An induction principle for nested datatypes in intensional type theory

RALPH MATTHES
IRIT, CNRS and Université Paul Sabatier,
118 route de Narbonne, F-31062 Toulouse Cedex 9, France
(e-mail: ralph.matthes@irit.fr)

Abstract

Nested datatypes are families of datatypes that are indexed over all types such that the constructors may relate different family members (unlike the homogeneous lists). Moreover, the argument types of the constructors refer to indices given by expressions in which the family name may occur. Especially in this case of true nesting, termination of functions that traverse these data structures is far from being obvious. A joint paper with A. Abel and T. Uustalu (Theor. Comput. Sci., 333 (1–2), 2005, pp. 3–66) proposed iteration schemes that guarantee termination not by structural requirements but just by polymorphic typing. They are generic in the sense that no specific syntactic form of the underlying datatype “functor” is required. However, there was no induction principle for the verification of the programs thus obtained, although they are well known in the usual model of initial algebras on endofunctor categories. The new contribution is a representation of nested datatypes in intensional type theory (more specifically, in the calculus of inductive constructions) that is still generic and covers true nesting, guarantees termination of all expressible programs, and has an induction principle that allows to prove functoriality of monotonicity witnesses (maps for nested datatypes) and naturality properties of iteratively defined polymorphic functions.

1 Introduction

The algebra of programming (Bird & de Moor 1997) shows the benefits of programming recursive functions in a structured fashion, in particular with iterators: there are equational laws that allow a calculational way of verification. Also for nested datatypes (Bird & Meertens 1998), already intuitively introduced in the abstract, laws have been important from the beginning.

In previous work, the author concentrated on polymorphic lambda-calculi with nested datatypes that guarantee termination of all functions that follow the proposed iteration schemes. See, in particular, the comprehensive paper with Abel and Uustalu (Abel et al. 2005). Laws were not given, but the schemes were more general than previous work (Bird & Paterson 1999b; Hinze 2000; Martin et al. 2004), in that they impose minimal conditions on the datatype “functor” F of rank 2 (F is a function that takes type transformations to type transformations) whose least fixed
point μF is still a type transformation and not just a type. There is no need to require continuity properties or that F belong to some given set of higher-order functors that is generated from some closure properties.\footnote{This is not to say that all of the operational behaviors of the cited proposals were covered; see Section 9 of our previous work (Abel et al. 2005) that explains in which way efolds (Martin et al. 2004) are indeed reconstructed and how gfolds (Bird & Paterson 1999b) resist this effort.} Since the ambient calculus is not a category, and the “functors” are no functors, since no functoriality laws are required, the laws of program transformation and verification were not considered. The present paper proposes a combination of two worlds: the world of terminating programs known from type theory and the categorical laws used in advanced functional programming.

The advantages of Mendler’s style (Mendler 1987) are once more demonstrated:\footnote{For inductive \textit{types}, i.e., not inductive families, this is developed with many examples in Uustalu’s PhD thesis (1998).} the approach is very flexible, since no syntactic criterion on the form of recursive calls is applied for termination checking. It is \textit{type-based termination}: the types of the recursive calls ensure that there is no infinite reduction sequence starting with a well-typed term. For a discussion and the example of the \textit{map} function for lists, see Section 3.1 of Abel \textit{et al.} (2005). However, there has not been any contribution on the verification of programs in Mendler’s style for nested datatypes. For truly nested datatypes (for a definition, see page 446), this is even more important, since there termination is very unintuitive. On the other hand, plain heterogeneous families can be used well in the conventional style of iteration that directly follows the concept of initial algebras. This conventional style is available in the calculus of inductive constructions (CIC; Coquand & Paulin 1990) on which the theorem proving environment Coq is based and also in other systems.

We want to carry out verification in the same system in which we write our programs, and we want a termination guarantee. Moreover, we insist on decidable type checking. Thus, as our ambient calculus, we have chosen the CIC, in the current form in which it is implemented in the Coq proof assistant (Coq Development Team 2006). We will only need concepts and features of Coq that are explained in the Coq textbook (Bertot & Castéran 2004).

It will turn out that after having introduced noncanonical elements into Mendler’s style, following Uustalu & Vene (2002), the CIC supports reasoning on inductive \textit{types} in Mendler’s style very well. A naive lifting of this approach to nested datatypes can also be expressed in the CIC. Unfortunately, this does not give enough reasoning power, since one programs polymorphic functions on nested datatypes for which naturality laws are needed if more serious verification is aimed at. In order to enrich Mendler’s style beyond the plain lifting to families of datatypes, one has to lead the realm of inductive families toward simultaneous inductive–recursive definitions as proposed by Dybjer since 1991, available in final journal version (Dybjer 2000), while Dybjer and Setzer found a finite axiomatization (Dybjer & Setzer 2003). The single inductive–recursive definition we will use will not directly be an instance of these proposals due to two reasons:
- We make use of impredicativity in our system (not in the formulation but in its justification), and those systems are predicative.
- The map function $\text{map}_{\mu F}$ for the inductive family μF that we define simultaneously with the inductive generation of μF involves the inductive family not only in the source type constructor but also in the target type constructor, and that is excluded right from the outset in those systems.

The first problem is overcome by Capretta’s unpublished note (Capretta 2004) that aims at a justification of simultaneous inductive–recursive definitions in the impredicative CIC. The second problem, however, is not dealt with in that note. The idea for our construction is nevertheless taken from Capretta, but the induction principle for the inductive family is genuinely new work. It profits from the fact that our map function $\text{map}_{\mu F}$ will not be recursive at all. It is defined by case analysis on the inductive constructor – this definition principle is called inversion in theorem provers like Coq. The system is not just “simultaneous induction–inversion,” since iteration in Mendler’s style also has to be justified simultaneously with the inductive generation process.

The next section introduces the important concepts for this paper and discusses how Mendler’s style for nested datatypes can also be used in the CIC. The problems will be shown and partial solutions sketched. Section 3 contains the precise description of the extension of the CIC we propose under the name LNMIt for “logic for natural Mendler-style iteration.” It will be proven in LNMIt that the iterator only produces natural transformations – under well-motivated assumptions – and that the computation rule for the Mendler-style iterator uniquely determines that iterator (again under reasonable assumptions). An essential ingredient of this system is a generalized datatype constructor In that can produce noncanonical elements of the nested datatype μF. In Section 4, we look back at the canonical elements with which we started in Section 2 and see that LNMIt is well behaved for those canonical elements. Section 5 proves that LNMIt can be defined within the CIC with impredicative Set plus proof irrelevance. Section 6 gives a further illustration of the richness of the allowed nested datatypes with a study of the evaluation of explicit flattenings as an example of true nesting. Some conclusions are drawn, and further work is indicated. Coq vernacular files for the results are provided on the author’s web page (Matthes 2008).

This paper is based on a workshop contribution (Matthes 2006). The most important conceptual change is the clarification of the role of impredicativity: while the earlier paper just assumed Set to be impredicative, the specification of LNMIt is now done with predicative Set (the default type-theoretic system of Coq, since version 8.0 is the “pCIC,” which stands for the predicative calculus of (co)inductive constructions⁴), and only the justification is done impredicatively. This also required

3 For canonical elements of μF, the expected recursive equation does hold (see Section 4), but the general definition involves no recursive calls.

4 The impredicative CIC proves the negation of the law of excluded middle in Set, following an idea by Hurkens (see the FAQ on the Coq home page). Whether LNMIt alone is incompatible with the law of excluded middle in Set would certainly be an interesting question.
a modularization of the Coq scripts. Moreover, closure properties of the datatype “functors” F and case studies with the representation of explicit flattening in untyped lambda-calculus and operations on “bushy” lists have been added.

2 Toward the system

In this paper, the only nested datatypes we study are fixed points of endofunctions on type transformations. More precisely, this will mean the following: Let κ_0 stand for the universe of (mono)types that will be interpreted as sets of computationally relevant objects. In the pCIC (as defined in the Coq manual), this will be the sort Set. Hence, $\kappa_0 := \text{Set}$. Then, let κ_1 be the kind of type transformations; hence $\kappa_1 := \kappa_0 \rightarrow \kappa_0$. A typical example would be List of kind κ_1, where $\text{List} A$ is the type of finite lists with elements from type A. Finally, the endofunctions on type transformations shall be the type constructors of kind $\kappa_2 := \kappa_1 \rightarrow \kappa_1$. A prominent example is self-composition $\lambda X \kappa_1. \lambda A \kappa_0. X(XA)$.

In this section, we fix a type constructor F of kind κ_2. It need not be closed and might even just be a variable. We are interested in its least fixed point μF of kind κ_1. This type transformation μF is to be seen as the inductive family $(\mu F A)_{A: \text{Set}}$ in which the index runs through all types in Set.

Our running example will be that of “bushes” (Bird & Meertens 1998). Define

$$ BushF := \lambda X \kappa_1. \lambda A \kappa_0. 1 + A \times X(XA) $$

with one-element type 1 (the only element is denoted by tt), product \times with pairing notation (\cdot, \cdot) and disjoint sum $+$ with injections inl and inr. Its least fixed point $\mu BushF$ shall be denoted Bush (its existence will be discussed below) and being fixed point of $BushF$ can intuitively be expressed by the equation

$$ Bush A = 1 + A \times Bush(Bush A). $$

Compare this with the equation for List:

$$ List A = 1 + A \times List A. $$

A list of A's either corresponds to the element of 1, called empty list [], or an element a of A, followed by a list ℓ of A's (denoted by $a :: \ell$). Likewise, a bush of A's is either the empty bush or an element of A, followed by a bush of bushes of A. This is list-like, with the difference that the ith element is of type $\text{Bush}^i A$, $i \geq 0$. As the inventors of Bush wrote, “at each step down the list, entries are ‘bushed’” (Bird & Meertens 1998). For a given fixed type A, one can fully understand the inductive definition of $\text{List} A$. The family member $\text{Bush} A$ of the inductive family Bush cannot be understood in isolation, since the recursion refers to all the types $\text{Bush}^i A$. This is the feature that constitutes a nested datatype and not just a parameterized inductive datatype: inhabitants of $\mu F A$ are constructed from inhabitants of types that involve $\mu F A'$ for a type $A' \neq A$. If A is instantiated with a type variable, it also becomes

5 Later on, certain categorically motivated properties and some extensionality will be required.
clear that A' cannot be a smaller type, in whatever sense of the word. Hence, this is in no way a construction by recursion on the family index.

2.1 Mendler’s style

There are different possibilities to specify μF. We follow the Mendler-style formulation for higher kinds that has been embodied in system MIT^{ω} (Abel et al. 2005).\(^6\)

First, we need an abbreviation for polymorphic function space: For $X,Y : \kappa_1$, define the type

$$X \subseteq Y := \forall A : \text{Set}.XA \to YA.$$

The expression $X \subseteq Y$ is of kind Type (which is also the kind of Set and does itself not allow impredicative constructions), since we want to work in the pCIC, i.e., with predicative Set. In the sequel, we will also write types as superscripts to variables instead of after the colon, as in $\forall A^{\text{Set}}.XA \to YA$, if this does not lead to multiple superscripts.

Three ingredients specify μF: an introduction rule for constructing elements of $\mu F A$, an elimination rule for using elements of $\mu F A$ in a disciplined fashion (which in our case is plain iteration), and a reduction rule for computing the iteration. Introduction and elimination are provided by two constants:

- $\text{in} : F(\mu F) \subseteq \mu F$,
- $\text{MIT} : \forall G^{\kappa_1}.(\forall X^{\kappa_1}.X \subseteq G \to FX \subseteq G) \to \mu F \subseteq G$.

The reduction rule is

$$\text{MIT } G s A (\text{in } A t) \rightarrow s(\mu F)(\text{MIT } G s) A t.$$

Here, $t : F(\mu F)A$ and $s : \forall X^{\kappa_1}.X \subseteq G \to FX \subseteq G$. The latter is called the step term of the iteration, since it provides the inductive step that extends the function from the type transformation X that is to be viewed as approximation to μF to a function from FX to G. Here, function means an inhabitant of the universally quantified implication and hence a polymorphic function.

In the example of bushes, in has type $\forall A^{\text{Set}}.1 + A \times \text{Bush}(\text{Bush } A) \to \text{Bush } A$, which allows to define

- $\text{bnil} : \forall A^{\text{Set}}.\text{Bush } A$,
- $\text{bcons} : \forall A^{\text{Set}}.A \to \text{Bush}(\text{Bush } A) \to \text{Bush } A$

by $\text{bnil} := \lambda A^{\text{Set}}.\text{in } A (\text{inl } tt)$ and $\text{bcons} := \lambda A^{\text{Set}} \lambda a^{A} \lambda b^{\text{Bush}(\text{Bush } A)}.\text{in } A (\text{inr}(a,b))$.

We define a function $\text{BtL} : \text{Bush} \subseteq \text{List}$ (BtL is a shorthand for BushToList) that gives the list of all elements in the bush:

$$\text{BtL} := \text{MIT } \text{List} (\lambda X^{\kappa_1} \lambda t^{\text{List}} \lambda A^{\text{Set}} \lambda B^{\text{Bush}(\text{Bush } A)}.\text{match } t \text{ with } \text{inl } _ \rightarrow [] \mid \text{inr}(a^{A},b^{X(A)}) \rightarrow a :: \text{flat } _ \text{map } (X A) (\text{it } A)(\text{it } (X A) b)).$$

\(^6\) That system contains nested datatypes of arbitrary ranks; here we concentrate on the case $\kappa = \kappa_1$ and therefore omit the superscripts altogether.
Here, we used the operation \textit{flat}_map: \forall A \text{Set} \forall B \text{Set}. (A \rightarrow \text{List}_B) \rightarrow \text{List}_A \rightarrow \text{List}_B, where \textit{flat}_map f \ell \text{ concatenates all the lists } f\ a \text{ for the elements } a \text{ of } \ell. \text{ Moreover, pattern matching is used intuitively. Note that when the term } t \text{ of type Bush}_F X A \text{ is matched with } \text{inr}(a,b), \text{ the variable } b \text{ is of type } X(X.A). \text{ This is the essence of Mendler's style: the recursive calls come in the form of uses of } it \text{ that does not have type } Bush \subseteq \text{List} \text{ but just } X \subseteq \text{List}, \text{ and the type arguments of the datatype constructors are replaced by variants that only mention } X \text{ instead of Bush. So, the definitions have to be uniform in the type transformation variable } X, \text{ but this is already the only requirement to ensure termination (see below). Writing } \rightarrow^+ \text{ for the transitive closure of all the reduction rules, one easily verifies }

\begin{align*}
\text{BtL}_A(\text{bnil}\ A) & \rightarrow^+ [] , \\
\text{BtL}_A(\text{bcons}\ A\ a\ b) & \rightarrow^+ a::\text{flat}_map(\text{BtL}_A(\text{BtL}(\text{Bush}\ A)b)),
\end{align*}

where we have omitted the type arguments to \textit{flat}_map. \text{ The recursive call } \text{BtL}(\text{Bush}\ A)b \text{ is already with a different type parameter (this is called polymorphic recursion), but the mapping goes beyond usual intuitions of recursive calls: it is the function } \text{BtL}_A \text{ that is mapped over the result of the other recursive call.}

In what follows, type and constructor arguments will be omitted if they may be reconstructed mechanically. \text{ In Coq, this will be possible by the mechanism of implicit arguments that is available since version 8.0. The reduction rule is thus written as}\n
\[MIt\ s\ (int) \rightarrow\ s(MIt\ s\ t), \]

\text{However, it should be kept in mind that the formal parameter } X \text{ in the type of } s \text{ is instantiated with } \mu F. \text{ In Abel et al. (2005), a direct definition within } F^\omega \text{ (Girard 1972) of a slight reformulation, using a function symbol of arity 1 instead of the constant } MIt, \text{ is shown. That translation also simulates the reduction rule, in the sense that a reduction step with our new rule is transformed into at least one rewrite step of } F^\omega. \text{ Thus, since this mentioned transformation behaves well with respect to both type and term substitution, strong normalization follows from that of } F^\omega. \text{ Recall that no requirement at all is imposed on } F : \kappa_2 \text{ for this result, which is still obtained by a Church encoding, i.e., a generalization of the construction of polymorphic Church numerals that works uniformly in } F. \]

\subsection{Mendler's style with noncanonical elements}

The aim of this work is to provide a dependently typed analog of the elimination rule: a rule in the format of an induction principle that given some predicate \(P : \forall A \text{Set}, \mu F A \rightarrow \text{Prop} \) with \text{Prop} \text{ the sort of propositions in the pCIC, allows to conclude that } P \text{ holds universally, i.e., proves the proposition } \forall A \text{Set} \forall \mu F A. P A \text{ from a suitable inductive step. (The argument } A \text{ is written as an index to } P \text{ for enhanced clarity; for this purpose, indexing will often be done in the sequel.) Strictly speaking, the author does not have a proposal for such an induction principle that would be justifiable in the CIC or a consistent extension thereof: the least solution } \mu F \text{ that is generated just from } \text{in} : F(\mu F) \subseteq \mu F \text{ cannot yet be treated by the author. \text{ The way out will be a more liberal datatype constructor than } in. The straightforward generalization of the rule } \mu I \text{ by Uustalu & Vene (1997) – later used as the}
An induction principle for nested datatypes in intensional type theory

445

introduction rule of system UVIT in the author’s thesis (Matthes 1998) and called mapwrap in the journal version (Uustalu & Vene 2002) – to nested datatypes would have a datatype constructor \(\text{in}' \) of type

\[
\forall X^{\kappa_1}. X \subseteq \mu F \rightarrow FX \subseteq \mu F.
\]

If \(\text{in}' \) is instantiated with \(X := \mu F \) and given the polymorphic identity on \(\mu F \) as an argument, the result type is \(F(\mu F) \subseteq \mu F \), which previously was the type of \(\text{in} \). By further instantiation to a type \(A \) and application to a term of type \(F(\mu F) A \), we get elements of \(\mu F A \) that will be called canonical.

In the example of bushes, one would define the generalized datatype constructors as follows:

\[
\begin{align*}
\text{bnil}' & : \forall X^{\kappa_1} \forall A \text{Set}. X \subseteq \text{Bush} \rightarrow \text{Bush} A, \\
\text{bnil'} & := \lambda X^{\kappa_1} \lambda A \text{Set}. (\lambda x \text{Bush}. \text{in'} X (j A (\text{inl tt}))), \\
\text{bcons}' & : \forall X^{\kappa_1} \forall A \text{Set}. X \subseteq \text{Bush} \rightarrow A \rightarrow X(X A) \rightarrow \text{Bush} A, \\
\text{bcons'} & := \lambda X^{\kappa_1} \lambda A \text{Set}. (\lambda x \text{Bush}. \lambda a A (\lambda b A. (\text{in'} X (j A (\text{inr} (a, b))))) A).
\end{align*}
\]

and one would obtain from them \(\text{bnil} \) and \(\text{bcons} \) with the previously shown typing by

\[
\begin{align*}
\text{bnil} & := \lambda A \text{Set}. \text{bnil}' \text{Bush} A (\lambda A \text{Set}. \lambda x \text{Bush} A. x), \\
\text{bcons} & := \lambda A \text{Set}. \lambda a A \lambda b A. \text{bcons}' A (\lambda A \text{Set}. \lambda x \text{Bush} A. x) a b.
\end{align*}
\]

Terms of the form \(\text{bnil} A \) or \(\text{bcons} A a b \) would denote “canonical bushes.”

The single datatype constructor \(\text{in}' \) specifies the inductive family \(\mu F \) in the impredicative CIC, since the reference to \(\mu F \) in the antecedent is strictly positive. Impredicativity of \(\text{Set} \) is needed here in order to ensure that \(\mu F A \) is a type in \(\text{Set} \) and not only in \(\text{Type} \). Then, the CIC will have canonical elimination rules associated with \(\mu F \), and Coq will generate them. The minimality scheme for sort \(\text{Set} \) (as it is called in Coq) will be typed by

\[
\forall G^{\kappa_1}. (\forall X^{\kappa_1}. X \subseteq \mu F \rightarrow X \subseteq G \rightarrow FX \subseteq G) \rightarrow \mu F \subseteq G.
\]

This is the lifting of the type of Mendler’s recursor (Mendler 1987) to nested datatypes. And the generated induction principle has a type that supports the following reasoning: given a predicate \(P \) as above, i.e., \(\forall A \text{Set}. \mu F A \rightarrow \text{Prop} \), we may deduce \(P \) holds universally, i.e., \(\forall A \text{Set} \forall \mu F A. P A r \), if for every \(X : \kappa_1 \) and every \(j : X \subseteq \mu F \), from the inductive hypothesis

\[
\forall A \text{Set} \forall X A. P A(j A x)
\]

we can infer (this is called the inductive step)

\[
\forall A \text{Set} \forall t^{FX A}. P A(\text{in'} t).
\]

In other words, the principle is as follows:

\[
\forall P : \forall A \text{Set}. \mu F A \rightarrow \text{Prop}. (\forall X^{\kappa_1} \forall j X^{\mu F}. (\forall A \text{Set} \forall X A. P A(j A x)))
\rightarrow \forall A \text{Set} \forall t FX A. P A(\text{in'} t) \rightarrow \forall A \text{Set} \forall r \mu F A. P A r.
\]

Note that the link in the inductive step comes from \(j \) and not from the argument \(t \). What does the inductive step require in the case of canonical elements, i.e., for
\(X := \mu F \) and \(j \) the polymorphic identity on \(\mu F \)? The inductive hypothesis in this case is – after normalizing away the \(\beta \)-redex that is implicitly done in the CIC – the proposition \(\forall A \in \text{Set} \; \forall r \mu F A. P A r \), which amounts to the conclusion of the whole induction principle. The induction step in this case is thus a triviality. Therefore, the case that is dedicated to deal with the canonical elements of the family \(\mu F \) does in no way contribute to the induction step. Hence, the conclusion of the induction principle can only be justified from the induction step in the cases that produce noncanonical elements. We conclude that our reasoning is entirely based on noncanonical elements.\(^7\)

By ignoring the additional hypothesis \(X \subseteq \mu F \) in the step term of the above-mentioned minimality scheme, we can get back \(\text{Mit} \) with the original type, and the following equation holds even with respect to convertibility\(^8\):\[
\text{Mit} s (\text{in} \, ^{'} \, j \, t) = s (\lambda A. (\text{Mit} s)_A \circ j_A) t,
\]
where \(s : \forall X \subseteq G. \mu F X \subseteq G \); \(j : X \subseteq \mu F ; t : \mu F X \) and \(g \circ f \) denotes function composition \(\lambda x. g(f(x)) \) (for types of \(f \) and \(g \) that fit together). So, here \(X \) is instantiated with \(X \) itself, and the shown first argument to \(s \) gets type \(X \subseteq G \); hence both sides of the equation get type \(GA \). Note also that we no longer indicate the type \(\text{Set} \) of bound variables named \(A \), \(B \), or \(C \).

With these iteration and induction principles, one may try to program and verify functions on nested datatypes. This will be especially interesting in the case of truly nested datatypes, since they are not directly supported by the CIC. Here, truly nested datatype shall mean that the inductive family has at least one datatype constructor for which one of the argument types has a nested call to the family name; i.e., the family name appears somewhere inside the type argument of the family name occurrence in the argument type of that datatype constructor. Nested datatypes that are not truly nested are called linear nested datatypes by Bird & Paterson (1999b). \(Bush \) is a truly nested datatype: The second term argument to \(\text{bcons} \) has type \(Bush(Bush A) \). Here \(Bush \) occurs with argument \(Bush A \) that makes a reference to \(Bush \). Another canonical example is a higher-order representation of de Bruijn terms with an explicit notion of flattening for which elimination of flattening can be programmed (Abel et al. 2005; see also Section 6). Another extension of de Bruijn terms that yields a truly nested datatype \(\text{TermE} \) is described by Bird & Paterson (1999a).

2.3 Enriching Mendler’s style with laws

The running reference of the present work (Abel et al. 2005) shows some programs on nested datatypes (including on truly nested datatypes) but does not at all aim at verifying them. It turns out, however, that the induction principle of the system just described would be too weak for that purpose. Here is an intuitive argument why

\(^7\) This is unfortunate, since it does not support intuitive reasoning. But, fortunately, proof assistants like Coq allow to ensure sound proofs also in those situations.

\(^8\) This rule also appeared in Peter Aczel’s presentation at TYPES 2003.
An induction principle for nested datatypes in intensional type theory

447

this is so: One of the first programs for a nested datatype is a map function that applies some function \(f : A \to B \) to all elements of type \(A \) contained in the data structure of type \(\mu F A \),

\[
\text{map}_{\mu F} : \forall A \forall B. (A \to B) \to \mu F A \to \mu F B,
\]

just as the usual function

\[
\text{map} : \forall A \forall B. (A \to B) \to \text{List } A \to \text{List } B
\]

for lists. It is well known that \(\text{map} \) satisfies the functor laws of category theory. We would like to establish the functor laws for this generic \(\text{map}_{\mu F} \) as well, namely, that \(\text{map}_{\mu F} \) behaves as the morphism part of a functor whose object part is just \(\mu F \). With our induction principle, this will not be possible, since we do not know anything about the parameter \(X \) itself.

The first main idea here is to require that \(X \) is accompanied by some map term \(m : \text{mon } X \), where \(\text{mon} \) stands for “monotonicity,”

\[
\text{mon } X := \forall A \forall B. (A \to B) \to XA \to XB,
\]

(\(\text{mon } X \) has type \(\text{Type} \)) and require that \(m \) is functorial: it satisfies

\[
\begin{align*}
\text{fct}_1 m & := \forall A \forall x^X A. m A (\lambda y.y) x = x, \\
\text{fct}_2 m & := \forall A, B, C \forall f^A \to B \forall g^B \to C \forall x^X A. m A C (g \circ f) x = m B C g (m A B f x)
\end{align*}
\]

that are called the first and the second functor law in the sequel. The equality sign \(= \) means propositional equality which is implemented by the inductively defined Leibniz equality in the CIC. It is the basis of the rewriting mechanism of Coq that goes beyond definitional equality of the CIC. Definitional equality comes in the form of the fixed built-in and automatically animated convertibility relation \(\simeq \) which is implemented as one fixed strongly normalizing and confluent rewrite system.\(^9\)

Universally quantified equations such as \(\text{fct}_1 m \) and \(\text{fct}_2 m \) have the impredicative kind \(\text{Prop} \) of computationally irrelevant types. We may place such equations as further premisses into our datatype declarations. The functor laws will not be sufficient, though.

Rewriting in intensional theories such as the CIC with Leibniz equality cannot take place under binders such as \(\lambda \)-abstraction, unlike convertibility that can be applied to arbitrary subterms: in the CIC, we do not have extensionality for function spaces with respect to this propositional equality. The addition of extensionality as an axiom without extra rules for definitional equality would destroy canonicity in the sense that not every closed term of the type of natural numbers would be definitionally equal to a numeral (a term of the form \(S^0 \) with \(S \) the successor function). There are deep studies (Hofmann 1995; Altenkirch 1999; Oury 2005) on a reconciliation of intensional type theory with extensionality for function spaces. However, the present paper will stick with the CIC.

\(^9\) The CIC is an intensional type theory in the sense that there is no rule that infers \(\simeq \) from \(= \). This would be the equality reflection rule of extensional type theory.
Since the additional functoriality conditions are just equations and therefore do not affect convertibility, truly nested datatypes with their tendency to favor programming with functional arguments (Abel et al. 2005) call for a special attention to means to ensure that rewriting can nevertheless take place. The second main idea here is that most of the functionals that occur during programming only depend on the extension of their function arguments. This is typically so for map terms; hence we define

\[\text{ext } m := \forall A \forall B \forall f, g : A \to B. (\forall a : A. f a = g a) \to \forall X^A. m A B f r = m A B g r. \]

With these definitions, we might now define (strictly speaking, only with impredicative Set) the type transformation \(\mu F \) by

\[\text{in}'' : \forall X^\kappa \forall m^\text{mon} X. \text{ext } m \to \text{fct}_1 m \to \text{fct}_2 m \to X \subseteq \mu F \to FX \subseteq \mu F. \]

This time, it is much harder to obtain canonical elements: when instantiating \(X \) to \(\mu F \), we first need to find a map term \(\text{map}_{\mu F} : \text{mon}(\mu F) \) and then show extensionality and functoriality for \(\text{map}_{\mu F} \), before the polymorphic identity on \(\mu F \) can be given as a further argument to \(\text{in}'' \).

In order to avoid overly long formulae in the sequel, the map term \(m \) and the three proofs \(e, f_1, \) and \(f_2 \) of \(\text{ext } m, \text{fct}_1 m, \) and \(\text{fct}_2 m \) are organized as a dependently typed record \(\mathcal{E}X \) (expressing that \(X \) is an extensional functor), where the type of the fields \(e, f_1, f_2 \) depends on the field \(m \). Given a record \(\mathcal{E} \), i.e., an element of type \(X \subseteq \mu F \), Coq’s notation for its field \(m \) is \(m \mathcal{E} \), and likewise for the other fields. We adopt this notation instead of the more common \(m \mathcal{E} \).

Canonical elements can now be obtained from the following preservation property for \(F \): there has to be a term (\(F \mathcal{E} \) stands for “\(F \) preserves extensional functors”)

\[F \mathcal{E} : \forall X^\kappa, \mathcal{E} X \to \mathcal{E}(FX). \]

Note that it would be too demanding to require that monotone \(X \)'s are transported to monotone \(FX \)'s and that extensionality and the functoriality properties are each preserved separately. In particular, advanced examples require extensionality in order to establish functoriality (see the remark in the proof of Lemma 1). Lemma 1 also provides a closed such term \(F \mathcal{E} \) in the case of \(F := \text{Bush}F \).

With \(F \mathcal{E} \) and the Mendler recursor (technically speaking, the minimality scheme for sort \(\text{Set} \) generated from \(\text{in}'' \) by Coq), one can define \(\text{map}_{\mu F} \), and one does not even need the possibility to make recursive calls in the definition (but the argument of type \(X \subseteq \mu F \) of the step term is essential). Then, induction simultaneously establishes the three properties for \(\text{map}_{\mu F} \), always using the preservation property of \(F \) embodied in \(F \mathcal{E} \). Notice that this just requires preservation of properties. Functoriality of \(F \) is not expressed at all.

However, there is a problem with this approach. Recall the definition of \(\text{BtL} : \text{Bush} \subseteq \text{List} \) given earlier in the paper that makes still perfectly sense in the system we are now considering. The type transformation \(\text{List} \) is called the target constructor of the Mendler iteration. (In general, it is the instance for the variable \(G \) in that scheme.) In our case, \(G := \text{List} \) is monotone in the sense that there exists the operation \(\text{map} \) for lists. The term \(\text{map}_{\mu \text{Bush}F} \), which we did not describe

\[\text{map} \]
in detail, shall be denoted by \textit{bush}. A natural question is whether \textit{BtL} behaves as a natural transformation from \((\text{Bush}, \text{bush})\) to \((\text{List}, \text{map})\). In general, for \(X, Y : \kappa_1\), \(mX : \text{mon } X\), \(mY : \text{mon } Y\), and \(j : X \subseteq Y\), we define the proposition

\[j \in \mathcal{N}(mX, mY) := \forall A \forall B \forall f : A \rightarrow B \forall t : X^A, j_B(mX A B f t) = mY A B f(j_A t), \]

which just says that \(j\) is a natural transformation from \((X,mX)\) to \((Y,mY)\). Note that functoriality of either side is not required. For \textit{BtL}, this would mean the following property:

\[\forall A \forall B \forall f : A \rightarrow B \forall t : \text{Bush } A. \text{BtL}(\text{bush } ft) = \text{map } f(\text{BtL } t). \]

However, a proof does not seem possible, and this is not due to the specific situation of \textit{BtL}. More generally, one would want to prove that for a monotone target constructor \(G\)—with map term \(mG : \text{mon } G\)—and a step term \(s : \forall X^{\kappa_1} . X \subseteq G \rightarrow FX \subseteq G\) with “reasonable” properties (see below), \(\text{Mit } s : \mu F \subseteq G\) behaves like a natural transformation from \((\mu F, \text{map } _{\mu F})\) to \((G,mG)\).

The “reasonable” property above would be

\[\forall X^{\kappa_1} \forall ef : \delta X \forall t : X^{G} . it \in \mathcal{N}(mef, mG) \rightarrow s \text{it} \in \mathcal{N}(m(FpE ef), mG). \]

Any inductive proof of \(\text{Mit } s \in \mathcal{N}(\text{map } _{\mu F}, mG)\) will break down, since there is no information available about the argument of type \(X \subseteq \mu F\) of \textit{in}”. Let us call this argument \(j\). Then, we would need \(j \in \mathcal{N}(m, \text{map } _{\mu F})\) in order to complete that proof attempt. Hence, instead of \textit{in}”, we want a datatype constructor \textit{In} of type

\[\forall X^{\kappa_1} \forall ef : \delta X \forall t : X^{\mu F}. j \in \mathcal{N}(mef, \text{map } _{\mu F}) \rightarrow FX \subseteq \mu F. \]

This constructor declaration cannot define \(\mu F\), since \(\text{map } _{\mu F} : \text{mon } (\mu F)\) refers to the \(\mu F\) defined through \textit{in}”. So, this \(\text{map } _{\mu F}\) has to be defined anew, by recursion on the fixed point \(\mu F\) about to be defined by \textit{In}. The situation is thus: the inductive family \(\mu F\) has to be given simultaneously with the recursive function \(\text{map } _{\mu F}\) whose type is isomorphic with \(\mu F \subseteq G\), where

\[G := \lambda A \forall B. (A \rightarrow B) \rightarrow \mu F B. \]

The type transformation \(G\) is a syntactic form of the right Kan extension of \(\mu F\) along the identity and has been used by the author to define map functions for nested datatypes since Matthes (2001). So, we may say that \(\mu F\) is the source type constructor of \(\text{map } _{\mu F}\) and that the recursion is over \(\mu F\). Unfortunately, the target type constructor \(G\) involves \(\mu F\) again, which excludes this situation from being covered by previous formulations of simultaneous induction–recursion (see Section 1). Nevertheless, it is a simultaneous inductive–recursive definition in a broad sense, and Capretta’s idea (Capretta 2004) for its justification remains applicable, as will be seen in Section 5.
Parameters

\[
\begin{align*}
F & : \kappa_2 \\
Fp & : \forall X^{\kappa_1}, \delta X \to \delta(FX)
\end{align*}
\]

Constants

\[
\begin{align*}
\mu F & : \kappa_1 \\
\text{map} & : \text{mon}(\mu F) \\
\text{In} & : \forall X^{\kappa_1} \forall \text{ef} \in X^{\mu F}, j \in \mathcal{N}(m \text{ef}, \text{map}_{\mu F}) \to FX \subseteq \mu F \\
\text{MIt} & : \forall G^{\kappa_1}. (\forall X^{\kappa_1}. X \subseteq G \to FX \subseteq G) \to \mu F \subseteq G \\
\mu FInd & : \forall P : \forall A. \mu FA \to \text{Prop}. \left(\forall X^{\kappa_1} \forall \text{ef} \in X^{\mu F} \forall j \in \mathcal{N}(m \text{ef}, \text{map}_{\mu F}) \times \mathcal{N}(m \text{ef}, \text{map}_{\mu F}) \right) \to \forall A^{\forall F^{\forall A}}. P_A(jA x) \to \forall A^{\forall F^{\forall A}}. P_A(In ef j n t) \\
\end{align*}
\]

Rules

\[
\begin{align*}
\text{map}_{\mu F} f (In \text{ef} j n t) & \simeq In \text{ef} j n (m(Fp \text{ef} ef) f t) \\
\text{MIt} s (In \text{ef} j n t) & \simeq s(\lambda A. (\text{MIt} s)_{\forall A} \circ jA) t \\
\lambda A^{\forall F^{\forall A}} (\text{MIt} s)_{\forall A} x & \simeq \text{MIt} s
\end{align*}
\]

Fig. 1. Specification of \text{LNMI}t.

3 The system

We will call \text{LNMI}t (“logic for natural Mendler-style iteration of rank 2”)\(^{10}\) the extension of the pCIC by the following ingredients and later prove that they can already be defined in the CIC with impredicative \text{Set} plus proof irrelevance. (In sort \text{Prop}, every proposition has at most one proof with respect to \(\simeq\).)

3.1 Logic for natural Mendler-style iteration of rank 2

Assume \(F : \kappa_2\) and \(Fp : \forall X^{\kappa_1}, \delta X \to \delta(FX)\), possibly in some typing context that will become the typing context of all the constants to be introduced\(^{11}\); \(F\) and \(Fp\) will be parameters of the extension of the pCIC by \(\mu F\), \text{map}_{\mu F} , \text{In} , \text{MIt} ,\) and \(\mu FInd\) that are specified as shown in Figure 1. The nested datatype \(\mu F\) has kind \(\kappa_1\); the map function \(\text{map}_{\mu F}\) has type \(\text{mon}(\mu F)\); the datatype constructor \(\text{In}\) is of the type already shown before, as well as the iterator \(\text{MIt}\). The equational rules for \(\text{map}_{\mu F}\) and \(\text{MIt}\) hold even definitionally, that is, with respect to the convertibility relation we denote by \(\simeq\).

We may say that the induction principle \(\mu FInd\) is just the obvious adaptation of the principle we had for the system based on \(\text{in}'\), given the two new arguments \(\text{ef} \in \delta X\) and \(n\) of type \(j \in \mathcal{N}(m \text{ef}, \text{map}_{\mu F})\) of the datatype constructor \(\text{In}\). Despite this simplicity, it is problematic due to the occurrence of \(\text{map}_{\mu F}\) in the type of \(n\) (see the discussion in the previous section). The definitional rule for \(\text{map}_{\mu F}\) may seem curious, since \(\text{map}_{\mu F}\) does not appear on the right-hand side. For canonical elements, as discussed in Section 4, the behavior will nevertheless be the ordinary

\(^{10}\) For rank 1, naturality does not make any sense because for inductive types, only a nonpolymorphic function from a monotype \(\mu F\) to a monotype \(B\) is defined.

\(^{11}\) All the examples so far have been carried out in the empty typing context.
recursive one. Since definitional equality is contained in propositional equality, the rule for \(\text{map}_{\mu F} \) immediately implies

\[
\forall X \forall e f j X \forall n \subseteq \mu X \forall t (\text{In } ef j n)^{FX \subseteq \mu F} \in \mathcal{N}(m(F \delta e f), \text{map}_{\mu F}).
\]

\(\text{MIt} \)'s definitional behavior even ignores the arguments \(e f \) and \(n \). And the last rule (with the implicit proviso that \(x \) does not occur free in \(s \)) is just there for technical reasons, which will become clear in the proof of Theorem 3.

The fact that \(\text{LNMIt} \) has the first two definitional equations and not just propositional ones brings the termination guarantee in Section 5, where \(\text{LNMIt} \) is defined within the extension of the CIC by only one propositional axiom. The convertibility relation of the CIC is decidable through an implementation as a strongly normalizing and confluent term rewrite system. Although we cannot say that the left-hand sides of the two equations will be rewritten to the corresponding right-hand sides, we know by confluence that both sides will be normalized to the same term. Evidently, the left-hand sides are not normal (for the translation into the CIC), so that the calculated normal form will not contain instances of the left-hand sides; hence the calculated normal form is also normal with respect to the extension of the rewrite system of the CIC by the two rewrite rules

\[
\text{map}_{\mu F} f (\text{In } ef j n t) \rightarrow \text{In } ef j n (m(F \delta e f) f t),
\]

\[
\text{MIt } s (\text{In } ef j n t) \rightarrow s(\lambda A. (\text{MIt }) s A \circ j A) t.
\]

The stronger result that this extended rewrite system is strongly normalizing would require an extension of the proof of strong normalization of the CIC, but we content ourselves with having normal forms.

The datatype functors \(F : \kappa_2 \) that are covered by \(\text{LNMIt} \) include all the nested hofunctors (Martin et al. 2004). This is to say that for every nested hofunctor \(F \), there exists the associated polymorphic operation \(F \delta \), i.e., a closed term of type

\[
\forall X \kappa_1. \delta X \rightarrow \delta (FX).
\]

This will be made explicit in the following. For \(\text{op} \in \{\times, +, \circ\} \) and \(X, Y : \kappa_1 \), define \(X \text{ op } Y := \lambda A. X A \text{ op } Y A : \kappa_1 \). For \(X, Y : \kappa_1 \), define \(X \circ Y := \lambda A. X(Y A) : \kappa_1 \).

Lemma 1 (Closure properties of \(\delta \))

There are closed terms of the following types:

- \(\delta (\lambda A. A) \)
- \(\forall C. \delta (\lambda A. C) \)
- \(\delta (\lambda A. \text{option } A) \), where \(\text{option } A \) is the type that has exactly one more element than \(A \)
- \(\forall X \forall Y. \delta X \rightarrow \delta Y \rightarrow \delta (X \text{ op } Y) \) for \(\text{op} \in \{\times, +, \circ\} \)

Proof

Fairly elementary reasoning. For the last item with \(\text{op} = \circ \), note that we need extensionality of the map term for \(Y \) in order to prove the functoriality laws.

Lemma 2 (Closure properties of \(p \delta \))

There are closed terms of the following types:
• $p\delta(\lambda X.X)$
• $p\delta(\lambda X\lambda A.XA)$ – extensionally, the same as the line before
• $\forall X^{\kappa_1}. \delta X \rightarrow p\delta(\lambda Y.X)$
• $\forall F^{\kappa_2}\forall F^{\kappa_2}. p\delta F \rightarrow p\delta G \rightarrow p\delta(\lambda X.(FX)\text{ op}(GX))$ for $\text{op} \in \{\times, +, \circ\}$

Proof
A simple consequence of the previous lemma.

The second lemma may be seen as an inductive definition of nested hofunctors, with its third clause not being confined just to X’s with δX that stem from the first lemma. But for our examples, those will suffice. For an illustration $p\delta BushF$ is obtained as follows: We have $\delta(\lambda A.1)$ and hence $p\delta(\lambda X\lambda A.1)$. We have $\delta(\lambda A.A)$ and hence $p\delta(\lambda X.X)$. We have $\delta(\lambda X\lambda A.XA)$ and $p\delta(\lambda X.A \times X.A)$ and finally $p\delta BushF$.

Let us call the obtained term $BushFp\delta$.

Unfortunately, the system $LNMI\tau$ in its present form cannot deal with datatype functors F that have embedded function spaces. Although they are not excluded by any syntactic restriction, one will not be able to construct the associated $Fp\delta$, since, in order to establish extensionality, one would have to prove Leibniz equality of functions that call functions f, g that are only extensionally equal.

3.2 Naturality and uniqueness of $MI\tau s$

In $LNMI\tau$, we can now prove the following theorem that could not be proven in the systems of Section 2:

Theorem 1 (Naturality of $MI\tau s$)
Assume $G : \kappa_1$, $mG : \text{mon } G$, $s : \forall X^{\kappa_1}. X \subseteq G \rightarrow FX \subseteq G$ and that the following holds:

$$\forall X^{\kappa_1}\forall ef^{\kappa_1} \forall it^{X \subseteq G}. it \in \mathcal{N}(mef, mg) \rightarrow sit \in \mathcal{N}(m(Fp\delta ef), mg).$$

Then $MI\tau s \in \mathcal{N}(map_{\mu F}, mg)$; hence $MI\tau s$ is a natural transformation for the respective map terms.

Proof
This is done by induction with

$$P := \lambda A.\lambda f^{\mu A}\forall B^{f^{A \rightarrow B}}. MI\tau s(map_{\mu f} f_{r}) = mG f (MI\tau s r).$$

Assume X, ef, j, n as prescribed. The induction hypothesis is

$$\forall A^{\forall X^{\forall A^{\forall B^{f^{A \rightarrow B}}}}. MI\tau s(map_{\mu f} f (jA x)) = mG f (MI\tau s (jA x)).$$

Further assume A, t, B, f. It remains to show

$$MI\tau s (map_{\mu f} (In ef j n t)) = mG f (MI\tau s (In ef j n t)).$$

Abbreviate $it := \lambda A. (MI\tau s)_{A} \circ jA$. By the equational rules for $map_{\mu f}$ and $MI\tau$, the previous equation is equivalent to

$$sit (m(Fp\delta ef) f t) = mG f (sit t).$$
An induction principle for nested datatypes in intensional type theory

We want to apply the assumption of the theorem. It suffices to show \(it \in N(m \varepsilon f, mG) \). Assume \(A, B, f, t \). Show \(it_B(m \varepsilon f \ t) = mG \ (it_A \ t) \). Its left-hand side is equivalent to

\[
MIt \ s(j_B(m \varepsilon f \ t)) = MIt \ s(map_{\mu F} \ f \ (j_A \ t)),
\]

where we used the assumption \(n \) of type \(j \in N(m \varepsilon f, map_{\mu F}) \) for the last step. Now, the induction hypothesis is applicable.

By the help of this theorem, one can easily show that the function \(BtL \) of Section 2 is natural; i.e., setting again \(bush := map_{\mu BushF} \), one can prove

\[
\forall A \forall B \forall f^A \rightarrow B \forall t^{Bush^A}. BtL(bush \ f \ t) = map \ f \ (BtL \ t).
\]

The proof in the Coq script (Matthes 2008) only needs in addition a naturality property of \(flat \mapsto \).

With the \(length \) function for lists, we get a function that calculates the size of bushes (indirectly):

\[
size_l := \lambda A \lambda t^{Bush^A}. length(BtL \ t).
\]

Thanks to the above naturality of \(BtL \) and because \(map \) does not change the list length, we have as immediate consequence that \(bush \) does not change the size of bushes:

\[
\forall A \forall B \forall f^A \rightarrow B \forall t^{Bush^A}. size_l(bush \ f \ t) = size_l \ t.
\]

A more direct definition of the size of bushes is possible although not just by one direct use of \(MIt \). As is usual with nested datatypes, a more general polymorphic function has to be found and then instantiated. Define the monotone type transformation (it is nonstrictly positive and constitutes the continuation monad)

\[
G := \lambda A. (A \rightarrow \text{nat}) \rightarrow \text{nat}
\]

and \(Btv : Bush \subseteq G \) (the shorthand stands for “Bush to value”) so that \(Btv \ A t^{Bush^A} f^{A \rightarrow \text{nat}} \) gives the “value” of \(t \), obtained as the sum of the values \(f \ a \) for all the elements \(a \) of type \(A \) that are contained in \(t \):

\[
Btv := MIt \ G \left(\lambda X^\cong. \lambda it^{X \subseteq G} \lambda AAit^{BushF \ X^A}. \text{match } t \text{ with } \text{inl } \mapsto \lambda f^{A \rightarrow \text{nat}}. 0 \mid \text{inr } (a^A, b^{X(X^A)}) \mapsto \lambda f^{A \rightarrow \text{nat}}. f \ a + it \ (XA) b \ (\lambda x^{X^A}. it \ f) \right).
\]

We can now define the more direct size function \(size_d : \forall A. Bush \ A \rightarrow \text{nat} \) by

\[
size_d := \lambda A \lambda t^{Bush^A}. Btv \ A \ t (\lambda a^A. 1).
\]

Note that the naturality statement for \(Btv \) according to the theorem would express equality of elements of type \(GB \), which are functionals. The lack of extensionality for functions will not allow us to prove such equations, and the theorem is in fact not applicable because naturality of \(s \it \) cannot be established, again because that would require equality of functionals in \(GB \). This unfortunately shows a limit of the formulation of the theorem that the author was not yet able to overcome in a

\[\text{Notice that no change is needed for the definition of } BtL \text{ in Section 2 in order to fit into } LNMIt.\]
generic fashion. However, by a direct use of the induction principle \(\mu \text{Find} \), we can establish a “pointwise” version of naturality\(^{13} \) for \(Btv \):

\[
\forall A \forall B \forall f : A \rightarrow B \forall \text{Bush} \ A \forall g : B \rightarrow \text{nat} . Btv (\text{bush } f t) g = Btv t (g \circ f).
\]

For this to work and also for the following conclusion, we first have to establish extensionality of \(Btv \) in its function parameter, i.e.,

\[
\forall A \forall t \forall \text{Bush} \ A \forall f : A \rightarrow \text{nat} \forall g : A \rightarrow \text{nat} . (\forall a \in A . fa = ga) \rightarrow Btv t f = Btv t g,
\]

which can be proven directly by the induction principle \(\mu \text{Find} \). From all this, we immediately get that also \(\text{size}_d \) is not changed by \(\text{bush } f \):

\[
\forall A \forall B \forall f : A \rightarrow B \forall t \forall \text{Bush} \ A . \text{size}_d (\text{bush } f t) = \text{size}_d t.
\]

It is also possible to prove that \(\text{sizei} \) and \(\text{size}_d \) yield the same values for all arguments; see the details in the Coq scripts (Matthes 2008).

Coming back to the general theory, we show that under reasonable assumptions, \(\text{MIt } s \) is uniquely characterized by the equation above:

Theorem 2 (Uniqueness of \(\text{MIt } s \))

Assume \(G : \kappa_1 \), \(s : \forall X \in \kappa_1. X \subseteq G \rightarrow FX \subseteq G \) and \(h : \mu F \subseteq G \) (the candidate for being \(\text{MIt } s \)). Assume further the following extensionality property of \(s \) (\(s \) only depends on the extension of its function argument):

\[
\forall X \in \kappa_1 \forall f, g : X \subseteq G . (\forall A \forall x \in X . f x = g x) \rightarrow \forall A \forall y \in FX . sf y = sg y.
\]

Assume finally that \(h \) satisfies the equation for \(\text{MIt } s \):

\[
\forall X \in \kappa_1 \forall ef \in FX \forall j \in F \forall n \in (n, \text{map}_n) \forall A \forall t \in FXA . h_A (\text{In } ef \ ja t) = s (\lambda A . h_A \circ j_A) t.
\]

Then, \(\forall A \forall \mu F A . h_A r = \text{MIt } s r. \)

Proof

Induction is used with the evident \(P := \lambda A \lambda r \mu F A . h_A r = \text{MIt } s r. \) Then assume the appropriate \(X, ef, j, n. \) The inductive hypothesis is \(\forall A \forall x \in X . h_A (j_A x) = \text{MIt } s (j_A x). \)

Assume further \(A, t, \) and show

\[
h_A (\text{In } ef \ ja t) = \text{MIt } s (\text{In } ef \ ja t).
\]

Applying the hypothesis on \(h \) and the computation rule for \(\text{MIt } \) yields the following equivalent equation:

\[
s (\lambda A . h_A \circ j_A) t = s (\lambda A . (\text{MIt } s)_A \circ j_A) t.
\]

The extensionality assumption on \(s \) finishes the proof if we can show

\[
\forall A \forall x \in X . (h_A \circ j_A) x = ((\text{MIt } s)_A \circ j_A) x,
\]

but this is the induction hypothesis. \(\square \)

\(^{13} \) This is with respect to the map term for \(G \); see the Coq proofs for the details.
Note that the analog of this uniqueness theorem would have been available also in the theory in Section 2 that did not integrate naturality into the approximations to \(\mu F \) and for which Theorem 1 seemed out of reach. So, it appears to be extremely unlikely that Theorem 1 could be proven from the uniqueness theorem in the system \(LNMI_1t \) without the induction principle \(\mu FInd \).

A natural example in which the uniqueness theorem is useful will be given near the end of the next section (idempotency of \(Btc \)).

4 Back to canonical elements

In the last section, we did not make any use of extensionality and the functor laws for extensional functors: only the \(m \) components of the extensional functors \(ef \) have been used.\(^{14}\) Now, the other components come into play, since they allow to prove extensionality and the functor laws for \(\text{map}_{\mu F} \) (which were the reason why these properties were introduced for the type transformation variable \(X \) in the preliminary system in Section 2), and this in turn only allows in our present setting to define the canonical elements of the nested datatype \(\mu F \).

4.1 Behavior on canonical elements

Theorem 3 (Canonical elements in \(LNMI_1t \))

There are terms \(ef_{\mu F} : \varepsilon_{\mu F} \) and \(\text{InCan} : F(\mu F) \subseteq \mu F \) (the canonical datatype constructor that constructs canonical elements) such that the following convertibilities hold:

\[
\begin{align*}
me_{\mu F} & \simeq \text{map}_{\mu F} \\
\text{map}_{\mu F} f (\text{InCan} t) & \simeq \text{InCan}(m(Fp \varepsilon_{\mu F}) f) t \\
\text{MIt} s (\text{InCan} t) & \simeq s(\text{MIt} s) t
\end{align*}
\]

Thus, for canonical elements, we get back the ordinary behavior.

Proof

We want to take \(\mu F \) as its own approximation, with \(\text{map}_{\mu F} \) as the map term. Therefore, we need to establish \(\text{ext}, \text{fct}_1, \) and \(\text{fct}_2 \) for \(\text{map}_{\mu F} \). Then, trivially, the polymorphic identity on \(\mu F \) serves as argument \(j \) to \(\text{In} \), and (lambda-abstracted) reflexivity of equality yields the corresponding proof of naturality. Then, the claimed equations follow from those of \(LNMI_1t \); in particular the last equation of \(LNMI_1t \)'s definition allows to remove the composition of \(\text{MIt} s \) with the identity.

Let us establish extensionality: the functoriality properties are proved analogously. The statement \(\text{ext \ map}_{\mu F} \) is logically equivalent with universal validity of the predicate

\[P := \lambda A \lambda r^{A^2} \forall B \forall f, g : A \rightarrow B. (\forall a^A. fa = ga) \rightarrow \text{map}_{\mu F} f r = \text{map}_{\mu F} g r. \]

\(^{14}\) Without them, the notion of naturality would not even make sense.
This is proven by inversion on μF, i.e., by using $\mu F \text{Ind}$ without the induction hypothesis. Then, it remains to show $\forall A \forall^F X. P_A (\text{In ef } j n t)$ in the usual context with $X, e f, j, n$. So, assume A, t, B, f, g with $\forall a^X. f a = g a$. Show

$$\text{map}_{\mu F} f (\text{In ef } j n t) = \text{map}_{\mu F} g (\text{In ef } j n t).$$

By convertibility, this amounts to

$$\text{In ef } j n (m (Fp \varepsilon e f) f t) = \text{In ef } j n (m (Fp \varepsilon e f) g t),$$

which follows from $e (Fp \varepsilon e f) : \text{ext} (m (Fp \varepsilon e f))$.

As an instance of our earlier discussion in Section 3 (and presupposing Theorem 4 in the next section), we can now say that the CIC produces normal forms that are also normal with respect to the extension of the CIC’s rewrite system by the two rules

$$\begin{align*}
\text{map}_{\mu F} f (\text{InCan } t) & \rightarrow \text{InCan} (m (Fp \varepsilon e f) \mu F f t), \\
\text{MIt } s (\text{InCan } t) & \rightarrow s (\text{MIt } s) t.
\end{align*}$$

It should be noted that the term $m (Fp \varepsilon e f) \mu F$ in the behavior of $\text{map}_{\mu F}$ can usually be simplified to $F p_{\text{mon}} \text{map}_{\mu F}$, namely, when there is a map-transforming function $F p_{\text{mon}}$ of type $\forall X^\kappa. \text{mon } X \rightarrow \text{mon } (F X)$ such that for all X and $e f : \varepsilon X$, $m (Fp \varepsilon e f) \simeq F p_{\text{mon}} (m e f)$, i.e., when the map term for $F X$ does not depend on the properties of the map term for X. This is usually the case and leads to the standard behavior of $\text{map}_{\mu F}$ that is given in functional programming languages that do not guarantee termination, unlike the present approach: finally, $\text{map}_{\mu F}$ has become recursive, to be seen from

$$\text{map}_{\mu F} f (\text{InCan } t) \simeq \text{InCan} (F p_{\text{mon}} \text{map}_{\mu F} f t).$$

The move from nonrecursive to recursive comes from the inclusion of $\text{map}_{\mu F}$ into the definition of InCan.

In the example of bushes, observe that for all $X : \kappa_1$ and $e f : \varepsilon X$, we have

$$m (B u s h F p \varepsilon e f) \simeq \lambda A \lambda f A^{A \rightarrow B} \lambda X^{B u s h F X A}. \text{match } x \text{ with }$$

$$\begin{align*}
\text{inl } y & \mapsto \text{inl } y \\
\text{inr } y & \mapsto \text{inr } (\text{let } (x_1, x_2) := y \text{ in } (f x_1, m e f (m e f f) x_2)),
\end{align*}$$

from which one can read off a term $F p_{\text{mon}}$ for $F := B u s h F$, since the right-hand side only depends on the m-component of $e f$. (Recall that $B u s h F p \varepsilon$ has been implicitly defined on page 452.) Just as in Section 2 from datatype constructor in, we may define $b n i l$ and $b c o n s$ from InCan:

$$\begin{align*}
b n i l & := \lambda A. \text{InCan } A \text{ (inl } t t), \\
b c o n s & := \lambda A \lambda a A^{A \rightarrow B} \lambda b^{B u s h (B u s h A)}. \text{InCan } A \text{ (inr } (a, b)).
\end{align*}$$

This yields the following behavior of $b u s h$ (recall that $b u s h$ stands for $\text{map}_{\mu F B u s h F}$):

$$\begin{align*}
b u s h f^{A \rightarrow B} (b n i l A) & \simeq b n i l B, \\
b u s h f^{A \rightarrow B} (b c o n s a b) & \simeq b c o n s (f a) (b u s h (b u s h f) b).
\end{align*}$$

The behavior of $B t L$ in Section 2 is as described on page 444 but with \simeq in place of \rightarrow^+.
We compare with the earlier work (Abel et al. 2005) that proposed systems within the framework of F^{ω} and hence had no internal means of describing an induction principle. As mentioned in Section 2, the above rule for Mendler iteration could be simulated within F^{ω}; so we even know that the left-hand side is rewritten into the right-hand side in that encoding. Indirectly, also $\map_{\mu F}$ has been implemented through MIt, and in order to justify the rule

$$\map_{\mu F} f (\text{InCan } t) \rightarrow \text{InCan}(F \text{pmon } \map_{\mu F} f t),$$

we had to insist on the following more general type of $F \text{pmon}$:

$$\forall X^\kappa_1 \forall Y^\kappa_1. (\forall A, B. (A \rightarrow B) \rightarrow X A \rightarrow Y B) \rightarrow \forall A, B. (A \rightarrow B) \rightarrow FXA \rightarrow FY B.$$

By instantiating X and Y both with X and quantification over X, we arrive exactly at the type we gave above for $F \text{pmon}$ in LNMIt and thus a less general type. Although in all practical examples, the terms $F \text{pmon}$ also have the more general type, the simplification of the typing requirement obtained in the present paper lines up better with programming examples like Bird & Paterson (1999a) in the literature.

4.2 Canonization for the example of bushes

This last part of section 4 is a study of how to transform arbitrary bushes into canonical ones. Recall from Section 2 that canonical bushes are those that are denoted by a term of the form $\text{bnil } A$ or $\text{bcons } A \ a \ b$.15 Such a transformation could be defined on the generic level of an arbitrary type constructor $F : \kappa_2$, but there are not yet the necessary generic lemmas for its analysis.

We start with the observation that BushF is monotone in a sense that should be called relativized basic monotonicity of rank 2: there is a closed term

$$\text{BushFmon2br} : \forall X^\kappa_1 \forall Y^\kappa_1. \text{mon } Y \rightarrow X \subseteq Y \rightarrow \text{BushF } X \subseteq \text{BushF } Y,$$

namely,

$$\lambda X^\kappa_1 \lambda Y^\kappa_1 \lambda m^\text{mon } Y. \lambda f X \subseteq Y. \lambda A \lambda x. \text{match } x \text{ with }$$

$$\text{inl } u \mapsto \text{inl } u \ | \ \text{inr } (a, b) \mapsto \text{inr } (a, m (X A) (Y A) (f A) (f (X A) b)).$$

If we had not used the assumed map term m in the pattern-matching construct, BushF would have been monotone in the sense of basic monotonicity, studied in detail in Abel et al. (2005), where it has been proven that self-composition $\lambda X^\kappa_1 \lambda A^\kappa_0. X (X A)$ is not monotone in that sense. In previous work (Matthes 2001), the author required the present relativized basic monotonicity in order to express an iteration rule for nested datatypes that follows the categorical picture of initial algebras and not Mendler’s style. But there were two more requirements: the existence of a function $F \text{pmon}$, discussed previously in this section, and a dual to relativized basic monotonicity, where $\text{mon } X$ is assumed instead of $\text{mon } Y$. The latter requirement was made in order to be able to give a definition of $\map_{\mu F}$ through the iterator (using syntactic Kan extensions, as mentioned on page 449), but this is not needed in the present paper,

15 The system in Section 2 has a different definition of bnil and bcons. We now mean the definitions within LNMIt in this section.
since \(\text{map}_{\mu F} \) is a basic constituent of \(LNMlt \). Anyway, all three requirements are fulfilled for a very large class of datatype functors \(F : \kappa_2 \) (Matthes 2001).

The fact that \(\text{BushFmon2br} \) is not restricted to monotone first arguments allows to define the function \(\text{Btc} : \text{Bush} \subseteq \text{Bush} \) that “canonizes” bushes (\(\text{Btc} \) is shorthand for “bush to canonical bush”) as follows:

\[
\text{Btc} := \text{MIt} \text{Bush} (\lambda X \kappa_1 \lambda \text{it} X \subseteq \text{Bush} \lambda \text{it} \text{Bush}^{\text{F X A}}. \text{InCan} (\text{BushFmon2br bush it t})).
\]

Directly from the definition of \(\text{BushFmon2br} \) and the rule for \(\text{MIt} \), we get

\[
\text{Btc} A (\text{In ef j n (inl tt)}) \simeq \text{bnil} A,
\]

\[
\text{Btc} A (\text{In ef j n (inr (a, b))}) \simeq \text{bcons} A a b'
\]

for some \(b' \) that we do not need to know here. Hence, we may say that \(\text{Btc} \) only yields canonical bushes.

Does \(\text{Btc} \) provide a “canonization”? The minimum requirement seems to be that canonical elements are left unchanged. For \(\text{bnil} A \), this is true, but Theorem 3 yields the other equation

\[
\text{Btc} (\text{bcons} A a b) \simeq \text{bcons} A a (\text{bush} (\text{Btc} A) (\text{Btc} (\text{Bush} A) b)).
\]

Since we only have iteration available in \(LNMlt \), the function acts recursively on the argument \(b \), and we cannot program functions that do not touch the recursive arguments.

We will first directly show that \(\text{Btc} \) is idempotent and then introduce “hereditarily canonical” bushes. Finally, it is shown that \(\text{Btc} \) yields always those bushes and that it does not change them, in the sense that the result is propositionally equal to the argument. Evidently, from these two properties, idempotency of \(\text{Btc} \) follows once more.

As a preparation for the idempotency proof, we need naturality of \(\text{Btc} \), i.e., \(\text{Btc} \in \mathcal{N} (\text{bush}, \text{bush}) \). This is an easy application of Theorem 1, where the second functor law and extensionality of \(\text{bush} \) are needed.

Idempotency means \(\forall A \forall t. \text{Btc} (\text{Btc} t) = \text{Btc} t \). This is of the form of the conclusion of Theorem 2, with the composition of \(\text{Btc} \) with itself as the candidate function \(h \). The extensionality assumption of that theorem is covered by extensionality of \(\text{bush} \), and the correct recursive behavior is guaranteed by naturality of \(\text{Btc} \) and the second functor law for \(\text{bush} \).

From \(\text{BtL} \), we immediately get a notion of elements of bushes: For \(a : A \) and \(t : \text{Bush} A \), define \(a \in t \) by “\(a \) is an element of the list \(\text{BtL} t \),” where elementhood in lists is a simple recursive definition on lists. By using that elements of \(\text{flat_map f l} \) are elements of the lists \(f a \) for \(a \) an element of \(l \), one can establish the following two closure rules:

- \(\forall A \forall a A \forall b \text{Bush} (\text{Bush} A). a \in b \rightarrow \text{cons} a b \),
- \(\forall A \forall a A \forall b \text{Bush} (\text{Bush} A) \forall e A \forall t \text{Bush} A. e \in t \rightarrow t \in b \rightarrow e \in \text{cons} a b \).

Thanks to \(\in \), we can define the notion \(\text{can}_H : \forall A. \text{Bush} A \rightarrow \text{Prop} \) of hereditarily canonical bushes inductively by the following two clauses:

- \(\forall A. \text{can}_H (\text{bnil} A) \),
- \(\forall A \forall a A \forall b \text{Bush} (\text{Bush} A). (\forall t \text{Bush} A. t \in b \rightarrow \text{can}_H t) \rightarrow \text{can}_H b \rightarrow \text{can}_H (\text{bcons} a b) \).
This definition is strictly positive and, formally, infinitely branching. However, there are always only finitely many \(t \) that satisfy \(t \in b \). Notice that nothing is required for the term \(a \) in \(bcons a b \). Notice also that this is a simultaneous definition of \(can_H A : Bush A \to Prop \) for all \(A \), where \(can_H b \) is in fact \(can_H (Bush A)b \) and \(can_H (bcons a b) \) is \(can_H A (bcons A a b) \).

A refinement of extensionality for \(bush \) can be given for hereditarily canonical bushes: We have

\[
\forall A \forall f, g : A \to B. can_H t \to (\forall a^A. a \in t \to f a = g a) \to bush f t = bush g t.
\]

The proof is by induction on the inductive definition of \(can_H \) and uses the two closure rules of \(\in \).

From this refined extensionality and the first functor law\(^16\) for \(bush \), we can prove – again by induction on \(can_H \) – the invariance of hereditarily canonical bushes under \(Btc \):

\[
\forall A \forall t : Bush A. can_H t \to Btc t = t.
\]

Finally, we want to show that \(Btc \) always produces hereditarily canonical bushes:

\[
\forall A \forall t : Bush A. can_H (Btc t).
\]

As an auxiliary statement, we need that every element of \(bush f t \) is equal to \(f a \) for some \(a \in t \). It is derived from the corresponding property of \(map \), using naturality of \(BtL \). The last but one step is that \(bush f \) preserves the property of being hereditarily canonical:

\[
\forall A \forall f : A \to B. \forall t : Bush A. can_H t \to can_H (bush f t).
\]

It is proven by induction on \(can_H \), using the previous auxiliary statement.

The desired \(can_H (Btc t) \) now comes from induction on bushes, that is, by a direct application of \(\mu FInd \), where the last two statements are used in the case for \(bcons \).

All of this is just an illustration by way of the example of the truly nested datatype of bushes. It would certainly be pleasing not to be obliged to distinguish between all bushes, the canonical bushes and the hereditarily canonical bushes, but an appropriate terminating type-based recursion scheme together with a justified induction principle has not yet been conceived.

5 Justification

Theorem 4 (Main theorem)

The system \(LNMIr \) can be defined within the CIC with impredicative \(Set \), extended by the principle of proof irrelevance, i.e., by \(\forall P : Prop \forall p_1, p_2 : P. p_1 = p_2 \).

The proof will occupy the whole section. Capretta’s idea (Capretta 2004) is to first introduce something bigger than the desired \(\mu F \), i.e., a type transformation \(\mu^+ F \) such that, later, there is a function of type \(\mu F \subseteq \mu^+ F \). In fact, \(\mu F \) will be defined as the restriction of \(\mu^+ F \) by some predicate, and the mentioned function will just be the first projection out of that strong sum type. While \(\mu^+ F \) will not be a “real” recursive type – there is no recursive call to \(\mu^+ F \), and hence it is just a record – the

\(^16\) This is the only direct use of the first functor law for \(map_{\mu F} \) in this paper.
Let us first remark that the \(\eta \) of type \(\text{Inchk} \) predicate is defined inductively with induction hypotheses that are in no way \emph{a priori} smaller than the conclusion. Abbreviate

\[
\text{MItPretype } S := \forall G^{\kappa_1}. (\forall X^{\kappa_1}. X \subseteq G \rightarrow FX \subseteq G) \rightarrow S \subseteq G.
\]

The inductive family \(\mu^+F \) is defined by the datatype constructor

\[
\text{In}^+ : \forall G^{\kappa_1} \forall ef^\delta G \forall G' : \kappa_1 \forall m' : \text{mon } G' \\
\forall it : \text{MItPretype } G' \forall j^{G \subseteq G}. j \in \mathcal{N} (mef, m') \rightarrow FG \subseteq \mu^+F.
\]

Certainly, the idea is that \(G' \) should be \(\mu F \); \(m' \) should be \(\text{map}_{\mu^+F} \); and \(it \) should be \(\text{MIt} \). Unfortunately, the method requires that the iteration principle has to be encoded into the construction from the very beginning onward. This treatment of simultaneous inductive–recursive definitions is closed in the sense that it does not allow any other function that is defined by recursion on the family afterward.

By impredicativity of \(\text{Set} \) that we require for the whole construction, the type \(\mu^+FA \) belongs to \(\text{Set} \) and hence \(\mu^+F : \kappa_1 \). The minimality scheme for sort \(\text{Set} \) generated from \(\text{In}^+ \) by Coq is just case analysis on this record-like \(\mu^+F \). With its help, we can immediately define \(\text{map}_{\mu^+F} : \text{mon}(\mu^+F) \) with

\[
\text{map}_{\mu^+F} f (\text{In}^+ ef m' it j n t) \simeq \text{In}^+ ef m' it j n (m(Fp^\delta ef f) t).
\]

Similarly, one defines \(\text{MIt}^+ : \text{MItPretype}(\mu^+F) \) such that

\[
\text{MIt}^+ s (\text{In}^+ ef m' it j n t) \simeq s(\lambda A. (it s)_A \circ j_A) t.
\]

Obviously, this has nothing to do with iteration, since there is no recursive call whatsoever.

With \(\text{map}_{\mu^+F} \) and \(\text{MIt}^+ \) in place, we can now define what is a “good” element of \(\mu^+F \). Following the ideas by Capretta (2004), this is done by way of an inductive predicate \(\text{chk}_{\mu^+F} : \forall A. \mu^+FA \rightarrow \text{Prop} \) for which there is a single inductive clause \(\text{Inchk} \) of type

\[
\forall G^{\kappa_1} \forall ef^\delta G \forall j^{\mu^+F} \forall it^\delta \mathcal{N} (mef, \text{map}_{\mu^+F}). (\forall A \forall t^{GA}. \text{chk}_{\mu^+F}(j_A t)) \rightarrow \forall A \forall t^{FGA}. \text{chk}_{\mu^+F} (\text{In}^+ ef \text{map}_{\mu^+F} \text{MIt}^+ (\lambda A \lambda \lambda t : GA. j_A t) n t) .
\]

Let us first remark that the \(\eta \)-expansion \(\lambda A \lambda \lambda t : GA. j_A t \) of \(j \) is needed for subtle technical reasons. Except from that, the parameters of \(\text{In}^+ \) are instantiated as \(G' := \mu^+F \); \(m' := \text{map}_{\mu^+F} \) and \(it := \text{MIt}^+ \).

This is a strictly positive inductive definition and hence available in the CIC, and Coq generates an induction principle as follows: Given a predicate \(P : \forall A. \mu^+FA \rightarrow \text{Prop} \), \(P \) holds “universally,” which means here that \(\forall A \forall t^{\mu^+FA}. \text{chk}_{\mu^+F} r \rightarrow P_A r \) holds (so, universality is relativized to the good elements), if the following induction step is provided:

\[
\forall G^{\kappa_1} \forall ef^\delta G \forall j^{\mu^+F} \forall it^\delta \mathcal{N} (mef, \text{map}_{\mu^+F}). (\forall A \forall t^{GA}. \text{chk}_{\mu^+F}(j_A t)) \rightarrow (\forall A \forall t^{GA}. P_A(j_A t)) \rightarrow \forall A \forall t^{FGA}. P_A (\text{In}^+ ef \text{map}_{\mu^+F} \text{MIt}^+ (\lambda A \lambda \lambda t : GA. j_A t) n t) .
\]
The premise $\forall A \forall t^{GA}. \text{chk}_{\mu^+F}(jAt)$ yields the inversion principle for chk_{μ^+F} (i.e., that the “ingredients” of a good element are good); the premise $\forall A \forall t^{GA}. P_A(jAt)$ is the induction hypothesis.

Slightly sloppily, we can say that an element of μ^+FA is good if it is of the form $In^+\ldots$, where the argument m' is replaced by map_{μ^+F}; it is replaced by MIt^+; and all the j-images are already good. The construction of the nested datatype itself is finished by

$$\mu FA := \{ r : \mu^+FA \mid \text{chk}_{\mu^+F} r \}.$$

This notation stands for the inductively defined sig of Coq, which is a strong sum in the sense that the first projection yields the element r and the second projection the proof that $\text{chk}_{\mu^+F} r$. Since μ^+FA belongs to Set, this is also true of μFA and hence $\mu F : \kappa_1$.

The map function $\text{map}_{\mu F}$ for μF can now be defined as follows: Assume A, $r : \mu FA$, B and $f : A \to B$. We have to define $\text{map}_{\mu F} f r$ of type μFB. An r consists of a term $r' : \mu^+FA$ and a proof $p : \text{chk}_{\mu^+F} r'$. The first component of our result will be $\text{map}_{\mu F} f r'$; the second component has to be a proof that $\text{chk}_{\mu^+F}(\text{map}_{\mu F} f r')$. Now we do inversion on p, i.e., induction on chk_{μ^+F}, where the induction hypothesis will not be used in the induction step. This is immediate with the computation rule for map_{μ^+F} and the introduction rule for chk_{μ^+F}, invoking the other hypothesis $\forall A \forall t^{GA}. \text{chk}_{\mu^+F}(jAt)$ that yields the inversion principle.

In order to define In of the required type, assume $X : \kappa_1$, $ef : \delta X$, $j : X \subseteq \mu F$, $n : j \in \mathcal{N}(\text{map}_{\mu F}, A)$, and $t : FXA$. We have to define $\text{In}\text{ef}\ j\text{nt} : \mu FA$. Its first component of type μ^+FA is given by $\text{In}^+\text{ef}\ \text{map}_{\mu^+F} \text{MIt}^+ j^n t$ with $j' : X \subseteq \mu^+F$ defined by typewise composing the first projection out of μF with j, and n' its canonical naturality proof that depends on n and the fact that the first projection of $\text{map}_{\mu F} f r$ is defined to be map_{μ^+F}, applied to f and the first projection of r. The second component, i.e., the proof part, again follows directly from the introduction rule for chk_{μ^+F}, since, by the very definition of μF, we have $\forall A \forall t^{XA}. \text{chk}_{\mu^+F}(jAt)$.

Even with respect to convertibility, this construction fulfills the required equation for $\text{map}_{\mu F}$.

The definition for MIt is easier than for $\text{map}_{\mu F}$. Just define, given the step term $s : \forall X^{\kappa_1}. X \subseteq G \to FX \subseteq G$ and $r : \mu FA$, the term $\text{MIt} s r : GA$ as MIt^+, applied to s and the first projection of r. The desired equality for MIt holds even as convertibility, since composition is associative also in this sense. (The η-rule for MIt in the specification of $\text{LNMI}t$ is trivially fulfilled by defining MIt as a lambda- abstraction.)

For the induction principle $\mu F\text{Ind}$, we currently need proof irrelevance, for two purposes:

- A simple consequence is the principle of irrelevance of the proof in elements of type μFA: If the first projections of r_1 and r_2 of type μFA are equal, then $r_1 = r_2$. (Hence, the first projection is injective.) This could possibly be

17 The forced η-expansions can just be achieved by converting the goal to the expanded form.
remedied by changes to the CIC that affect the convertibility relation for strong sums (Werner 2006).

• We need that any two proofs of naturality for the same parameters are equal. The author does not see yet how this could be reduced to the specific instance of proof irrelevance where only all proofs of the same equation are identified (up to propositional equality). The problem here is that naturality is a universally quantified equation, and equational reasoning usually does not reach under binders in intensional type theory, as discussed in Section 2.

Proof irrelevance is only about propositional equality of proofs of propositions and so does not degenerate the computational world (that is based on definitional equality) inside sort Set.

The following proof has no counterpart in Capretta’s work. It seems that it profits from our very special situation, while Capretta intended to give a general method for simultaneous inductive–recursive definitions.

In order to prove \(PF \), the inductive step \(s \) of type

\[
\forall X : \forall \mu \exists X \forall F \forall j : \forall \langle m, e, f, \mu, \nu, \tau \rangle \langle \forall A \forall X A, P_A(j A) \rangle \rightarrow \forall A \forall t F X A, P_A(In e f j t),
\]

and \(A : Set, r : \mu F A \). We have to show \(P_A r \). The term \(r \) decomposes into a term \(r' : \mu^+ F A \) and a proof \(p : \text{chk}_{\mu^+ F} r' \). We do induction on \(p \). We write \(cons \) for the opposite operation of this decomposition and hence

\[
cons : \forall A \forall r' : \mu^+ F A. \text{chk}_{\mu^+ F} r' \rightarrow \mu F A.
\]

Thus, we want to show \(P_A(cons r' p) \) by induction on \(p \). As such, this is not covered by the given induction principle for \(\text{chk}_{\mu^+ F} \). But there is also a more dependent version that can be generated by Coq (“induction scheme for sort Prop” that also takes into account the proofs of \(\text{chk}_{\mu^+ F} r' \)): Given a predicate

\[
P' : \forall A \forall r' : \mu^+ F A. \text{chk}_{\mu^+ F} r' \rightarrow Prop,
\]

it holds universally in the usual sense, i.e., \(\forall A \forall r' : \mu^+ F A \forall p : \text{chk}_{\mu^+ F} r' \). \(P'_A r' p \), if

\[
\forall G : \forall \mu \exists G \forall F \forall j : \forall \langle m, e, f, \mu, \nu, \tau \rangle \forall k : \langle \forall A \forall t F A. \text{chk}_{\mu^+ F} (j A t) \rangle.
\]

\[
\forall A \forall t F A. P'_A(j A t)(k A t) \rightarrow \forall A \forall t F G A.
\]

\[
P_A' \left(In^+ e f map_{\mu^+ F} M I t^+ (\lambda A \lambda t^+ G A. j A t) n t \right)(Inck e f j n k t).
\]

For our proof, take \(P'_A r' p := P_A(cons r' p) \). Assume \(G, e, f, j, n, k \) according to this induction principle. Define \(j' : = \lambda A \lambda t^+ G A. \text{cons}(j A t)(k A t) \) of type \(G \subseteq \mu F \). Under the assumptions \(H : \forall A \forall t F G A, P_A(j' A t), A : Set, \) and \(t : F G A \), we have to prove

\[
P_A \left(\text{cons}(In^+ e f map_{\mu^+ F} M I t^+ (\lambda A \lambda t^+ G A. j A t) n t) \right)(Inck e f j n k t).
\]

First show \(j' \in A \langle m, e, f, \mu, \nu, \tau \rangle \). For this, one has to remove the outer quantifiers and then use proof irrelevance in showing the equation only for the first projections. But this follows by a short calculation from our naturality proof \(n \). Let \(n_1 \) be this proof of \(j' \in A \langle m, e, f, \mu, \nu, \tau \rangle \). We deduce \(P_A(In e f j' n_1 t) \) from the general assumption \(s \) (the induction step of \(\mu F I d \)) and our assumption \(H \).
It also holds that
\[
\text{In}^+ \text{ef map}_{\mu^F \text{MIt}^+} (\lambda A t : GA. j_A t) n t
\]
is equal to the first projection of \(\text{In ef } j' n_1 t \). This is a simple calculation for the “\(j \) argument,” and we identify all naturality proofs in our system. Since we identify elements of \(\mu^F A \) with the same first component, the two arguments of \(P_A \) in this proof development are equal; hence we may pass from the validity of the second such statement to that of the first one. Again, all the details can be found in the Coq development (Matthes 2008).

6 Example: explicit flattening

In the following, we will illustrate the use of \(\text{LNMIIt} \) with the example of a representation by nested datatypes of untyped lambda-terms. The original form (for credits, see Abel et al. 2005) can be treated directly in Coq since version 8.1. Only the extension by an explicit flattening rule (again, see Abel et al. 2005 for more information) goes beyond direct representability in Coq.

In Coq with predicative \text{Set}, one can now declare \(\text{Lam} : \kappa_1 \) as an inductive family just by giving the types of its constructors (in a context \(A : \text{Set} \)):

\[
\begin{align*}
\text{var} & : A \rightarrow \text{Lam} A, \\
\text{app} & : \text{Lam} A \rightarrow \text{Lam} A \rightarrow \text{Lam} A, \\
\text{abs} & : \text{Lam} (\text{option} A) \rightarrow \text{Lam} A.
\end{align*}
\]

Then, \(\text{Lam} A \) represents the untyped lambda-terms, where the variable names are taken from the type \(A \). Lambda-abstraction is represented by \(\text{abs} \); thus the name of the bound variable is just taken to be the additional element in \(\text{option} A \). We insist on the freedom in the type \(A \) that can even be \(\text{Lam} A' \) for some \(A' \). A full formalization of pure type systems in Coq based on a restriction of the admissible types \(A \) to initial segments of the natural numbers has been obtained by Adams (2006). We may mostly follow his development for the definition of substitution

\[
\text{subst} : \forall A, B. (A \rightarrow \text{Lam} B) \rightarrow \text{Lam} A \rightarrow \text{Lam} B,
\]

where for a substitution rule \(f : A \rightarrow \text{Lam} B \), the term \(\text{subst } f t : \text{Lam} B \) is the result of substituting every variable \(a : A \) in the term representation \(t : \text{Lam} A \) by the term \(f a : \text{Lam} B \). The mapping function \(\text{lam} : \text{mon Lam} \) does just variable renaming. It is easy to establish extensionality and functoriality of \(\text{lam} \) and extensionality of \(\text{subst} \) in its argument \(f \). One may even prove that \(\text{subst } f t \) only depends on the values \(f a \) for the \(a \)’s that freely occur in \(t \) (a notion to be defined inductively). The most interesting properties of \(\text{subst} \) are the following:

\[
\begin{align*}
\forall A, B, C \forall f : A \rightarrow \text{Lam} B \forall g : B \rightarrow \text{Lam} C \forall t : \text{Lam} A. \text{subst } g (\text{lam } f t) & = \text{subst } (g \circ f) t, \\
\forall A, B, C \forall f : A \rightarrow \text{Lam} B \forall g : B \rightarrow \text{Lam} C \forall t : \text{Lam} A. \text{lam } g (\text{subst } f t) & = \text{subst } (\text{lam } g \circ f) t.
\end{align*}
\]

18 Other formalizations were earlier (Altenkirch & Reus 1999; McBride 1999), and the point of this example is the essential use of nested \(\text{Lam} \) that is not considered elsewhere.
An instance of the first property that goes well beyond Adams’ work is as follows:

\[
\forall A, B \forall f : A \to \text{Lam} B \forall x : \text{Lam} A. \, \text{subst} (\lambda x : \text{Lam} B. \, x) (\text{lam} f \, t) = \text{subst} f \, t.
\]

Here, we used extensionality of \text{subst} in order to get from \((\lambda x : \text{Lam} B. \, x) \circ f\) to \(f\) as argument to \text{subst}. Note that the term \(\text{lam} f \, t\) has type \(\text{Lam} (\text{Lam} B)\). The function \(\text{subst} (\lambda x : \text{Lam} B. \, x) : \text{Lam} (\text{Lam} B) \to \text{Lam} B\) “flattens” this term in that it integrates the lambda-terms that constitute its free variable occurrences into the term itself. Note that this equation is just standard category-theoretic knowledge about the equivalence of monad representations with monad multiplication (here the flattening operation) and binding (here the substitution operation) and that this viewpoint has already been taken for the representation of untyped lambda-calculus by Belllegarde & Hook (1994).

With the above properties, one can easily establish the three monad laws for \text{subst}. We can also show naturality of \text{subst} in the following extended sense:

\[
\forall X \forall j : X \subseteq \text{Lam}. \, j \in \mathcal{N}(m, \text{lam}) \to (\lambda A. \, \text{subst} j A) \in \mathcal{N}(\text{lam} \star m, \text{lam}),
\]

where \(\text{lam} \star m\) is the canonical map term for \(\text{Lam} \circ X\) that is implicit in the last case of Lemma 1. This naturality lemma will be needed below.

While all of the described development goes smoothly in the current Coq version – for the details, see the Coq scripts (Matthes 2008) – we now have to make use of \(\text{LNMIt}\). We extend the untyped lambda-calculus by an explicit notion of flattening, i.e., a term former to indicate flattening that is not carried out, just like explicit substitution. The corresponding datatype functor is thus

\[
F := \lambda X. \lambda A. \, A + X A \times X A + X (\text{option } A) + X (X A),
\]

while the one for \(\text{Lam}\) would be the same \(F\), with the last summand removed. We assume that \(+\) associates to the left. From Lemma 2, one easily produces the corresponding \(Fp\).

There are two options for the use of \(\text{LNMIt}\): the axiomatic one that only takes the specification in Section 3 (in Coq, this is done by putting the whole development into a “functor” that depends on an argument module of a module type that contains the description of \(\text{LNMIt}\)) and the implementation according to Section 5. In the first case, predicative \(\text{Set}\) suffices, but the equations for the behavior of \(\text{map}_{\mu F}\) and \(\text{MIt}\) can only be used as propositional equality. In the second case, one needs impredicative \(\text{Set}\), and Coq applies the equations implicitly when evaluating expressions. However, the implementation details are not encapsulated and might be exploited in the development. The Coq scripts that are available for this paper illustrate both approaches.

We will call \(\text{Lam}E\) the fixed point \(\mu F\) for the \(F\) above and \(\text{lam}E\) the map term \(\text{map}_{\mu F}\). The interesting new canonical datatype constructor (\(\text{InCan}\) codes together four datatype constructors)

\[
\text{flat} : \forall A. \, \text{Lam}E (\text{Lam}E A) \to \text{Lam}E A
\]

is obtained by composing \(\text{InCan}\) with the right injection \(\text{inr}\).
We define a function \(eval : LamE \subseteq Lam \) that evaluates all the explicit flattenings and thus yields the representation of a usual lambda-term by

\[
eval := \text{MIt} \left(\lambda X^X \lambda it^X \lambda A^A \lambda t^X A . \text{match} t \text{ with } \ldots | \text{inr} e \mapsto \text{subst it}_A (it_{XA} e) \right).
\]

Note that \(e : X(XA) ; it_{XA} e : \text{Lam}(XA) ; it_A : XA \rightarrow \text{Lam} A ; \) and consequently \(\text{subst it}_A (it_{XA} e) : \text{Lam} A \). Theorem 3 immediately gives

\[
eval_A(\text{flat}_A e) \simeq \text{subst eval}_A (\text{eval}_{\text{LamE} A} e).
\]

This is a new algorithm and substantially different from earlier work (Abel et al. 2005). Intuitively, it takes the argument \(e \) of type \(\text{LamE} (\text{LamE} A) \) and first ignores the complex structure of the variables when evaluating the explicit flattenings, arriving at a term of type \(\text{Lam}(\text{LamE} A) \). Then, each of the freely occurring variables, which are in fact lambda-terms with explicit flattenings, has to be substituted by the corresponding evaluated lambda-term.

Theorem 1 allows to prove that \(eval \) is a natural transformation from \(\text{lamE} \) to \(\text{lam} \). The case that pertains to the \(\text{flat} \) constructor is a simple consequence of naturality of \(\text{subst} \), defined above (together with extensionality of \(\text{lam} \) and \(\text{mef} \)). As a corollary of naturality, using the “instance of the first property” of \(\text{subst} \) above, we get

\[
eval_A(\text{flat}_A e) = \text{subst}(\lambda X^{\text{Lam} A} . x)(\text{eval}_A (\text{lamE eval}_A e)).
\]

The algorithmic idea of the right-hand side is as follows: Take the argument \(e \) of type \(\text{LamE} (\text{LamE} A) \), and first concentrate on the terms-as-variables in \(\text{LamE} A \). Rename them via \(\text{lamE} \), according to the function \(eval_A : \text{LamE} A \rightarrow \text{Lam} A \). This yields a term of type \(\text{Lam}(\text{Lam} A) \). In a second time, evaluate the “outer structure,” ignoring the complex structure of the variables. Now, flatten out this term of type \(\text{Lam}(\text{Lam} A) \); see our discussion above.

We might wonder whether \(eval \) could have been defined so that the previous propositional equality were even forced to be convertibility. One would first try to replace the term \(\text{subst it}_A (it_{XA} e) \) in the definition of \(eval \) by

\[
\text{subst}(\lambda X^{\text{Lam} A} . x)(\text{it}_{\text{Lam} A} (\text{lamE it}_A e)),
\]

but this would only type check if \(\text{lamE} \) were replaced by a map term \(m : \text{mon} X \) for \(X \), but no such \(m \) is available in our version of the Mendler iterator. Currently, one would need to resort to sized nested datatypes (Abel 2006) for such a program, but there do not yet exist induction principles for reasoning on programs with sized nested datatypes.

As a less immediate application of naturality of \(eval \), we can analyse half-explicit substitution

\[
esubst : \forall A, B. (A \rightarrow \text{LamE} B) \rightarrow \text{LamE} A \rightarrow \text{LamE} B
\]

defined by \(\text{esubst} f t := \text{flat}(\text{lamE} f t) \), where only the renaming is done, and the flattening is left explicit. Trivially, one can embed \(\text{Lam} \) into \(\text{LamE} \) by a function \(\text{emb} \). The question is then whether \(\text{esubst} f t \) with \(f : A \rightarrow \text{Lam} B \) and \(t : \text{Lam} A \) can be calculated by evaluating

\[
eval_B (\text{esubst} (\text{emb}_B \circ f) (\text{emb}_A t)),
\]
and this can be answered in the affirmative (for propositional equality) by using naturality of eval. One also needs extensionality and the first property of subst and that eval is a left inverse of emb, but those are all proven by induction on Lam, thus not taking profit from LNMIt in this Coq development (Matthes 2008).

7 Conclusions

It is now possible to combine the following benefits:

- termination of all functions following the recursion schemes;
- recursion schemes being type-based and not syntax-driven;
- genericity (no specific shape of the datatype functors required);
- no continuity properties required;
- inclusion of truly nested datatypes;
- categorical laws for program verification;
- program execution within the convertibility relation of Coq.

In practice, one often uses refined forms of iteration that are also known under the names of efficient folds (Hinze 2000; Martin et al. 2004). More general forms in the spirit of Mendler’s style can be studied, e.g., the system Mitω (Abel et al. 2005). Its iterator can be expressed by Mit of this paper, but only at the expense of some right Kan extension as target type constructor G. Although our Theorem 1 would apply, its application condition would speak about equality of functions, and that is usually not provable. With some more refined notions of extensionality and more careful use of quantification, it is nevertheless possible to prove a theorem for Mit that will yield a naturality property for Mit that precisely captures the map fusion law. This can even be extended to treat GMIt, a more liberal form of Mit, also introduced in that paper.

Certainly, more and more difficult examples have to be verified. It does not seem possible to extend the construction with the inductive–recursive definition from iteration to primitive recursion or just to add an inversion operation. A further goal would be reasoning principles for conventional style without noncanonical elements that can treat truly nested datatypes.

Finally, it should be mentioned that the present work does not restrict the system to one single nested datatype or only the introduction of one such datatype after the other. All the constructions are fully parametric so that arbitrary interleaving of such families is admissible, although the author is not aware of natural examples in which a nested datatype sits inside the definition of another “real” nested datatype in the sense of different family indices in the recursive equation.

Acknowledgments

I am grateful to Chantal Berline who took the time to discuss possible analogies of the presence of noncanonical elements in LNMIt and nonstandard models. I am also very grateful to the anonymous referees who forced me to deepen my understanding of what LNMIt can do with canonical elements and for all their detailed and valuable comments.
References

