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1 Introduction

The frame problem and the representation of knowledge change have deserved a
lot of works. In particular, at the Cognitive Robotics Group, at Toronto, several
researchers in the last ten years have produced quite interesting papers in a uni-
form logical framework based on Situation Calulus [Rei91, SL93, LR94, L1L98]. In
[Rei91] Reiter has proposed a simple solution to the frame problem. Scherl and
Levesque in [SL93] have defined an extension to Epistemic Logic to represent
knowledge dynamics in contexts where some actions may produce knowledge,
like, for instance, sensing actions for a robot. This approach has been extended
by Lakemeyer and Levesque in [LL98] to modal operators of the kind “I know
and only know”. Also, they have given a formal semantics and axiomatics, and
they proved soundness and completeness of the axiomatics.

These extensions to Epistemic Logic offer a large expressive power. Indeed,
there is no restriction on formulas in the scope of modal operators. However, they
have lost the simplicity of the solution to the frame problem initially proposed in
[Rei91], and the possibility to find a tractable implementation of these extensions
is far to be obvious. As far as we know, at the present time there is no such
implementation.

In this paper a simple extension to Epistemic Logic of Reiter’s initial solution
is presented that could easily be implemented. In exchange we have to accept
strong restrictions on the expressive power of the epistemic part of the logical
framework. However, we believe that for a large class of applications these re-
strictions are not real limitations. In the following intuitive ideas of the proposed
solution are presented with a simple example. Then, we give the general logical
framework, and, finally a comparison is made with the solutions that we have
mentioned before.

2 The frame problem in the context of extended situation
calculus: an example

Situation Calculus [McC68, Rei99] is a sort of classical first order logic where
predicates may have an argument (the last argument) of a particular sort, which
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is called a “situation”; these predicates are called “fluents”. This argument is
intended to represent the sequence of actions which have been performed from
the initial state to the current state. A situation is syntactically represented by
a term of the form do(a, s) where a denotes an action, and s denotes a situation.
The initial situation is denoted by S0O.

For instance, position(x,s) represents the fact that a given object is at
the position z in the situation s. Action variables and situation variables can
be quantified. For instance, —3s(position(2,s)) represents the fact that in no
situation a given object is at the position 2. Action quantification is an es-
sential feature in the solution to the frame problem proposed by Reiter. In-
deed, the fact that, for example, there is no other possibility to change the
position of an object than to perform the action move can be represented
by: VsVaVx(position(x,s) A mposition(z,do(a, s)) = a = move). To intuitively
present how the solution to the frame problem can be extended to epistemic
logic, we use the following scenario.

Let’s consider a simple robot that can move forward (action adv) or back-
ward (action rev) along a railtrack. Performance of actions adv or rev changes
his position of one distance unit. There may be obstacles on the railtrack, like
branches of trees that have fallen. Suppose the robot is moving during the night
and there is a pilot in the robot. The pilot can recognise obstacles, provided he
has switched on a spotlight (action obs.obstacle), and the obstacle is not beyond
the visibility distance d. The spotlight is not always on because it consumes
battery ressources, which are limited. When the robot moves he computes his
new position, and this position is indicated on a screen which can be seen by
the pilot (action inf.position(xz)). The pilot performs the action inf.position(x)
before the action obs.obstacle in order to know his position and to determine the
position of visible obstacles, if there are. The pilot can inform the robot about
the existence of an obstacle at # (action inf.obstacle(z)), and the robot stops if
he knows that there is an obstacle in a short distance sd.

We see that the description of this scenario involves evolution of the world
and evolution of what the pilot and the robot believe 2. We first show how the
frame problem can be solved if we only consider evolution of the world.

For each fluent, two axioms define the positive effects or the negative effects of
the actions. For instance, for the fluent position(z, s), the effect of performing the
action adv (respectively rev) when the robot is at the position  —1 (respectively
z+1) in the situation s, is that it is at the position z in the situation do(a, s) 3:

(1) (a = adv A position(x — 1,s) V a = rev A position(x + 1,s)) —
position(x, do(a, s))

The negative effect axiom expresses that if the robot i1s at the position z in
the situation s and he performs either the action adv or the action rev, then in
the situation do(a, s) he is no more at the position #:

2 We have no room here to give a complete formal description of this scenario. Also,
some assumptions are not perfectly realistic, but we mainly want to show how such
scenarios can be formalised.

® All the variables are implicitly universally quantified.



(2) (a = advVa=rev) A position(x, s) = —position(x, do(a, s))

One of the most important features to solve the frame problem in the ap-
proach presented in [Rei99] is the “causal completeness assumption”. This as-
sumption expresses that the positive effect axioms and the negative effect axioms
“characterize all the conditions underwhich action a can cause the fluent position
to become true (respectively false) in the successor situation”. If, in addition to
(1) and (2), we accept this assumption, then we have (see axiom (G2) for the
general form):

(3) position(z,do(a, s)) ¢ [a = advAposition(x—1, s)Va = revAposition(z+
1, )] V position(z, s) A —[(a = adv V a = rev) A position(z, s)]

This axiom defines the objective representation of the evolution of the world.
If we want to define the subjective representation of the evolution of the world,
we can extend the language with epistemic modal operators. For that purpose,
we introduce modal operators like B, such that B, ¢ is intended to mean that the
robot r believes that ¢ holds in the present situation. To represent, in a similar
approach, the evolution of what the robot believes, we have to consider four
effect axioms for each fluent. For example, for the fluent position(x, s), there are
four distinct possible attitudes of the robot which are formally represented by:
By position(z, s), 7 Byposition(z, s), Br-position(z,s) and = B,—position(z, s).
The corresponding axioms (4), (5), (6) and (7) are given below.

The effect of performing action adv (respectively rev) when the robot believes
that he is at the position & — 1 (respectively # + 1) in the situation s is that he
believes that he is at the position # in the situation do(a, s):

(4) (a = adv A Brposition(x — 1,5) V a = rev A Byposition(x + 1,5)) —
By position(x, do(a, s))

The effect of performing either action adv or rev when the robot believes
that he is at the position x in the situation s is that he does not believe that he
is at the position z in the situation do(a, s):

(5) (a = advV a = rev) A Bpposition(z,s) — - Byposition(z, do(a, s))

We have two similar axioms to define the attitude of the robot with respect
to the fact that he believes that he is not at the position x in the situation
do(a, s):

(6) (a = advVa=rev) A Bpposition(z,s) — By-position(x,do(a, s))

(7) (a = adv A Brposition(x — 1,5) V a = rev A Byposition(x + 1,5)) —
- By—position(x, do(a, s))

If we extend the causal completeness assumptions to the robot’s beliefs, we
get, after some simplifications, the two axioms (8) and (9) (see axioms (G3) and
(G4) for the general form):

(8) Byposition(z,do(a,s)) & [a = adv A Byposition(x — 1,s) Va = rev A
Byposition(x+1, s)|V By position(z, s)A—[(a = advVa = rev) A B, position(xz, s)]

(9) Br—position(z,do(a,s)) < [(a = adv V a = rev) A Byposition(z,s)| V
B, —position(x, s) A—[a = adv A Brposition(x —1,5) V a = rev A Bpposition(x +
1,s)

Notice that in the definition of these axioms we have implicitly assumed that
if the robot performs either the action adv or the action rev, he believes that he



has performed these actions. However, if some action 1s performed by the pilot,
like the action obs.obstacle, the robot is not necessarily informed about this fact.

It 1s interesting to see with this example how the pilot’s beliefs and the robot’s
beliefs about the fluent obstacle may evolve in two different way. We have the
following effect axioms (10), (11), (12) and (13) for this fluent.

If the pilot has switched on the spot light, and there 1s an obstacle at some
position x which is visible by the pilot, then the pilot believes that there is an
obstacle at z * :

(10) a = obs.obstacle A obstacle(xz,s) A position(y,s) Ny <z <y+d—
B, obstacle(x, do(a, 5))

If the pilot has switched on the spot light, and there 1s no obstacle at some
position x which is visible by the pilot, then the pilot does not believe that there
is an obstacle at x:

(11) a = obs.obstacle A —obstacle(x, s) A position(y,s) ANy <z < y+d—
—Bpobstacle(z, do(a, s))

We have two similar effect axioms for —obstacle(z, do(a, s)).

(12) a = obs.obstacle A —obstacle(x, s) A position(y,s) ANy <z < y+d—
B,—obstacle(x, do(a, s))

(13) a = obs.obstacle A obstacle(x,s) A position(y,s) Ny <z < y+d—
- By —obstacle(z, do(a, 5))

Then, from the causal completion assumption we have the axioms (14) and
(15).

(14) Bpobstacle(z, do(a, s)) <> [a = obs.obstacleAobstacle(x, s)Aposition(y, s)
ANy < x < y+d]V Bpobstacle(z,s) A —la = obs.obstacle A —obstacle(z,s) A
position(y,s) Ny <z < y+d]

(15) Bp—obstacle(x,do(a, s)) <> [a = obs.obstacle A—obstacle(xz, s) Aposition
(y,8) Ny <z < y+d]V B,—obstacle(x, s) A—[a = obs.obstacle A obstacle(xz, s) A
position(y,s) Ny <z < y+d]

If the only way for the robot to be informed about the fact that there is an
obstacle at z is to perform the action én f.obstacle(x), then we have the axioms
(16) and (17) below.

(16) Byobstacle(x,do(a,s)) < a = inf.obstacle(x) V Brobstacle(z,s)

(17) By-obstacle(x,do(a, s)) <> Br—obstacle(x,s) A —(a = inf.obstacle(x))

Let’s assume that in the initial situation SO the pilot and the robot both
ignore whether there are obstacles in any places. This is formally represented
by: =3z B,obstacle(x, S0), =3 B,—obstacle(x, S0), =3Iz B,obstacle(x, SO) and
-3z B,—obstacle(x, SO). If in the situation SO there is an obstacle at the position
3, the pilot and the robot have wrong beliefs. If the distance d is equal to 10, after
performance of the action a; = obs.obstacle, the pilot believes that there is an ob-
stacle at the position 3, while the robot ignores that there this an obstacle at the
position 3, i.e. we have: Bpobstacle(3, do(aq, S0)) and =B, obstacle(3, do(a1, S0)).
Finally, if after action a; the pilot performs the action as = inf.obstacle(3),

* As a matter of simplification, it is assumed here that the pilot only looks at obstacles
that are foreward.



the robot and the pilot have the same beliefs about this obstacle. We have:
B obstacle(3, do(as, do(a1, S0))) and B, obstacle(3, do(as, do(aq, S0))).

In fact these actions can be performed only if some preconditions are satisfied.
These preconditions are expressed with a particular predicate Poss (see [Rei99]).
The formula Poss(a, s) means that in the situation s it is possible to perform
the action a. For example, a precondition to perform the action adv 1s that the
robot does not believe that there is an obstacle in a short distance sd, and there
is no obstacle in front of him.

(18) Poss(adv,s) < —3xdy(B,position(x,s) A Brobstacle(y,s) ANy —x <
sd) A =3xJy(position(x, s) A obstacle(y,s) Ny =z + 1)

3 General framework

Now we present the general framework of the extended Situation Calculus. Let L
be a first order language with equality with the constant symbol S0, the function
symbol do, and the predicate symbol Poss. Let Ly be an extension of language
L with modal operators denoted by By, ..., B;,..., where modal operators can
only occur in modal literals. Modal literals are of the form B;l, where [ is a literal
of L, and [ is not formed with equality predicate. Let’s consider the theory
T which contains the following axioms.

Action precondition axioms.

For each action a there is in T an axiom of the form °:
(G1) Poss(a, s) & ma(s)
where 7, 1s a formula in Lay.

Successor state axioms.

For each fluent F' there is in 7" an axiom of the form:
(G2) F(do(a,s)) < I'f(a,s)V F(s) A=I's(a,s)
where F;' and I'y are formulasin L.

Successor belief state axioms.

For each modal operator B; and each fluent I ©, there are in T' two axioms
of the form:
(G3) Bi(F(do(a, 5))) I}t p(a,s) V Bi(F(s) A= p(a,s)
(G4) B;(=F(do(a,s))) & FZ»:F(a, s)V Bi(=F(s)) A —Ti;F(a, s)
where F:F, I p, FZ"';F, and I} p are formulas in L.

We also have in Tyunique name axioms for actions and for situations, and
we assume that modal operators obey the (KD) logic (see [Che88]).

® As a matter of simplification the arguments of function symbols are not explicited,
and, for fluents, the only argument which is explicited is the situation. For instance,
we could have a(z,) and F(z1,x2,s). Also, it is assumed that all the free variables
are universally quantified.

6 To avoid to have equality in the scope of modal operators, we assume that fluent
functions are expressed via fluent predicates, i.e. y = f(z, s) is expressed by F(y, z, s).



Moreover, it is assumed that for each fluent F' we have 7
(H1) b T = V-(IEATE)

(H2) FT — V_‘(F:,F AT p)

(H3) FT —=V~(I;f p AT )

(H4) ET =V~ p AT )

(H5) T —=V(Bi(F(s ))/\F"’F—)F »)

(H6) T —VY(Bi(=F(s ))/\F"’F—)F_

The three assumptions (H4), (H5) and (H6) guarantee that if agents’ beliefs
are consistent in the intial state, they are consistent in all the successor states.

It can easily be shown that, if we have (H1), in the context of the theory T,
successor state axioms like (G2) are equivalent to the conjunction of properties
(A1), (A2), (A3), and (A4).

(A1) I'f(a,s) = F(do(a,s))

(A2) I't (a,5) = —F(do(a, s))

(A3) ~I'p(a,s) = [F(s) = F(do(a, s))]
(Ad) ~I'f(a,s) = [=F(s) = =F(do(a, s))]

In a similar way we have shown that, if we have (H2) and (H3), in the context
of the theory T, successor belief state axioms of the form (G3) (resp. (G4)) are
equivalent to the conjunction of properties (B1), (B2), (B3) and (B4) (resp. (Cl1),
(C2), (C3) and (C4)).

F";F(a, s) = B;(F(do(a, s)))
I3, p(a,5) = = Bi(F(dofa, 5)))

FZ»:F(a, s) = B;(—=F(do(a, s)))

I pla,s) = —=B;(—=F(do(a, s)))

L p(a,8) = [Bi(=F(s)) = Bi(=F(do(a, 5)))]
C4) ~IF pla,5) > [FBi(=F(s)) — ~Bi(~F(do(a, 5)))]

Propefties (B3) and (C3) show that positive beliefs remain unchanged after
performance of an action as long as =I} (a,s) and =[] .(a,s) holds. Prop-
erties (B4) and (C4) show that negative beliefs remain unchanged after perfor-
mance of an action as long as ﬁFiTVF(a, s) and —|FZ»:F(a, s) holds.

)
)
)
B4) ﬁfff,F(a,S) [=Bi(F(s)) = ~Bi(F(do(a, 5)))]
)
)
)

Definition1l. Regression operator. We define a regression operator Ry from
formulas in Lps to formulas in Lay.

1. When W is a non fluent atom, including equality atoms, or when W is a
fluent atom whose situation argument is the constant S0, Rp[W] = W.

2. When W is an atom formed with fluent F' of the form F(t, do(a, o)) whose
successor state axiom in T'is ® VaVsVx[F(x, do(a, s)) <+ ®p] then:

7 Here, we use the symbol V to denote the universal closure of all the free variables in
the scope of V.

8 We use the notation x for the tuple of variables #1,...,%n, and ¥x for Vo1 ... Vap;
Sr.{x/t,a/a,s/oc} denotes the result of the application of the substitution
{x/t,a/a,s/o} to formula @p.



Rp[F(t,do(e,0))] = Re[®r{x/t,a/ca,s/c}]

3. When W is an atom of the form Poss(a(t), o), whose action precondition
axiom is Vs¥x Poss(a(x), o) < [T4(x,s) then:

Rp[Poss(a(t), s)] = Re[l.(x,s){x/t,s/c}]

4. When W is a modal literal of the form B;(F (¢, do(«, o)) or B; (—F (¢,
do(ev, o)) whose successor belief state axiomsin T are VaVsVx[B; (F(x, do(a, s)))
< @;, r| and YaVsVx[B;(—F(x,do(a, s))) < D;, p| then:

Rrp[B;(F(t,do(e,0)))] = Rr[®;, r{x/t,a/a,s/c}] and

Rrp[Bi(—F(t,do(a,0)))] = Rr[®i, r.{x/t,a/a,s/c}]

5. When W is a formula in Ly %, Rp[-W] = =Rp[W] and Rp[FaW] =

6. When W, and W are formulas in Lys, Rp[W1V Wa] = Rp[Wh]V Rp[Wa].

Theorem 2. Let Ty be a set of closed sentences in Lyr, without Poss predicate,
and whose situation argument in fluents is S0. Let Ty, be the set of precondition
artoms and of successor axioms for the fluents of a given application. Let T,
be the set of unique name axioms. We use notations T = T, U Tss U Ty and
T =T, UTy. Let R5(¢) be the result of repeated applications of Ry until the
result is unchanged. Let sg be a ground situation term.

We have =T — W(sg) iff 0 T" — R%[W (540 )]

For the proof we can use the same technique as Scherl and Levesque in [SL93],
but the proof is much more simple because we do not have explicit accessibility
relation to represent modal operators (see next section).

This theorem shows that to prove W in situation s, comes to prove R[]
in situation S0, droping axioms of the kind (G1), (G2), (G3) and (G4).

Theorem 2 can be used for different purposes. The most important of them,
as mentioned by Reiter in [Rei99], is to check whether a given sequence of ac-
tions 1s executable, in the sense that after performing any of these actions, the
preconditions to perform the next action are satisfied. Another one, is to check
whether some property holds after performance of a given sequence of actions.
These two features are essential for plan generation.

We also have the following theorem.

Theorem 3. Let A be a formula of the form F, B;F or B;—F, where F 1s
an atom formed with a fluent predicate. Let T be a theory such that for every
successor axiom of the form: A(x,do(a,s)) « I'T(x,a,s)VA(x, s)A\=I'] (x,a,s),
there is no other variable that occurs in Fj{ or I'} than the variables in x, or a
or s. Let ¢(s) be a formula in Ly such that the only variable that occurs in ¢
is s.

If for every ground formula A(S0) we have either F T — A(S0) or - T —
—A(S0), then, for every ground situation term sg, , which is a successor situation

of S0, we have either =T — ¢(s4:) or BT — 2¢(s4).

® The definition of Ry for universal quantifier V, conjunction A, implication — and
equivalence <, is directly obtained from the usual definitions of these quantifier and
logical connectives in function of 3, = and V.



The proof i1s by induction on the complexity of the formula ¢ in S0, and by
induction on the depth of the term s,.. Theorem 3 intuitively says that if we
have a complete description of what the agents believe in S0, then we have a
complete description of their beliefs in every successor situation.

4 Related works

In [SL93] Scherl and Levesque have defined an extension of Situation Calculus to
Epistemic Logic for a unique modal operator, but without any restriction about
formulas that are in the scope of the modal operator.

In their approach, the first idea is to define the modal operator Knows in
terms of an accessibility relation K which is explicitly represented in the ax-

iomatics. Formally, they have: Knows(¢, s) def Vs (K(s',s) = ¢(s’)). The sec-
ond idea 1s to define knowledge change by defining accessibility relation change.
Moreover, two kinds of actions are distinguished: knowledge-producing actions,
denoted by «q,...,a,, and non-knowledge-producing actions. Each action «;
informs the agent in the situation do(«;, s) about the fact that some formula p;
is true or false in the situation s. It is assumed that the action a; does not change
the state of the world. From a technical point of view, after the performance of
action oy, relation K selects, in the situation do(«;, s), those situations where p;
has the same truth value as it has in the situation s. For instance, if p; is true
in s, then situations s’, which are accessible from s and where p; is false, are
no more accessible from do(e;, s). Notice that if p; is false in all the situations
which are accessible from s, there is no situation accessible from do(«;, s). That
means that the agent believes any formula.

This problem disappear in the logical framework presented by Shapiro et al.
in [SPLOQ], where a plausibility degree pl(s) is assigned to all the situations. From

the accessibility relation B(s’,s), an accessibility relation Byqz(s', ) between s
def

and the most plausible situations can be defined by Bpes(s',s) = B(s',s) A
Vs"(B(s",s) = pl(s') < pl(s")). Then, the fact that an agent believes ¢ in s
def

is defined as Bel(¢,s) = Vs'(Bmaz(s',s) = ¢(s')). Here, an agent can consis-
tently believe ¢ in do(a, s), while he believed —¢ in s, provided there exists at
least one most plausible situation related to do(a, s) where ¢ holds.

For a non-knowledge-producing action a, it is assumed that knowledge changes
in the same way as the world does. That is, if a situation s’ is accessible from
s, the situation do(a, s) is accessible from do(a, s) as well. In formal terms, the
evolution of relation K is defined by the following axiom '0:

Poss(a, s) —

[K(s",do(a,s)) < IsS'K(s',s) As" =do(a,s’) A Poss(a,s')A
(Hla=a1)) A Aa(a=ap))V

a=oa1 A (pi(s) & pi(s))V

0 = an A (pn(5) € p(s')))]

9 In fact, condition Poss(a,s’) is not present in [SL93], it was added in [LL9S8].



This successor axiom does not explicitly define which formulas are true or
false in do(a,s’). From the examples presented in their paper we understand
that the truth value of formulas in situations like s’ is defined by the successor
state axioms of the type (G2). That implicitly means that: i) whenever some
action has been performed the agent knows that this action has been performed,
ii) the agents knows the effects of all the actions, i.e he knows all the successor
state axioms, and iii) when the agent get information through a knowledge-
producing action, this information is always true information, in the sense that
this information is true in the situation s where he is.

How this formalisation could be extended to the context of multi-agents? The
fact 1) cannot be accepted in general. We can accept that an agent knows that
an action has been performed when it has been performed by himself, but not
necessarily when it has been performed by another agent. This problem could
be solved by defining as many accessibility relations K; as there are distinct
agents, and by distinguishing for each agent those actions 41, ..., 3, which are
performed by the agent ¢. For an action « which is neither of the sort 3; nor
ay, the fact that knowledge does not change can be represented by the fact that
accessible situations from do(a, s) are the same as accessible situations from s.
That could lead to successor axioms for each relation K; of the form:

Poss(a, s) —

[Ki(s",do(a,s)) &

(Ki(s",s)A=(a=a1) A A (a=ap) A-(a=B1) A .. A=(a= Fn))V
(3’ K;(s',8) Ns" =do(a,s') A Poss(a, s’ )A

( :61\/...\/a:6m\/

a=a1 A(pi(s) < pi(s))V

a=anA(pa(s) < pa(s')))]

However, even with this extension there are still the problems related to ii)
and iii). For ii), the problems is that in real situations agents may have wrong
beliefs about the the evolution of the world. For instance, an agent may believe
that droping a fragile object make it broken, while another agent may believe
that the object is not necessarily broken, depending on his weight or on other
particular circumstances. This raises the question of how to represent in this
framework different evolutions of the world in the context of different agents
beliefs? May be a possible answer 1s to have different successor state axioms, for
the same fluent, to represent the “true” evolution of the world, and to represent
the evolution of the world in the context of each agent’s beliefs. That is, more or
less, the idea we have proposed in this paper with the axioms of the type (G3)
and (G4).

For iii), the problem is that there are applications where agents may receive
information from different sensors, or from other agents, some of them are not
necessarily reliable and may communicate wrong information. Here again, we
believe that axioms like (G3) and (G4) are a possible solution, because they
allow us to represent communication actions whose consequences are to generate
wrong agents beliefs.



5 Conclusion

In conclusion, we have presented a general framework to solve the frame problem
in the context of a limited extension of Situation Calculus to Epistemic logic.
Even if for this solution strong restrictions are imposed on the language Ly, we
can express non trivial properties like: VsV (B, position(x, s) — position(z, s)),
which means that in every situation the robot has true beliefs about his position,
or VsVa(B,obstacle(z, s) — Bpobstacle(z, s)), which means that the robot’s be-
liefs about obstacles are a subset of the pilot’s beliefs about obstacles. Also, since
in the (KD) logics we have B; (I Al') 4 Byl A B;l', it would be a trivial extension
to Las to allow conjunction of literals in the scope of modal operators. Finally,
the regression operator Ry allows us to check whether these kinds of properties
can be derived from 7. The implementation of a modal theorem prover for the
restricted language L should not be a big issue. We are currently working on
this aspect.
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