
Timing predictability of GPUs:
challenges and advances

The Nvidia Pascal case

Thomas Carle, Univ. Toulouse 3, IRIT
TRACES group 1

Introduction

● Embedded Real-Time systems
○ Need for strong timing guarantees (WCET)
○ Measurements/probabilities vs Static Analysis

■ Microarchitectural details (HW model) + execution model (Program semantics)
■ Mature techniques for CPU targets

● Models for static WCET analysis
○ Hardware model

■ Pipeline depth, number and latency of functional units, instruction queues, etc.
■ Caches size and configuration
■ Memory hierarchy
■ Predictors, prefetchers
■ Traditionally obtained from the documentation

○ Software model
■ Control Flow Graph of the disassembled binary program

2

Introduction

● Graphical Processing Units: highly parallel accelerators
○ Major differences w.r.t. CPUs

■ Built for average throughput maximization (vs latency minimization)
● Exploit parallelism to hide latencies

○ Instruction Level Parallelism
○ Data parallelism

● Many functional units (aka CUDA Cores – CCs)
● Feed the beast: complex memory hierarchy

■ Handle thousands of threads:
● Hierarchical scheduler (kernels, blocks, warps)
● SIMT execution model

○ Very efficient for e.g. matrix/tensor computations
■ Embedded AI applications (e.g. autonomous vehicles)

3

Introduction

● Graphical Processing Units: highly parallel accelerators
○ Major differences w.r.t. CPUs

■ Built for average throughput maximization (vs latency minimization)
● Exploit parallelism to hide latencies

○ Instruction Level Parallelism
○ Data parallelism

● Many functional units (aka CUDA Cores – CCs)
● Feed the beast: complex memory hierarchy

■ Handle thousands of threads:
● Hierarchical scheduler (kernels, blocks, warps)
● SIMT execution model

○ Very efficient for e.g. matrix/tensor computations
■ Embedded AI applications (e.g. autonomous vehicles)

4
Can we build an accurate model to predict the timing behavior of a program running on a GPU ?

A quick introduction to GPUs and CUDA nomenclature

5

CPU

GPU

● Coarse grain vision

A quick introduction to GPUs and CUDA nomenclature

6

CPU

GPU

● Coarse grain vision

● Main program written and compiled for the CPU target
○ Sequential or parallel
○ Makes calls to GPU functions a.k.a. kernels

Prog

A quick introduction to GPUs and CUDA nomenclature

7

CPU

GPU

● Coarse grain vision

● Main program written and compiled for the CPU target
○ Sequential or parallel
○ Makes calls to GPU functions a.k.a. kernels

● Kernels written and compiled for the GPU
○ Inherently parallel
○ Written in C/C++ with extensions (e.g. CUDA, OpenCL, Vulkan)
○ Multiple threads execute the same code on different data

■ Each thread has a unique identifier

Prog

Kernel

A quick introduction to GPUs and CUDA nomenclature

8

CPU

GPU

● Coarse grain vision

● Main program written and compiled for the CPU target
○ Sequential or parallel
○ Makes calls to GPU functions a.k.a. kernels

● Kernels written and compiled for the GPU
○ Inherently parallel
○ Written in C/C++ with extensions (e.g. CUDA, OpenCL, Vulkan)
○ Multiple threads execute the same code on different data

■ Each thread has a unique identifier

Prog

Kernel

int main(){
int t[2048];
int* d_t;
cudaMalloc(d_t, 2048*sizeof(int));
init_table<<<2,1024>>>(d_t, 2048);
cudaMemcpy(t, d_t, 2048*sizeof(int), cudaMemcpyDeviceToHost);
return 0;

}

__global__ void init_table(int* table, int size_table){
int tx = threadIdx.x;
int bx = blockIdx.x;
int idxX = bx * blockDim.x + tx;

if(idxX >= size_table)
return;

 table[idxX] = 0;
}

A quick introduction to GPUs and CUDA nomenclature

9

CPU

GPU

● Entering the GPU

L2

SM SM

Copy engine

Kernel

A quick introduction to GPUs and CUDA nomenclature

10

CPU

GPU

● Entering the GPU

● When calling a kernel, the programmer sets the number of threads to execute it
○ Organized in thread blocks
○ Each thread block is assigned a Streaming Multiprocessor

■ Up to 32 blocks per SM

L2

SM SM

Copy engine

Kernel

A quick introduction to GPUs and CUDA nomenclature

11

CPU

GPU

● Entering the GPU

● When calling a kernel, the programmer sets the number of threads to execute it
○ Organized in thread blocks
○ Each thread block is assigned a Streaming Multiprocessor

■ Up to 32 blocks per SM

L2

SM SM

Copy engine

Kernel

Block0 Block1

Block2

A quick introduction to GPUs and CUDA nomenclature

12

CPU

GPU

● Entering the GPU

● When calling a kernel, the programmer sets the number of threads to execute it
○ Organized in thread blocks
○ Each thread block is assigned a Streaming Multiprocessor

■ Up to 32 blocks per SM

L2

SM SM

Copy engine

Kernel

Block0 Block1

Block2

int main(){
int t[2048];
int* d_t;
cudaMalloc(d_t, 2048*sizeof(int));

init_table<<<2,1024>>>(d_t, 2048);
cudaMemcpy(t, d_t, 2048*sizeof(int), cudaMemcpyDeviceToHost);
return 0;

}

A quick introduction to GPUs and CUDA nomenclature

13

CPU

GPU

● Inside a SM

L2

SM

Copy engine

SM

ICache

Shared Memory

DCache

DCache

SMP SMP

SMP SMP

A quick introduction to GPUs and CUDA nomenclature

14

CPU

GPU

● Inside a SM

● All threads of a block share a fast multi-banked SRAM called shared memory
● Threads belonging to the same block are organized in warps

○ Groups of 32 threads of consecutive IDs
○ Warps are dispatched to SMPs

L2

SM

Copy engine

SM

ICache

Shared Memory

DCache

DCache

SMP SMP

SMP SMP

A quick introduction to GPUs and CUDA nomenclature

15

CPU

GPU

● Inside a SM

● All threads of a block share a fast multi-banked SRAM called shared memory
● Threads belonging to the same block are organized in warps

○ Groups of 32 threads of consecutive IDs
○ Warps are dispatched to SMPs

L2

SM

Copy engine

SM

ICache

Shared Memory

DCache

DCache

SMP SMP

SMP SMP

Block0

Block2

Warp0 Warp1

Warp2 Warp3

Warp0Warp0Warp0
Warp1Warp1Warp1

Warp2Warp2 Warp3Warp3Warp3Warp3

Warp0

Warp2

A quick introduction to GPUs and CUDA nomenclature

16

CPU

GPU

● Inside a SMP

L2

SM

Copy engine

SM

ICache

Shared Memory

DCache

DCache

SMP

SMP SMP

SMP

Instruction buffer
Warp scheduler

Dispatcher Dispatcher
Register bank

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

FP
64

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

A quick introduction to GPUs and CUDA nomenclature

17

CPU

GPU

● Inside a SMP

● At each cycle, 1 warp executes on a SMP
● Threads within a warp execute in lockstep

○ SIMT model
○ Pascal: shared PC for each warp

L2

SM

Copy engine

SM

ICache

Shared Memory

DCache

DCache

SMP

SMP SMP

SMP

Instruction buffer
Warp scheduler

Dispatcher Dispatcher
Register bank

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

FP
64

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

A quick introduction to GPUs and CUDA nomenclature

18

CPU

GPU

● Inside a SMP

● At each cycle, 1 warp executes on a SMP
● Threads within a warp execute in lockstep

○ SIMT model
○ Pascal: shared PC for each warp

L2

SM

Copy engine

SM

ICache

Shared Memory

DCache

DCache

SMP

SMP SMP

SMP

Instruction buffer
Warp scheduler

Dispatcher Dispatcher
Register bank

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

FP
64

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

Warp0

T0 T1 T2 T3

T4 T5 T6 T7

T8 T9
T10 T11

T12 T13 T14 T15

T16 T17 T18 T19

T20 T21 T22 T23

T24 T25 T26 T27

T28 T29 T30 T31

Nvidia Jetson TX2

● Embedded System-on-Chip
○ 6 ARM cores
○ 1 Pascal GPU

■ 2 SMs, 8 SMPs, 256 Cuda Cores
■ "Embedded GPU"

● Launched in 2016
○ Branded as go-to chip for embedded applications, including autonomous driving
○ Research results now available – mostly based on reverse engineering
○ Newer models introduce new features, but built on the same base mechanisms

19

Latency hiding mechanisms

● Software-defined scoreboard: exploit ILP
○ Upon long latency instructions, continue execution until the produced data is actually needed
○ SCHI instructions + DEPBAR instructions

■ Compiler optimizations
● Warp scheduler: exploit data parallelism

○ Swap the active warp when stalled
○ 1 per SMP
○ Looks for ready warps

■ Instruction buffer for each active warp
● Contains the next instruction(s) for each warp

■ Software-defined scoreboard
○ Scheduling policy is unknown

■ Allegedly Loose Round-Robin or Greedy-Then-Oldest
■ Potentially Two-level scheduler
■ Very hard to assess experimentally
■ Influences capacity to hide latency + cache contents / locality

20

Latency hiding mechanisms

● Software-defined scoreboard: exploit ILP
○ Upon long latency instructions, continue execution until the produced data is actually needed
○ SCHI instructions + DEPBAR instructions

■ Compiler optimizations
● Warp scheduler: exploit data parallelism

○ Swap the active warp when stalled
○ 1 per SMP
○ Looks for ready warps

■ Instruction buffer for each active warp
● Contains the next instruction(s) for each warp

■ Software-defined scoreboard
○ Scheduling policy is unknown

■ Allegedly Loose Round-Robin or Greedy-Then-Oldest
■ Potentially Two-level scheduler
■ Very hard to assess experimentally
■ Influences capacity to hide latency + cache contents / locality

21

SCHI % each instr increments SB1
LD R1, [R2] % SB1 = 1
LD R3, [R4] % SB1 = 2
LD R5, [R6] % SB1 = 3
SCHI % not relevant
ADD R7, R8, R9 % not dependent
DEPBAR SB1, 2
FMUL R1, R1, R10 % dependent on R1
SCHI % not relevant
DEPBAR SB1, 1
FMUL R3, R3, R11 % dependent on R3
DEPBAR SB1, 0
SCHI % not relevant
FMUL R5, R5, R12 % dependent on R5

Latency hiding mechanisms

● Software-defined scoreboard: exploit ILP
○ Upon long latency instructions, continue execution until the produced data is actually needed
○ SCHI instructions + DEPBAR instructions

■ Compiler optimizations
● Warp scheduler: exploit data parallelism

○ Swap the active warp when stalled
○ 1 per SMP
○ Looks for ready warps

■ Instruction buffer for each active warp
● Contains the next instruction(s) for each warp

■ Software-defined scoreboard
○ Scheduling policy is unknown

■ Allegedly Loose Round-Robin or Greedy-Then-Oldest
■ Potentially Two-level scheduler
■ Very hard to assess experimentally
■ Influences capacity to hide latency + cache contents / locality

22

● Software-defined scoreboard: exploit ILP
○ Upon long latency instructions, continue execution until the produced data is actually needed
○ SCHI instructions + DEPBAR instructions

■ Compiler optimizations
● Warp scheduler: exploit data parallelism

○ Swap the active warp when stalled
○ 1 per SMP
○ Looks for ready warps

■ Instruction buffer for each active warp
● Contains the next instruction(s) for each warp

■ Software-defined scoreboard
○ Scheduling policy is unknown

■ Allegedly Loose Round-Robin or Greedy-Then-Oldest
■ Potentially Two-level scheduler
■ Very hard to assess experimentally
■ Influences capacity to hide latency + cache contents / locality

Latency hiding mechanisms

23

GTO

LRR

w0
w1
w2

w0
w1
w2

21 cycles

23 cycles

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

24

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

25

@P0 BRA else

else:

A

BC

D
Without reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

26

@P0 BRA else

else:

A

BC

D
Without reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

27

@P0 BRA else

else:

A

BC

D
Without reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

28

@P0 BRA else

else:

A

BC

D
Without reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

29

@P0 BRA else

else:

A

BC

D
Without reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

30

@P0 BRA else

else:

A

BC

D
Without reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

31

@P0 BRA else

else:

A

BC

D

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

32

@P0 BRA else

else:

A

BC

D
With reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

33

@P0 BRA else

else:

A

BC

D
With reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

34

@P0 BRA else

else:

A

BC

D
With reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge

35

@P0 BRA else

else:

A

BC

D
With reconvergence

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

36

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

37

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

A

● Warp CFG requires additional edges
○ Using the SIMT semantics
○ Some may be avoided using static

analyses
■ Warp1 and warp2 may not execute

the same path, but all threads in
each warp execute the same path

Low-level scheduling

● Still some unknowns
○ e.g. warp scheduler policy

● Complex, but can be modelled
○ Provided NVIDIA provides the implementation details
○ Hardest part: memory hierarchy and interference between warps

■ Cache contents
■ Interconnect/memory bank contentions
■ Same problems as multi-core CPUs, with larger scale

38

Conclusion

● Can we build an accurate model to predict the timing behavior of a program
running on a GPU ?

○ Yes ! And we’re working on it
■ Timing behavior of a single warp

● Static analyses to build accurate CFG
● Architectural model

■ Compositional approach for multiple warps
■ Same approach as for multi-core CPUs
■ Missing details => make hypotheses

○ What if some mechanisms are too dynamic ?
■ Build our own predictable GPU

39

Thanks for your attention

CAPITAL Workshop: sCalable And PrecIse Timing AnaLysis for multicore
platforms

IRIT, Toulouse, June 13th

In-person or remote attendance

Free registration : https://www.irit.fr/TRACES/site/capital-workshop-2023/

40

https://www.irit.fr/TRACES/site/capital-workshop-2023/

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

41

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

A | NIL | 0xFFFFFFFF

A

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

42

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

A | NIL | 0xFFFFFFFF

A

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

43

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

B | NIL | 0xFFFF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

44

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

B | NIL | 0xFFFF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

45

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xFFFF0000

B | NIL | 0xFFFF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

46

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xFFFF0000

E | NIL | 0x00FF0000

D | NIL | 0xFF000000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

47

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xFFFF0000

E | NIL | 0x00FF0000

D | NIL | 0xFF000000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

48

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xF0FF0000

E | NIL | 0x00FF0000

D | NIL | 0xF0000000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

49

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xF0FF0000

E | NIL | 0x00FF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

50

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xF0FF0000

E | NIL | 0x00FF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

51

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | SSY | 0xF0FF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

52

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

G | NIL | 0xF0FF0000

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

53

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

54

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL | 0x0000FFFF

A

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

55

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

A

SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler

56

PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | NIL | 0xFFFFFFFF

A

