
A simple and tractable extension of SituationCalculus to Epistemic LogicRobert Demolombe and Maria del Pilar Pozos Parra ?ONERA Toulouse, France1 IntroductionThe frame problem and the representation of knowledge change have deserved alot of works. In particular, at the Cognitive Robotics Group, at Toronto, severalresearchers in the last ten years have produced quite interesting papers in a uni-form logical framework based on Situation Calulus [Rei91, SL93, LR94, LL98]. In[Rei91] Reiter has proposed a simple solution to the frame problem. Scherl andLevesque in [SL93] have de�ned an extension to Epistemic Logic to representknowledge dynamics in contexts where some actions may produce knowledge,like, for instance, sensing actions for a robot. This approach has been extendedby Lakemeyer and Levesque in [LL98] to modal operators of the kind \I knowand only know". Also, they have given a formal semantics and axiomatics, andthey proved soundness and completeness of the axiomatics.These extensions to Epistemic Logic o�er a large expressive power. Indeed,there is no restriction on formulas in the scope of modal operators. However, theyhave lost the simplicity of the solution to the frame problem initially proposed in[Rei91], and the possibility to �nd a tractable implementation of these extensionsis far to be obvious. As far as we know, at the present time there is no suchimplementation.In this paper a simple extension to Epistemic Logic of Reiter's initial solutionis presented that could easily be implemented. In exchange we have to acceptstrong restrictions on the expressive power of the epistemic part of the logicalframework. However, we believe that for a large class of applications these re-strictions are not real limitations. In the following intuitive ideas of the proposedsolution are presented with a simple example. Then, we give the general logicalframework, and, �nally a comparison is made with the solutions that we havementioned before.2 The frame problem in the context of extended situationcalculus: an exampleSituation Calculus [McC68, Rei99] is a sort of classical �rst order logic wherepredicates may have an argument (the last argument) of a particular sort, which? ONERA/CERT, 2 Avenue E. Belin B.P. 4025, 31055 Toulouse Cedex, France. e-mail:fdemolomb,pozosg@cert.fr.



is called a \situation"; these predicates are called \
uents". This argument isintended to represent the sequence of actions which have been performed fromthe initial state to the current state. A situation is syntactically represented bya term of the form do(a; s) where a denotes an action, and s denotes a situation.The initial situation is denoted by S0.For instance, position(x; s) represents the fact that a given object is atthe position x in the situation s. Action variables and situation variables canbe quanti�ed. For instance, :9s(position(2; s)) represents the fact that in nosituation a given object is at the position 2. Action quanti�cation is an es-sential feature in the solution to the frame problem proposed by Reiter. In-deed, the fact that, for example, there is no other possibility to change theposition of an object than to perform the action move can be representedby: 8s8a8x(position(x; s) ^ :position(x; do(a; s)) ! a = move). To intuitivelypresent how the solution to the frame problem can be extended to epistemiclogic, we use the following scenario.Let's consider a simple robot that can move forward (action adv) or back-ward (action rev) along a railtrack. Performance of actions adv or rev changeshis position of one distance unit. There may be obstacles on the railtrack, likebranches of trees that have fallen. Suppose the robot is moving during the nightand there is a pilot in the robot. The pilot can recognise obstacles, provided hehas switched on a spotlight (action obs:obstacle), and the obstacle is not beyondthe visibility distance d. The spotlight is not always on because it consumesbattery ressources, which are limited. When the robot moves he computes hisnew position, and this position is indicated on a screen which can be seen bythe pilot (action inf:position(x)). The pilot performs the action inf:position(x)before the action obs:obstacle in order to know his position and to determine theposition of visible obstacles, if there are. The pilot can inform the robot aboutthe existence of an obstacle at x (action inf:obstacle(x)), and the robot stops ifhe knows that there is an obstacle in a short distance sd.We see that the description of this scenario involves evolution of the worldand evolution of what the pilot and the robot believe 2. We �rst show how theframe problem can be solved if we only consider evolution of the world.For each 
uent, two axioms de�ne the positive e�ects or the negative e�ects ofthe actions. For instance, for the 
uent position(x; s), the e�ect of performing theaction adv (respectively rev) when the robot is at the position x�1 (respectivelyx+1) in the situation s, is that it is at the position x in the situation do(a; s) 3:(1) (a = adv ^ position(x � 1; s) _ a = rev ^ position(x + 1; s))!position(x; do(a; s))The negative e�ect axiom expresses that if the robot is at the position x inthe situation s and he performs either the action adv or the action rev, then inthe situation do(a; s) he is no more at the position x:2 We have no room here to give a complete formal description of this scenario. Also,some assumptions are not perfectly realistic, but we mainly want to show how suchscenarios can be formalised.3 All the variables are implicitly universally quanti�ed.



(2) (a = adv _ a = rev) ^ position(x; s)! :position(x; do(a; s))One of the most important features to solve the frame problem in the ap-proach presented in [Rei99] is the \causal completeness assumption". This as-sumption expresses that the positive e�ect axioms and the negative e�ect axioms\characterize all the conditions underwhich action a can cause the 
uent positionto become true (respectively false) in the successor situation". If, in addition to(1) and (2), we accept this assumption, then we have (see axiom (G2) for thegeneral form):(3) position(x; do(a; s))$ [a = adv^position(x�1; s)_a = rev^position(x+1; s)]_ position(x; s) ^ :[(a = adv _ a = rev) ^ position(x; s)]This axiom de�nes the objective representation of the evolution of the world.If we want to de�ne the subjective representation of the evolution of the world,we can extend the language with epistemic modal operators. For that purpose,we introduce modal operators likeBr , such that Br� is intended to mean that therobot r believes that � holds in the present situation. To represent, in a similarapproach, the evolution of what the robot believes, we have to consider foure�ect axioms for each 
uent. For example, for the 
uent position(x; s), there arefour distinct possible attitudes of the robot which are formally represented by:Brposition(x; s), :Brposition(x; s), Br:position(x; s) and :Br:position(x; s).The corresponding axioms (4), (5), (6) and (7) are given below.The e�ect of performing action adv (respectively rev) when the robot believesthat he is at the position x� 1 (respectively x+ 1) in the situation s is that hebelieves that he is at the position x in the situation do(a; s):(4) (a = adv ^ Brposition(x � 1; s) _ a = rev ^ Brposition(x + 1; s)) !Brposition(x; do(a; s))The e�ect of performing either action adv or rev when the robot believesthat he is at the position x in the situation s is that he does not believe that heis at the position x in the situation do(a; s):(5) (a = adv _ a = rev) ^Brposition(x; s)! :Brposition(x; do(a; s))We have two similar axioms to de�ne the attitude of the robot with respectto the fact that he believes that he is not at the position x in the situationdo(a; s):(6) (a = adv _ a = rev) ^Brposition(x; s)! Br:position(x; do(a; s))(7) (a = adv ^ Brposition(x � 1; s) _ a = rev ^ Brposition(x + 1; s)) !:Br:position(x; do(a; s))If we extend the causal completeness assumptions to the robot's beliefs, weget, after some simpli�cations, the two axioms (8) and (9) (see axioms (G3) and(G4) for the general form):(8) Brposition(x; do(a; s)) $ [a = adv ^ Brposition(x � 1; s) _ a = rev ^Brposition(x+1; s)]_Brposition(x; s)^:[(a = adv_a = rev)^Brposition(x; s)](9) Br:position(x; do(a; s)) $ [(a = adv _ a = rev) ^ Brposition(x; s)] _Br:position(x; s)^:[a = adv^Brposition(x� 1; s)_ a = rev ^Brposition(x+1; s)]Notice that in the de�nition of these axioms we have implicitly assumed thatif the robot performs either the action adv or the action rev, he believes that he



has performed these actions. However, if some action is performed by the pilot,like the action obs:obstacle, the robot is not necessarily informed about this fact.It is interesting to see with this example how the pilot's beliefs and the robot'sbeliefs about the 
uent obstacle may evolve in two di�erent way. We have thefollowing e�ect axioms (10), (11), (12) and (13) for this 
uent.If the pilot has switched on the spot light, and there is an obstacle at someposition x which is visible by the pilot, then the pilot believes that there is anobstacle at x 4 :(10) a = obs:obstacle ^ obstacle(x; s) ^ position(y; s) ^ y � x � y + d !Bpobstacle(x; do(a; s))If the pilot has switched on the spot light, and there is no obstacle at someposition x which is visible by the pilot, then the pilot does not believe that thereis an obstacle at x:(11) a = obs:obstacle ^ :obstacle(x; s) ^ position(y; s) ^ y � x � y + d !:Bpobstacle(x; do(a; s))We have two similar e�ect axioms for :obstacle(x; do(a; s)).(12) a = obs:obstacle ^ :obstacle(x; s) ^ position(y; s) ^ y � x � y + d !Bp:obstacle(x; do(a; s))(13) a = obs:obstacle ^ obstacle(x; s) ^ position(y; s) ^ y � x � y + d !:Bp:obstacle(x; do(a; s))Then, from the causal completion assumption we have the axioms (14) and(15).(14) Bpobstacle(x; do(a; s))$ [a = obs:obstacle^obstacle(x; s)^position(y; s)^ y � x � y + d] _ Bpobstacle(x; s) ^ :[a = obs:obstacle ^ :obstacle(x; s) ^position(y; s) ^ y � x � y + d](15) Bp:obstacle(x; do(a; s))$ [a = obs:obstacle^:obstacle(x; s)^position(y; s) ^ y � x � y+ d]_Bp:obstacle(x; s)^:[a = obs:obstacle ^ obstacle(x; s)^position(y; s) ^ y � x � y + d]If the only way for the robot to be informed about the fact that there is anobstacle at x is to perform the action inf:obstacle(x), then we have the axioms(16) and (17) below.(16) Brobstacle(x; do(a; s))$ a = inf:obstacle(x) _Brobstacle(x; s)(17) Br:obstacle(x; do(a; s))$ Br:obstacle(x; s) ^ :(a = inf:obstacle(x))Let's assume that in the initial situation S0 the pilot and the robot bothignore whether there are obstacles in any places. This is formally representedby: :9xBrobstacle(x; S0), :9xBr:obstacle(x; S0), :9xBpobstacle(x; S0) and:9xBp:obstacle(x; S0). If in the situation S0 there is an obstacle at the position3, the pilot and the robot have wrong beliefs. If the distance d is equal to 10, afterperformance of the action a1 = obs:obstacle, the pilot believes that there is an ob-stacle at the position 3, while the robot ignores that there this an obstacle at theposition 3, i.e. we have:Bpobstacle(3; do(a1; S0)) and :Brobstacle(3; do(a1; S0)).Finally, if after action a1 the pilot performs the action a2 = inf:obstacle(3),4 As a matter of simpli�cation, it is assumed here that the pilot only looks at obstaclesthat are foreward.



the robot and the pilot have the same beliefs about this obstacle. We have:Bpobstacle(3; do(a2; do(a1; S0))) and Brobstacle(3; do(a2; do(a1; S0))).In fact these actions can be performed only if some preconditions are satis�ed.These preconditions are expressed with a particular predicate Poss (see [Rei99]).The formula Poss(a; s) means that in the situation s it is possible to performthe action a. For example, a precondition to perform the action adv is that therobot does not believe that there is an obstacle in a short distance sd, and thereis no obstacle in front of him.(18) Poss(adv; s) $ :9x9y(Brposition(x; s) ^ Brobstacle(y; s) ^ y � x �sd) ^ :9x9y(position(x; s) ^ obstacle(y; s) ^ y = x+ 1)3 General frameworkNow we present the general framework of the extended Situation Calculus. Let Lbe a �rst order language with equality with the constant symbol S0, the functionsymbol do, and the predicate symbol Poss. Let LM be an extension of languageL with modal operators denoted by B1; : : : ; Bi; : : :, where modal operators canonly occur in modal literals. Modal literals are of the formBil, where l is a literalof L, and l is not formed with equality predicate. Let's consider the theoryT which contains the following axioms.Action precondition axioms.For each action a there is in T an axiom of the form 5:(G1) Poss(a; s)$ �a(s)where �a is a formula in LM .Successor state axioms.For each 
uent F there is in T an axiom of the form:(G2) F (do(a; s))$ �+F (a; s) _F (s) ^ :��F (a; s)where �+F and ��F are formulas in L.Successor belief state axioms.For each modal operator Bi and each 
uent F 6, there are in T two axiomsof the form:(G3) Bi(F (do(a; s)))$ �+i1;F (a; s) _Bi(F (s)) ^ :��i1;F (a; s)(G4) Bi(:F (do(a; s)))$ �+i2;F (a; s) _Bi(:F (s)) ^ :��i2;F (a; s)where �+i1;F , ��i1;F , �+i2;F , and ��i2;F are formulas in LM .We also have in T unique name axioms for actions and for situations, andwe assume that modal operators obey the (KD) logic (see [Che88]).5 As a matter of simpli�cation the arguments of function symbols are not explicited,and, for 
uents, the only argument which is explicited is the situation. For instance,we could have a(x1) and F (x1; x2; s). Also, it is assumed that all the free variablesare universally quanti�ed.6 To avoid to have equality in the scope of modal operators, we assume that 
uentfunctions are expressed via 
uent predicates, i.e. y = f(x;s) is expressed by F (y; x; s).



Moreover, it is assumed that for each 
uent F we have 7:(H1) ` T ! 8:(�+F ^ ��F )(H2) ` T ! 8:(�+i1;F ^ ��i1;F )(H3) ` T ! 8:(�+i2;F ^ ��i2;F )(H4) ` T ! 8:(�+i1;F ^ �+i2;F )(H5) ` T ! 8(Bi(F (s)) ^ �+i2;F ! ��i1;F )(H6) ` T ! 8(Bi(:F (s)) ^ �+i1;F ! ��i2;F )The three assumptions (H4), (H5) and (H6) guarantee that if agents' beliefsare consistent in the intial state, they are consistent in all the successor states.It can easily be shown that, if we have (H1), in the context of the theory T ,successor state axioms like (G2) are equivalent to the conjunction of properties(A1), (A2), (A3), and (A4).(A1) �+F (a; s)! F (do(a; s))(A2) ��F (a; s)! :F (do(a; s))(A3) :��F (a; s)! [F (s)! F (do(a; s))](A4) :�+F (a; s)! [:F (s)! :F (do(a; s))]In a similar way we have shown that, if we have (H2) and (H3), in the contextof the theory T , successor belief state axioms of the form (G3) (resp. (G4)) areequivalent to the conjunction of properties (B1), (B2), (B3) and (B4) (resp. (C1),(C2), (C3) and (C4)).(B1) �+i1;F (a; s)! Bi(F (do(a; s)))(B2) ��i1;F (a; s)! :Bi(F (do(a; s)))(B3) :��i1;F (a; s)! [Bi(F (s))! Bi(F (do(a; s)))](B4) :�+i1;F (a; s)! [:Bi(F (s))! :Bi(F (do(a; s)))](C1) �+i2;F (a; s)! Bi(:F (do(a; s)))(C2) ��i2;F (a; s)! :Bi(:F (do(a; s)))(C3) :��i2;F (a; s)! [Bi(:F (s))! Bi(:F (do(a; s)))](C4) :�+i2;F (a; s)! [:Bi(:F (s))! :Bi(:F (do(a; s)))]Properties (B3) and (C3) show that positive beliefs remain unchanged afterperformance of an action as long as :��i1;F (a; s) and :��i2;F (a; s) holds. Prop-erties (B4) and (C4) show that negative beliefs remain unchanged after perfor-mance of an action as long as :�+i1;F (a; s) and :�+i2;F (a; s) holds.De�nition1. Regression operator.We de�ne a regression operator RT fromformulas in LM to formulas in LM .1. When W is a non 
uent atom, including equality atoms, or when W is a
uent atom whose situation argument is the constant S0, RT [W ] = W .2. When W is an atom formed with 
uent F of the form F (t; do(�; �)) whosesuccessor state axiom in T is 8 8a8s8x[F (x; do(a; s))$ �F ] then:7 Here, we use the symbol 8 to denote the universal closure of all the free variables inthe scope of 8.8 We use the notation x for the tuple of variables x1; : : : ; xn, and 8x for 8x1 : : :8xn;�F :fx=t; a=�; s=�g denotes the result of the application of the substitutionfx=t; a=�; s=�g to formula �F .



RT [F (t; do(�; �))] = RT [�F :fx=t; a=�; s=�g]3. When W is an atom of the form Poss(�(t); �), whose action preconditionaxiom is 8s8xPoss(�(x); �)$ ��(x; s) then:RT [Poss(�(t); s)] = RT [��(x; s):fx=t; s=�g]4. When W is a modal literal of the form Bi(F (t; do(�; �))) or Bi(:F (t;do(�; �))) whose successor belief state axioms in T are 8a8s8x[Bi(F (x; do(a; s)))$ �i1;F ] and 8a8s8x[Bi(:F (x; do(a; s)))$ �i2;F ] then:RT [Bi(F (t; do(�; �)))] = RT [�i1;F :fx=t; a=�; s=�g] andRT [Bi(:F (t; do(�; �)))] = RT [�i2;F :fx=t; a=�; s=�g]5. When W is a formula in LM 9, RT [:W ] = :RT [W ] and RT [9xW ] =9xRT [W ].6. When W1 and W2 are formulas in LM , RT [W1_W2] = RT [W1]_RT [W2].Theorem2. Let T0 be a set of closed sentences in LM , without Poss predicate,and whose situation argument in 
uents is S0. Let Tss be the set of preconditionaxioms and of successor axioms for the 
uents of a given application. Let Tube the set of unique name axioms. We use notations T = Tu [ Tss [ T0 andT 0 = Tu [ T0. Let R�T (�) be the result of repeated applications of RT until theresult is unchanged. Let sgr be a ground situation term.We have ` T !W (sgr) i� ` T 0 ! R�T [W (sgr)]For the proof we can use the same technique as Scherl and Levesque in [SL93],but the proof is much more simple because we do not have explicit accessibilityrelation to represent modal operators (see next section).This theorem shows that to prove W in situation sgr comes to prove R�T [W ]in situation S0, droping axioms of the kind (G1), (G2), (G3) and (G4).Theorem 2 can be used for di�erent purposes. The most important of them,as mentioned by Reiter in [Rei99], is to check whether a given sequence of ac-tions is executable, in the sense that after performing any of these actions, thepreconditions to perform the next action are satis�ed. Another one, is to checkwhether some property holds after performance of a given sequence of actions.These two features are essential for plan generation.We also have the following theorem.Theorem3. Let A be a formula of the form F , BiF or Bi:F , where F isan atom formed with a 
uent predicate. Let T be a theory such that for everysuccessor axiom of the form: A(x; do(a; s))$ �+A (x; a; s)_A(x; s)^:��A (x; a; s),there is no other variable that occurs in �+A or ��A than the variables in x, or aor s. Let �(s) be a formula in LM such that the only variable that occurs in �is s.If for every ground formula A(S0) we have either ` T ! A(S0) or ` T !:A(S0), then, for every ground situation term sgr , which is a successor situationof S0, we have either ` T ! �(sgr) or ` T ! :�(sgr).9 The de�nition of RT for universal quanti�er 8, conjunction ^, implication ! andequivalence $, is directly obtained from the usual de�nitions of these quanti�er andlogical connectives in function of 9, : and _.



The proof is by induction on the complexity of the formula � in S0, and byinduction on the depth of the term sgr . Theorem 3 intuitively says that if wehave a complete description of what the agents believe in S0, then we have acomplete description of their beliefs in every successor situation.4 Related worksIn [SL93] Scherl and Levesque have de�ned an extension of Situation Calculus toEpistemic Logic for a unique modal operator, but without any restriction aboutformulas that are in the scope of the modal operator.In their approach, the �rst idea is to de�ne the modal operator Knows interms of an accessibility relation K which is explicitly represented in the ax-iomatics. Formally, they have: Knows(�; s) def= 8s0(K(s0; s) ! �(s0)). The sec-ond idea is to de�ne knowledge change by de�ning accessibility relation change.Moreover, two kinds of actions are distinguished: knowledge-producing actions,denoted by �1; : : : ; �n, and non-knowledge-producing actions. Each action �iinforms the agent in the situation do(�i; s) about the fact that some formula piis true or false in the situation s. It is assumed that the action �i does not changethe state of the world. From a technical point of view, after the performance ofaction �i, relation K selects, in the situation do(�i; s), those situations where pihas the same truth value as it has in the situation s. For instance, if pi is truein s, then situations s0, which are accessible from s and where pi is false, areno more accessible from do(�i; s). Notice that if pi is false in all the situationswhich are accessible from s, there is no situation accessible from do(�i; s). Thatmeans that the agent believes any formula.This problem disappear in the logical framework presented by Shapiro et al.in [SPL00], where a plausibility degree pl(s) is assigned to all the situations. Fromthe accessibility relation B(s0; s), an accessibility relation Bmax(s0; s) between sand the most plausible situations can be de�ned by Bmax(s0; s) def= B(s0; s) ^8s00(B(s00; s) ! pl(s0) � pl(s00)). Then, the fact that an agent believes � in sis de�ned as Bel(�; s) def= 8s0(Bmax(s0; s) ! �(s0)). Here, an agent can consis-tently believe � in do(a; s), while he believed :� in s, provided there exists atleast one most plausible situation related to do(a; s) where � holds.For a non-knowledge-producing action a, it is assumed that knowledge changesin the same way as the world does. That is, if a situation s0 is accessible froms, the situation do(a; s0) is accessible from do(a; s) as well. In formal terms, theevolution of relation K is de�ned by the following axiom 10:Poss(a; s) ![K(s00; do(a; s))$ 9s0K(s0; s) ^ s00 = do(a; s0) ^Poss(a; s0)^((:(a = �1) ^ : : :^ :(a = �n))_a = �1 ^ (p1(s)$ p1(s0))_: : :a = �n ^ (pn(s)$ pn(s0)))]10 In fact, condition Poss(a;s0) is not present in [SL93], it was added in [LL98].



This successor axiom does not explicitly de�ne which formulas are true orfalse in do(a; s0). From the examples presented in their paper we understandthat the truth value of formulas in situations like s00 is de�ned by the successorstate axioms of the type (G2). That implicitly means that: i) whenever someaction has been performed the agent knows that this action has been performed,ii) the agents knows the e�ects of all the actions, i.e he knows all the successorstate axioms, and iii) when the agent get information through a knowledge-producing action, this information is always true information, in the sense thatthis information is true in the situation s where he is.How this formalisation could be extended to the context of multi-agents? Thefact i) cannot be accepted in general. We can accept that an agent knows thatan action has been performed when it has been performed by himself, but notnecessarily when it has been performed by another agent. This problem couldbe solved by de�ning as many accessibility relations Ki as there are distinctagents, and by distinguishing for each agent those actions �1; : : : ; �m which areperformed by the agent i. For an action a which is neither of the sort �j nor�k, the fact that knowledge does not change can be represented by the fact thataccessible situations from do(a; s) are the same as accessible situations from s.That could lead to successor axioms for each relation Ki of the form:Poss(a; s)![Ki(s00; do(a; s))$(Ki(s00; s) ^ :(a = �1) ^ : : :^ :(a = �n) ^:(a = �1) ^ : : :^ :(a = �m))_(9s0Ki(s0; s) ^ s00 = do(a; s0) ^ Poss(a; s0)^(a = �1 _ : : :_ a = �m_a = �1 ^ (p1(s)$ p1(s0))_: : :a = �n ^ (pn(s)$ pn(s0)))]However, even with this extension there are still the problems related to ii)and iii). For ii), the problems is that in real situations agents may have wrongbeliefs about the the evolution of the world. For instance, an agent may believethat droping a fragile object make it broken, while another agent may believethat the object is not necessarily broken, depending on his weight or on otherparticular circumstances. This raises the question of how to represent in thisframework di�erent evolutions of the world in the context of di�erent agentsbeliefs? May be a possible answer is to have di�erent successor state axioms, forthe same 
uent, to represent the \true" evolution of the world, and to representthe evolution of the world in the context of each agent's beliefs. That is, more orless, the idea we have proposed in this paper with the axioms of the type (G3)and (G4).For iii), the problem is that there are applications where agents may receiveinformation from di�erent sensors, or from other agents, some of them are notnecessarily reliable and may communicate wrong information. Here again, webelieve that axioms like (G3) and (G4) are a possible solution, because theyallow us to represent communication actions whose consequences are to generatewrong agents beliefs.



5 ConclusionIn conclusion, we have presented a general framework to solve the frame problemin the context of a limited extension of Situation Calculus to Epistemic logic.Even if for this solution strong restrictions are imposed on the language LM , wecan express non trivial properties like: 8s8x(Brposition(x; s) ! position(x; s)),which means that in every situation the robot has true beliefs about his position,or 8s8x(Brobstacle(x; s)! Bpobstacle(x; s)), which means that the robot's be-liefs about obstacles are a subset of the pilot's beliefs about obstacles. Also, sincein the (KD) logics we have Bi(l^ l0)$ Bil^Bil0, it would be a trivial extensionto LM to allow conjunction of literals in the scope of modal operators. Finally,the regression operator RT allows us to check whether these kinds of propertiescan be derived from T0. The implementation of a modal theorem prover for therestricted language LM should not be a big issue. We are currently working onthis aspect.References[Che88] B. F. Chellas. Modal Logic: An introduction. Cambridge University Press,1988.[LL98] G. Lakemeyer and H. Levesque. AOL: a logic of acting, sensing, knowing andonly knowing. In Proc. of the 6th Int. Conf. on Principles of Knowledge Represen-tation and Reasoning. 1998.[LR94] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Com-putation, 4:655{678, 1994.[McC68] J. McCarthy. Programs with Common Sense. In M. Minski, editor, SemanticInformation Processing. The MIT press, 1968.[Rei91] R. Reiter. The frame problem in the situation calculus: a simple solution(sometimes) and a completeness result for goal regression. In V. Lifschitz, editor,Arti�cial Intelligence and Mathematical Theory of Computation: Papers in Honorof John McCarthy, pages 359{380. Academic Press, 1991.[Rei99] R. Reiter. Knowledge in Action: Logical Foundations for Describing and Im-plementing Dynamical Systems. Technical report, University of Toronto, 1999.[SL93] R. Scherl and H. Levesque. The Frame Problem and Knowledge ProducingActions. In Proc. of the National Conference of Arti�cial Intelligence. AAAI Press,1993.[SPL00] S. Shapiro and M. Pagnucco and Y. Lesp�erance and H. Levesque. IteratedBelief Change in the Situation Calculus. In Proc. of the 7th Conference on Prin-ciple on Knowledge Representation and Reasoning (KR2000). Morgan KaufmanPublishers, 2000.This article was processed using the LATEX macro package with LLNCS style


