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Introduction

● Embedded Real-Time systems
○ Need for strong timing guarantees (WCET)
○ Measurements/probabilities vs Static Analysis

■ Microarchitectural details (HW model) + execution model (Program semantics)
■ Mature techniques for CPU targets

● Models for static WCET analysis
○ Hardware model

■ Pipeline depth, number and latency of functional units, instruction queues, etc.
■ Caches size and configuration
■ Memory hierarchy
■ Predictors, prefetchers
■ Traditionally obtained from the documentation 

○ Software model
■ Control Flow Graph of the disassembled binary program

2



Introduction

● Graphical Processing Units: highly parallel accelerators
○ Major differences w.r.t. CPUs

■ Built for average throughput maximization (vs latency minimization)
● Exploit parallelism to hide latencies 

○ Instruction Level Parallelism
○ Data parallelism

● Many functional units (aka CUDA Cores – CCs)
● Feed the beast: complex memory hierarchy

■ Handle thousands of threads: 
● Hierarchical scheduler (kernels, blocks, warps) 
● SIMT execution model 

○ Very efficient for e.g. matrix/tensor computations 
■ Embedded AI applications (e.g. autonomous vehicles)
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int main(){
int t[2048];
int* d_t;
cudaMalloc(d_t, 2048*sizeof(int));
init_table<<<2,1024>>>(d_t, 2048);
cudaMemcpy(t, d_t, 2048*sizeof(int), cudaMemcpyDeviceToHost);
return 0;

}

__global__ void init_table(int* table, int size_table){
int tx = threadIdx.x;
int bx = blockIdx.x;
int idxX = bx * blockDim.x + tx;

if( idxX >= size_table)
return;

  table[idxX] = 0;
}
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Nvidia Jetson TX2

● Embedded System-on-Chip
○ 6 ARM cores
○ 1 Pascal GPU

■ 2 SMs, 8 SMPs, 256 Cuda Cores
■ "Embedded GPU"

● Launched in 2016
○ Branded as go-to chip for embedded applications, including autonomous driving
○ Research results now available – mostly based on reverse engineering
○ Newer models introduce new features, but built on the same base mechanisms
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Latency hiding mechanisms

● Software-defined scoreboard: exploit ILP
○ Upon long latency instructions, continue execution until the produced data is actually needed
○ SCHI instructions + DEPBAR instructions

■ Compiler optimizations
● Warp scheduler: exploit data parallelism

○ Swap the active warp when stalled
○ 1 per SMP
○ Looks for ready warps

■ Instruction buffer for each active warp
● Contains the next instruction(s) for each warp

■ Software-defined scoreboard
○ Scheduling policy is unknown

■ Allegedly Loose Round-Robin or Greedy-Then-Oldest
■ Potentially Two-level scheduler
■ Very hard to assess experimentally
■ Influences capacity to hide latency + cache contents / locality
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SCHI % each instr increments SB1
LD R1, [R2] % SB1 = 1
LD R3, [R4] % SB1 = 2
LD R5, [R6] % SB1 = 3
SCHI % not relevant
ADD R7, R8, R9 % not dependent
DEPBAR SB1, 2
FMUL R1, R1, R10 % dependent on R1
SCHI % not relevant
DEPBAR SB1, 1
FMUL R3, R3, R11 % dependent on R3
DEPBAR SB1, 0
SCHI % not relevant
FMUL R5, R5, R12 % dependent on R5
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SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
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PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

A

● Warp CFG requires additional edges
○ Using the SIMT semantics
○ Some may be avoided using static 

analyses
■ Warp1 and warp2 may not execute 

the same path, but all threads in 
each warp execute the same path



Low-level scheduling

● Still some unknowns
○ e.g. warp scheduler policy

● Complex, but can be modelled
○ Provided NVIDIA provides the implementation details
○ Hardest part: memory hierarchy and interference between warps

■ Cache contents
■ Interconnect/memory bank contentions
■ Same problems as multi-core CPUs, with larger scale
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Conclusion

● Can we build an accurate model to predict the timing behavior of a program 
running on a GPU ? 

○ Yes ! And we’re working on it
■ Timing behavior of a single warp

● Static analyses to build accurate CFG
● Architectural model

■ Compositional approach for multiple warps
■ Same approach as for multi-core CPUs
■ Missing details => make hypotheses

○ What if some mechanisms are too dynamic ?
■ Build our own predictable GPU
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Thanks for your attention

CAPITAL Workshop: sCalable And PrecIse Timing AnaLysis for multicore 
platforms

IRIT, Toulouse, June 13th

In-person or remote attendance

Free registration : https://www.irit.fr/TRACES/site/capital-workshop-2023/
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SIMT model and thread divergence

● Lockstep execution inside warps
● Conditional branch => divergence within warp

○ Mask inactive threads when executing each branch in sequence, then reconverge
○ Two kinds of divergence/convergence

■ SSY/SYNC, PBK/BRK
○ SIMT stack

■ Token based (NIL, SSY, PBK)
■ Software managed => compiler
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G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

F | NIL   | 0x0000FFFF

A
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PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | PBK | 0xFFFFFFFF

A
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PBK @H
@P1 : BRA B

B

@P2 : BRA D

DE

SSY @GF

G

H

@P3 : BRK (H)
SYNCSYNC

BRK (H)

BRK (H)

H | NIL | 0xFFFFFFFF

A


