To [T |

/ { N U G O SFU LSU
= Warpo = T (el sy
—{ R e SFU|| LSU
&y T12 T13 T14 T15
SM SMP { ~==FP|[sFu|[ Lsu
N e T1s T17 T18 | T19 ) 4
| DCache | Gl % |/sFu] [ Lsu
‘,}2\ sMP |\ oI (sl sy
\ | “ * * A il J
LI Shared Memo { (o lw =) [SFYj|_Lsu
Copy engine [T ™ [CT]CTyeTee]]  |[SFU|| Lsu




Nvidia Jetson TX2

e Embedded System-on-Chip
o 6 ARM cores
o 1 Pascal GPU
m 2 SMs, 8 SMPs, 256 Cuda Cores
m "Embedded GPU"

e Launchedin 2016

o Branded as go-to chip for embedded applications, including autonomous driving
o Research results now available — mostly based on reverse engineering
o Newer models introduce new features, but built on the same base mechanisms
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Latency hiding mechanisms

e Software-defined scoreboard: exploit ILP
o Upon long latency instructions, continue execution until the produced data is actually needed
o  SCHI instructions + DEPBAR instructions
m  Compiler optimizations

e \Warp scheduler: exploit data parallelism
o Swap the active warp when stalled
o 1 per SMP
o Looks for ready warps
m Instruction buffer for each active warp
e Contains the next instruction(s) for each warp
m Software-defined scoreboard
o  Scheduling policy is unknown
m Allegedly Loose Round-Robin or Greedy-Then-Oldest
m Potentially Two-level scheduler
m Very hard to assess experimentally
m Influences capacity to hide latency + cache contents / locality
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Latency hiding mechanisms

AAAAA Iha sl assalazt Il P

e Software-defined
o Upon long lateng

o  SCHlI instructions

m Compilero

e \Warp scheduler: ¢
o Swap the active

o 1 per SMP
o Looks for ready \
m Instruction
e Contj
m Software-d
o  Scheduling policy
Allegedly L
Potentially

||
m Veryhardt
m Influences

SCHI % each instr increments SB1

LD R1, [R2] % SB1 =1

LD R3, [R4] % SB1 =2

LD RS, [R6] % SB1 =3

SCHI % not relevant

ADD R7, R8, R9 % not dependent
DEPBAR SBH1, 2

FMUL R1, R1, R10 % dependent on R
SCHI % not relevant

DEPBAR SB1, 1

FMUL R3, R3, R11 % dependent on R3
DEPBAR SB1, 0

SCHI % not relevant

FMUL R5, R5, R12 % dependent on R5

data is actually needed

ty
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Latency hiding mechanisms
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Latency hiding mechanisms

e Software-defined scoreboard: exploit ILP

o Uponlong |

o  SCHIlinstru ao I T
m Compg ™1 -

e Warp schedu| "2 = EEEEE
o Swapthea LRR 21 cycles
o 1 per SMP
o Looks forrg—

m  Instru/Wo[ ] HEN
o |W, — HEE
m Softw|W, | T T TT1]
o  Scheduling
s Allege GTO 23 cycles

m Potentially Two-level scheduler
m Very hard to assess experimentally
m Influences capacity to hide latency + cache contents / locality

data is actually needed
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SIMT model and thread divergence

e Lockstep execution inside warps

e Conditional branch => divergence within warp
o Mask inactive threads when executing each branch in sequence, then reconverge
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SIMT model and thread divergence

e Lockstep execution inside warps

e Conditional branch => divergence within warp
o Mask inactive threads when executing each branch in sequence, then reconverge
o Two kinds of divergence/convergence
m  SSY/SYNC, PBK/BRK
o  SIMT stack
m Token based (NIL, SSY, PBK)
m Software managed => compiler
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A
PBK @H
@P1:BRAB
\
B
- SSY @G
@P2:BRAD
BRK (H) = \D
\ @P3 : BRK (H)
YNC SYNC
G
~BRK (H)
=

*nce

n warp
branch in sequence, then reconverge

e Warp CFG requires additional edges
o Using the SIMT semantics
o Some may be avoided using static
analyses
m  Warp1 and warp2 may not execute
the same path, but all threads in
each warp execute the same path
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Low-level scheduling

e Still some unknowns
o e.g. warp scheduler policy

e Complex, but can be modelled
o Provided NVIDIA provides the implementation details
o Hardest part: memory hierarchy and interference between warps
m Cache contents
m Interconnect/memory bank contentions
m Same problems as multi-core CPUs, with larger scale

38



Conclusion

e Can we build an accurate model to predict the timing behavior of a program

running on a GPU ?
o Yes!And we're working on it
m Timing behavior of a single warp
e Static analyses to build accurate CFG
e Architectural model
m Compositional approach for multiple warps
m Same approach as for multi-core CPUs
m Missing details => make hypotheses
o  What if some mechanisms are too dynamic ?
m Build our own predictable GPU
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Thanks for your attention

CAPITAL Workshop: sCalable And Preclse Timing AnaLysis for multicore
platforms
IRIT, Toulouse, June 13th

In-person or remote attendance

Free registration : https://www.irit.fr/TRACES/site/capital-workshop-2023/
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