
The 2007 Federated Conference on

Rewriting, Deduction and Programming

Paris, France

June 25 – 29, 2007

HOR 2007

4th International Workshop on Higher-Order Rewriting

June 25, 2007

Proceedings

Editor:

Ralph Matthes

ii

Preface

This is the proceedings volume of the 4th International Workshop on Higher-
Order Rewriting (HOR 2007). HOR is a forum to present work concerning all
aspects of higher-order rewriting. The aim is to provide an informal and friendly
setting to discuss recent work and work in progress. HOR 2002 was a part of
FLoC 2002 in Copenhagen, Denmark; HOR 2004 was part of the RDP 2004 in
Aachen, Germany; HOR 2006 was part of FLoC 2006 in Seattle, USA. HOR
2007 is part of RDP 2007 in Paris, France. This fourth installment of HOR
enjoys additionally the status of a “small workshop” of the TYPES project.

The present volume provides final versions of six accepted contributed ex-
tended abstracts and short abstracts of all talks selected for the workshop. This
also includes the talks by the invited speakers Carsten Schürmann (IT Univer-
sity of Copenhagen, Denmark) and Tarmo Uustalu (Institute of Cybernetics,
Tallinn University of Technology, Estonia) and the system demo by Kristoffer
Rose (IBM Thomas J. Watson Research Center, Yorktown Heights, USA).

Acknowledgements

I would like to thank the institutional sponsors of RDP’07 without whom
it would not have been possible to organize RDP’07: the Conservatoire des
Arts et Métiers (CNAM), the Centre National de la Recherche Scientifique
(CNRS), the École Nationale Supérieure d’Informatique pour l’Industrie et
l’Entreprise (ENSIEE), the GDR Informatique Mathématique, the Institut Na-
tional de Recherche en Informatique et Automatique (INRIA) unit Futurs, and
the Région Île de France.

For the present workshop, I gratefully acknowledge the generous funding
through the project TYPES (Coordination Action 510996 of the 6th Frame-
work Programme of the EU), see http://www.cs.chalmers.se/Cs/Research/

Logic/Types/, that additionally gave this fourth instance of the HOR workshop
series the status of a “small workshop” and even funded the invited speaker that
is not participating in the project. My personal thanks go to the project coor-
dinator Bengt Nordström and the other members of the TYPES steering com-
mittee: Peter Aczel, Herman Geuvers, Zhaohui Luo, Christine Paulin-Mohring
and Randy Pollack.

Many thanks to the program committee that I had the pleasure to chair,
consisting of Herman Geuvers, Makoto Hamana, Albert Rubio and Mark-Oliver
Stehr. The tasks were the decisions on the invited speakers, a timely refereeing
of the submitted abstracts and the final decisions on the program. A heartfelt
thank you to the HOR workshop series steering committee, Delia Kesner and
Femke van Raamsdonk, who offered me to take this responsibility for the higher-
order rewriting community and gave valuable advice throughout.

Thanks go to all the authors of abstract submissions, whether accepted or
not. They were the raw material to shape this scientific meeting. A big thank
you to the invited speakers Carsten Schürmann and Tarmo Uustalu that ac-
cepted this invitation to come to Paris despite heavy other obligations, and to
Kristoffer Rose for his willingness to prepare a system demo that complements
his talk.

I am much obliged to Andrej Voronkov and the support team of EasyChair
for this marvellous tool free of charge that is very beneficial for the program

iii

committee and in particular its chair already for small workshops such as HOR.
Finally, let me thank the organizers of the RDP’07 conference, Antonio

Bucciarelli, Vincent Padovani, Ralf Treinen and Xavier Urbain who took care
of all “physical” aspects of the organization, in particular Ralf Treinen in charge
of the satellite workshops, even including the printing of these proceedings.

June 2007
Ralph Matthes, IRIT (CNRS and University Paul Sabatier, Toulouse, France)

iv

Contents

Carsten Schürmann: On the formalization of logical relation arguments
in Twelf 1

Tarmo Uustalu: Circular proofs = Mendler in sequent form 3

Andreas Abel: Syntactical strong normalization for intersection types
with term rewriting rules 5

Lisa Allali: Algorithmic equality in Heyting arithmetic modulo 13

Takahito Aoto and Toshiyuki Yamada: Argument filterings and usable
rules for simply typed dependency pairs 21

Lionel Marie-Magdeleine and Serguei Soloviev: Non-standard reduc-
tions in simply-typed, higher order and dependently-typed systems 29

Kristoffer Rose: CRSX - an open source platform for experiments with
higher-order rewriting 31

Kristoffer Rose: Demonstration of CRSX 38

Max Schäfer: Elements of a categorical semantics for the Open Calculus
of Constructions 39

Daniel Ventura, Mauricio Ayala-Rincon and Fairouz Kamared-

dine: Principal typings for explicit substitutions calculi 45

v

vi

On the formalization of logical relation arguments

in Twelf

Carsten Schürmann

IT University of Copenhagen, Denmark

Abstract of HOR 2007 talk as invited speaker on June 25, 2007

Tait’s method (a. k. a. proof by logical relations) is a powerful proof tech-
nique frequently used for showing foundational properties of languages based on
typed lambda-calculi. Historically, these proofs have been difficult to formalize
in Twelf, in part because logical relations are difficult to define judgementally.

In this talk I discuss how we did it, and what lessons we have learned about
the relationship between logical frameworks, the consistency of logical systems,
well-founded orderings, and proof theory.

This is joint work with Jeffrey Sarnat.

1

2

Circular proofs = Mendler in sequent form

Tarmo Uustalu

Institute of Cybernetics

Tallinn University of Technology, Estonia

Abstract of HOR 2007 talk as invited speaker on June 25, 2007

I present an interesting application of higher-order typed equational reason-
ing to structural proof theory. First I describe a simply typed lambda-calculus
with inductive and coinductive types and guarded (co)recursion in the style of
N. P. Mendler. This is a higher-order natural deduction system. Guardedness is
expressed with type polymorphism. Then I show that remoulding this system as
a higher-order sequent calculus yields a reconstruction with a solid foundation
of Cockett and Santocanale’s calculus of circular proofs (cf. Dam and Sprenger,
Brotherston and Simpson).

3

4

Syntactical Strong Normalization for

Intersection Types with Term Rewriting Rules

Andreas Abel∗

Institut für Informatik

Ludwig-Maximilians-Universität München

June 4, 2007

Abstract

We investigate the intersection type system of Coquand and Spiwack

with rewrite rules and natural numbers and give an elementary proof of

strong normalization which can be formalized in a weak metatheory.

1 Introduction

For typed λ-calculi which are used as languages for theorem provers, such as
Agda, Coq, LEGO or Isabelle, normalization is a crucial property; the con-
sistency of these provers depend on it. Usually, normalization is proven by a
model construction, but recently, syntactical normalization proofs have received
some interest [Val01, Dav01, JM03]. One advantage of syntactical proofs is that
they explain better why a calculus is normalizing; in such proofs one can see
what actually decreases in each reduction step. Another advantage is that they
can be formalized in weak logical theories. For instance, a syntactic normal-
ization proof [Abe04] of the simply-typed λ-calculus (STL) can be carried out
in Twelf, a logical framework supporting higher-order abstract syntax, whose
proof-theoretic strength is probably ωωω

, well below primitive recursive arith-
metic. The insight that normalization of very weak languages, like the STL,
can be proven using just lexicographic structural induction over Σ1-sentences,
has recently lead to a full formalization of an intermediate language for SML in
Twelf [LCH07].

In this work, we consider a λ-calculus with simple and intersection types
and term rewriting and show strong normalization by structural means, that is,
no model construction, instead finitary inductive definitions and lexicographic
induction. For intersection types without term rewriting, similar normalization
proofs exist [Val01, Mat00]. The present system originates from work of Co-
quand and Spiwack [CS06]; there it serves as the basis of a filter λ model which
ultimately shows normalization of a dependently-typed logical framework with
bar recursion. The filter λ model “translates” a term of the logical framework
into sets of finite types the term can receive in the intersection type system. If
all intersection-typable terms are strongly normalizing, then so are all terms of

∗Research partially supported by the EU coordination action TYPES (510996).

5

the logical framework whose denotation is not the empty set of types in the filter
λ-model. Coquand and Spiwack prove normalization for the intersection type
system using reducibility candidates; however, there should be a proof with
weaker means. As Berger [Ber05] explained to me, the filter λ model which
links the (strong) logical framework with the (presumably weak) intersection
type systems uses proof-theoretically heavy tools, hence, the link between the
intersection type system and strong normalization should be a lightweight one.
This works tries to substantiate Berger’s intuition.

2 Intersection Type System for Term Rewriting

As language, we consider the λ-calculus with constructors and functions defined
by rewriting. For simplicity, we consider only the nullary constructor 0 and
the unary constructor $ (successor) for natural numbers and functions f with
rewrite rules of the shape

f(0) −→ z z closed
f($x) −→ s FV(s) ⊆ {x}.

The right hand sides z and s may mention f and other defined functions, thus,
recursion is a priori unrestricted. Although we only consider natural numbers
in the following, the techniques extend to all first-order data types, such as
lists or finitely branching trees. Higher-order data types, such as infinitely
branching trees and tree ordinals pose yet some technical problem. Thus, we
do not cover the full language of Coquand and Spiwack. Note however that
first-order datatypes (natural numbers and lists) are sufficient to treat the main
application of the Coquand and Spiwack’s filter λ model, strong normalization
of bar recursion.

The intersection type system does not know a type Nat of all natural num-
bers, however, it has one singleton type for each a natural number. We use the
same constructors 0 and $ for these singleton types. The type E is the least
type in the subtyping relation, it is inhabited by terms blocking reduction, such
as f(λxt).

Types. Let I, J, K denote non-empty finite index sets and let i, j, k range over
indices.

a, b, c ::= E | 0 | $a ground types
A,B, C ::= a |

⋂

i∈I(Ai → Bi) types

The type A → B is a special case of the last alternative. A function type is a
partial description of the graph of the function, for instance, the identity λxx
could receive the type (0 → 0) ∩ ($0 → $0) ∩ ($$0 → $$0), or more generally
the type

⋂

i∈I($
i0 → $i0) for any finite set I of natural numbers.

A binary intersection A ∩ B is an associative commutative idempotent op-
eration definable by induction on A and B.

E ∩ A = E

0 ∩ $a = E

0 ∩
⋂

i∈I(Ai → Bi) = E

$a ∩
⋂

i∈I(Ai → Bi) = E

0 ∩ 0 = 0
$a ∩ $a′ = $(a ∩ a′)

(A → B) ∩ (A → B′) = A → (B ∩ B′)
(
⋂

i∈I(Ai → Bi)
)

∩
(
⋂

i∈J(Ai → Bi)
)

=
⋂

i∈I∪J(Ai → Bi)

6

In the last clause, we assume all Ai for i ∈ I ⊎ J different. This invariant can
be ensured using the but-last clause.

A measure on types |A| is defined by |a| = 0 and |
⋂

i∈I(Ai → Bi)| =
max{|Ai| + 1, |Bi| | i ∈ I}.

Subtyping A ⊆ B is inductively given by the following rules [CS06].

E ⊆ A 0 ⊆ 0

a ⊆ b

$a ⊆ $b

A ⊆ Bi → Ci for all i ∈ I

A ⊆
⋂

i∈I(Bi → Ci)

(
⋂

i∈J Bi

)

⊆ B
⋂

i∈I(Ai → Bi) ⊆ A → B
J = {i | A ⊆ Ai} 6= ∅

This definition of subtyping is syntax-directed, however, it coincides with the
usual axiomatic presentation: reflexivity, transitivity, and the usual rules for
binary intersection, A1 ∩ A2 ⊆ Ai and A ⊆ A1 & A ⊆ A2 =⇒ A ⊆ A1 ∩ A2,
are admissible; and the contravariant subtyping rule for function spaces is an
instance of the last rule with I = J = {1}.

Typing The rules for the typing judgement Γ ⊢ t : A are taken from Coquand
and Spiwack [CS06] and restricted to our set of constructors and function sym-
bols. The first five rules are just intersection typing, the other five rules deal
with constructors and functions.

Γ ⊢ x : Γ(x)

Γ, x :A ⊢ t : B

Γ ⊢ λxt : A → B

Γ ⊢ r : A → B Γ ⊢ s : A

Γ ⊢ r s : B

Γ ⊢ r : A Γ ⊢ r : B

Γ ⊢ r : A ∩ B

Γ ⊢ r : A A ⊆ B

Γ ⊢ r : B

Γ ⊢ 0 : 0

Γ ⊢ r : a

Γ ⊢ $r : $a

Γ ⊢ r : A

Γ ⊢ f(r) : E
A 6= 0, $a

Γ ⊢ r : 0 Γ ⊢ z : C

Γ ⊢ f(r) : C
f(0) −→ z

Γ ⊢ r : $a Γ, x :a ⊢ s : C

Γ ⊢ f(r) : C
f($x) −→ s

Observe that a recursive function f is typed “through its evaluation”. For in-
stance, if f(0) −→ 0 and f($x) −→ $(f(x)), then f is the recursive identity, and
to derive y : $n0 ⊢ f(y) : $n0 we must derive y : $m0 ⊢ f(y) : $m0 for all m < n
first. Hence, the whole computation tree of a recursive function application is
already present in its typing. Therefore, a proof of strong normalization should
be easy, in principle not harder as for the STL. In the following we substantiate
this claim; although technically a bit involved, the proof has low proof-theoretic
complexity.

3 Strong Normalization

In this section, we extend the normalization proof of Joachimski and Matthes
[JM03] to the intersection type system of the last section. To this end, we
introduce a judgement Γ ⊢ t ⇑ C stating that Γ ⊢ t : C and t is strongly

7

normalizing. That this judgement is closed under substitution and application
will be the main technical lemma; remember that closure under application is
the difficult part in strong normalization proofs and usually requires a Tait-
style logical relation argument. The basic idea behind the judgement is that
typed weakly normalizing terms are closed under substitution: substituting the
normal form v of a term of type A = A1 → · · · → Am → B for x into the
normal form w of another term can generate redexes if v contains subterms of
the form x vA1

1
. . . vAn

n . Considering such a new β-redex (λx′w′) vAi

i , we observe
that its degree Ai is smaller than A. Thus, the new substitution of vi into w′,
which is necessary to reduce the redex, occurs with a smaller type; it might
again create new redexes, however, with an even smaller type, so the whole
process will eventually terminate. Watkins et. al. [WCPW03] coined the name
hereditary substitutions for this process. Yet this normalization argument for
the STL is quite old, Lévy [Lév76] attributes it to D. van Dalen.

SN: Atomic terms.

Γ ⊢ x ↓ Γ(x)

Γ ⊢ r ↓
⋂

i∈I(Ai → Bi) Γ ⊢ s ⇑ Aj for all j ∈ J

Γ ⊢ r s ↓
⋂

j∈J Bj

J ⊆ I

SN: Neutral terms.

Γ ⊢ r ↓ A A ⊆ B

Γ ⊢ r ⇓ B

Γ ⊢ r ⇓ 0 Γ ⊢ z ~s ⇑ C

Γ ⊢ f(r)~s ⇓ C
f(0) −→ z

Γ ⊢ r ⇓ $a Γ, x :a ⊢ s~s ⇑ C

Γ ⊢ f(r)~s ⇓ C

f($x) −→ s
x 6∈ FV(~s)

SN: Values, blocked terms, and weak head expansions.

Γ ⊢ r ⇓ A A ⊆ B

Γ ⊢ r ⇑ B

Γ, x :Ai ⊢ t ⇑ Bi for all i ∈ I

Γ ⊢ λxt ⇑
⋂

i∈I(Ai → Bi) Γ ⊢ 0 ⇑ 0

Γ ⊢ r ⇑ a

Γ ⊢ $r ⇑ $a

Γ ⊢ r ⇑ A

Γ ⊢ f(r) ⇑ E
A 6= 0, $a

Γ ⊢ r ⇑ E Γ ⊢ s ⇑ A

Γ ⊢ r s ⇑ E

Γ ⊢ s ⇑ A Γ ⊢ E[[s/x]t] ⇑ C

Γ ⊢ E[(λxt) s] ⇑ C

Γ ⊢ E[z] ⇑ C

Γ ⊢ E[f(0)] ⇑ C
f(0) −→ z

Γ ⊢ r ⇑ A Γ ⊢ E[[r/x]s] ⇑ C

Γ ⊢ E[f($r)] ⇑ C
f($x) −→ s

Figure 1: Inductive characterization of SN.

The crucial property of STL which makes hereditary substitutions work is
that in an atomic term x s1 . . . sn, the types of all si are smaller than the type
of x. In the presence of term rewriting, we can have terms like f(x) s with a
variable in the head, but now the type of s is no longer guaranteed to be smaller
than the type of x. Let us call such terms neutral ; they are of shape E[x] where

8

E[] is an evaluation context given by the grammar

E[] ::= [] | E[] s | f(E[]).

The termination argument of hereditary substitutions does no longer apply.
However, we can salvage our substitution lemma by the following observation:
For neutral terms of the shape t = E[f(y ~s)], substitution for y might simplify
the atomic part y ~s to 0 or $r. In the first case t is s.n. if E[z] is, and in the
second case, if E[[r/x]s] is.

Taking these thoughts into account we simultaneously define the three judge-
ments (see Fig. 1):

Γ ⊢ t ↓ A t is s.n. and atomic of type A
Γ ⊢ t ⇓ A t is s.n. and neutral of type A
Γ ⊢ t ⇑ A t is s.n. of type A

Lemma 1 (Weakening) Let Γ′ ⊆ Γ.

1. If D :: Γ ⊢ t ↓ B then Γ′ ⊢ t ↓ A for some A ⊆ B.

2. If D :: Γ ⊢ t ⇓ B then Γ′ ⊢ t ⇓ B.

3. If D :: Γ ⊢ t ⇑ B and B ⊆ C then Γ′ ⊢ t ⇑ C.

Proof. Simultaneously by induction on D. 2

The three judgements are closed under intersection: For R ∈ {↓,⇓,⇑}, Γ ⊢ t R
A and Γ ⊢ t R B imply Γ ⊢ t R A ∩ B, which can be proven simultaneously for
all three R by induction.

Now we come to the crucial substitution lemma. Substitution for x in a
derivation of

Γ, x :A ⊢ r ⇓ $b Γ, x :A, y :b ⊢ s~t ⇑ C

Γ, x :A ⊢ f(r)~t ⇓ C
f($y) −→ s

might trigger a substitution for y which in turn might trigger new substitutions.
To establish termination of this process we require y to be of base type b. This is
the reason why we disallow higher-order datatypes, which can have elements of
higher types as arguments to their constructors. We generalize the substitution
lemma of Joachimski and Matthes [JM03] to simultaneous substitution, but
only one substituted variable may be of higher type.

Lemma 2 (Substitution and application) Let Γ ⊢ s ⇑ A and Γ ⊢ si ⇑ ai

for i ∈ I. Let r′ = [s/x][~s/~x]r. Let R ∈ {⇓,⇑}.

1. If D :: Γ, x : A, ~x : ~a ⊢ r ↓ C then either Γ ⊢ r′ ↓ C, or Γ ⊢ r′ ⇑ C and

|C| ≤ |A|.

2. If D :: Γ, x :A, ~x :~a ⊢ r R C then Γ ⊢ r′ ⇑ C.

3. If D :: Γ ⊢ r R
⋂

i∈I(Ai → Ci) and A = Aj then Γ ⊢ r s R Cj.

Proof. By lexicographic induction on (|A|,D). For Prop. 1 consider the cases:

Case Γ, x :A, ~x :~a ⊢ x ↓ A. Then r′ = s and Γ ⊢ r′ ⇑ A with |A| ≤ |A|.

9

Case Γ, x :A, ~x :~a ⊢ xi ↓ ai. Then r′ = si and Γ ⊢ r′ ⇑ ai, and |ai| = 0 ≤ |A|.

Case Γ, x :A, ~x :~a ⊢ y ↓ B for y 6∈ {x, ~x}. Then r′ = y and Γ ⊢ r′ ↓ B.

Case J ⊆ I and

Γ, x :A, ~x :~a ⊢ t ↓
⋂

i∈I(Ai → Bi) Γ, x :A, ~x :~a ⊢ u ⇑ Ai for all i ∈ J

Γ, x :A, ~x :~a ⊢ t u ↓
⋂

i∈J Bi

Let t′ = [s/x][~s/~x]t and u′ = [s/x][~s/~x]u. By second induction hypothesis,
Γ ⊢ u′ ⇑ Ai for all i ∈ J . We distinguish cases on the first induction
hypothesis:

Subcase Γ ⊢ t′ ↓
⋂

i∈I(Ai → Bi). Then Γ ⊢ t′ u′ ↓
⋂

i∈J Bi.

Subcase Γ ⊢ t′ ⇑
⋂

i∈I(Ai → Bi) and |
⋂

i∈I(Ai → Bi)| ≤ |A|. Then for each
i ∈ J , we have |Aj | < |A| and, thus, can apply induction hypothesis 3
to obtain Γ ⊢ t′ u′ ⇑ Bi and |Bi| ≤ |A|. Thus, |

⋂

i∈J Bi| ≤ |A|, and
by closure unter intersection, Γ ⊢ t′ u′ ⇑

⋂

i∈J Bi.

The principal case of Proposition 2 is:

Case f($y) −→ s, y 6∈ FV(~t) and

Γ, x :A, ~x :~a ⊢ r ⇓ $b Γ, x :A, ~x :~a, y :b ⊢ s~t ⇑ C

Γ, x :A, ~x :~a ⊢ f(r)~t ⇓ C

By induction hypothesis, D′ :: Γ ⊢ r′ ⇑ $b. Let t′j = [s/x][~s/~x]tj for all j.

We show Γ ⊢ f(r′)~t′ ⇑ C by a local induction on D′.

Subcase r′ = $r′′ and Γ ⊢ r′′ ⇑ b. Then by main induction hypothesis Γ ⊢
([r′′/y]s)~t′ ⇑ C which implies Γ ⊢ f($r′′)~t′ ⇑ C.

Subcase r′ = E[(λzt)u] and

Γ ⊢ u ⇑ A′ Γ ⊢ E[[u/z]t] ⇑ $b

Γ ⊢ E[(λzt) u] ⇑ $b

Let E′[] = f(E[])~t′. By local induction hypothesis, Γ ⊢ E′[[u/z]t] ⇑
C, hence, Γ ⊢ E′[(λzt) u] ⇑ C. The other cases of weak head expan-
sions are treated analogously.

Subcase
Γ ⊢ r′ ⇓ $b′ b′ ⊆ b

Γ ⊢ r′ ⇑ $b

By main induction hypothesis, Γ, y : b ⊢ s~t′ ⇑ C. By the weakening
lemma, Γ, y :b′ ⊢ s~t′ ⇑ C, which entails Γ ⊢ f(r′)~t′ ⇓ C.

Subcase
Γ ⊢ r′ ⇓ E E ⊆ $b

Γ ⊢ r′ ⇑ $b

Then Γ ⊢ f(r′) ⇑ E, which implies Γ ⊢ f(r′)~t′ ⇑ E by iterated
application. We conclude Γ ⊢ f(r′)~t′ ⇑ C by weakening.

The principal case for Proposition 3 is:

10

Case
Γ, x :Ai ⊢ t ⇑ Ci for all i ∈ I

Γ ⊢ λxt ⇑
⋂

i∈I(Ai → Ci)

By Prop. 2, Γ ⊢ [s/x]t ⇑ Cj . By weak head expansion, Γ ⊢ (λxt) s ⇑ Cj .
2

Lemma 3 (Recursion)

1. If D :: Γ ⊢ r ⇑ 0 and Γ ⊢ z ⇑ C then Γ ⊢ f(r) ⇑ C.

2. If D :: Γ ⊢ r ⇑ $a and Γ, x :a ⊢ s ⇑ C then Γ ⊢ f(r) ⇑ C.

Proof. Each by induction on D. This essentially repeats proofs carried out for
Proposition 2 in the previous lemma. 2

Now we have shown that the judgement ⇑ is closed under all eliminations (in-
tersection elim., application, recursion), hence, each well-typed term is in ⇑:

Theorem 4 If Γ ⊢ t : C then Γ ⊢ t ⇑ C.

Proof. By induction on Γ ⊢ t : C. 2

It remains to show that if Γ ⊢ t ⇑ C then t is indeed strongly normalizing.
Consider the following rule:

Γ ⊢ r ⇑ A

Γ ⊢ f(r) ⇑ E
A 6= 0, $a.

To show strong normalization of f(r) from s.n. of r we additionally need to
know that r will never reduce to 0 or $r′ for some r′.

Theorem 5 Let R ∈ {↓,⇓,⇑} and Γ ⊢ t R C. Then t is strongly normalizing.

If R 6= ⇑, then t is neutral. Otherwise,

1. if C 6= 0, then t 6−→∗ 0,

2. if C 6= $c, then t 6−→∗ $t′ for any t′, and

3. if C 6=
⋂

i∈I(Ai → Bi), then t 6−→∗ λxt′ for any t′.

Proof. By induction on Γ ⊢ t R C. For each rule we do a local Noetherian
induction on the strong normalization of the terms in the premises. 2

4 Conclusion

We have proven strong normalization for a λ-calculus with intersection types and
term rewriting without the use of reducibility candidates or Tait-style saturated
sets. The proof is technically involved, but can be formalized in a weak meta-
theory. Formalization in Twelf is not directly possible, not because Twelf’s
induction principles are not strong enough, but because we use constructs like
⋂

i∈I(Ai → Bi) or simultaneous substitutions, which are not representable in
Twelf, at least not directly.

11

We have partially answered our conjecture in the affirmative, that the inter-
section type system of Coquand and Spiwack [CS06] can be proven normalizing
with simple means. What remains is an extension to higher-order datatypes.
Also, our proof relies substantially on a deterministic weak head reduction rela-
tion, it is therefore not clear how we could handle overlapping patterns, an ex-
tension Coquand and Spiwack discuss in the conclusion of their article. Neither
they nor we handle non-computational rewrite rules like (x+y)+z −→ x+(y+z).

Riba [Rib07] considers a similar system, without datatypes yet with rewrite
rules, and with union types. He shows that the elimination rule for union types
can lead to diverging terms in some cases, and isolates conditions when these
cases cannot occur. It would be interesting to see whether our proof could be
extended to union types, and where Riba’s conditions materialize in the proof.

Thanks to Thierry Coquand for interesting discussions.

References

[Abe04] Andreas Abel. Weak normalization for the simply-typed lambda-
calculus in Twelf. In LFM’04, 2004.

[Ber05] Ulrich Berger. Continuous semantics for strong normalization. In
CiE’05, volume 3526 of LNCS, pages 23–34. Springer, 2005.

[CS06] Thierry Coquand and Arnaud Spiwack. A proof of strong normal-
isation using domain theory. In LICS’06, pages 307–316. IEEE CS
Press, 2006.

[Dav01] René David. Normalization without reducibility. APAL, 107(1–
3):121–130, 2001.

[JM03] Felix Joachimski and Ralph Matthes. Short proofs of normalization.
AML, 42(1):59–87, 2003.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mech-
anized metatheory of Standard ML. In POPL’07, pages 173–184.
ACM, 2007.

[Lév76] Jean-Jacques Lévy. An algebraic interpretation of the λβK-
calculus; and an application of a labelled λ-calculus. TCS, 2(1):97–
114, 1976.

[Mat00] Ralph Matthes. Characterizing strongly normalizing terms of a
calculus with generalized applications via intersection types. In
ITRS’00, pages 339–354. Carleton Scientific, 2000.

[Rib07] Colin Riba. Strong normalization as safe interaction. In Logics in

Computer Science, LICS’07, 2007. To appear.

[Val01] Silvio Valentini. An elementary proof of strong normalization for
intersection types. AML, 40(7):475–488, October 2001.

[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgements and prop-
erties. Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 2003.

12

Algorithmic equality in Heyting Arithmetic

Modulo

Lisa Allali

LogiCal � Ecole polytechnique � INRIA,

www.lix.polytechnique.fr/Labo/Lisa.Allali/

allali@lix.polytechnique.fr

June 4, 2007

1 Introduction

We present in this paper a version of Heyting arithmetic where all the axioms
are dropped and replaced by rewrite rules. A previous work has been done by
Gilles Dowek and Benjamin Werner presenting Heyting Arithmetic in such a
way [DW05], but where equality was de�ned by a �Leibniz rule� : a proposition
of the form x = y was rewritten in their system into ∀p (x ∈ p ⇒ y ∈ p), that is
provable if x and y are two equal closed terms, but not as simply as it could be
expected. In this paper, in contrary, when x and y are closed terms, we consider
checking equality between terms is just a computation : x = y rewrites directly
to ⊤ or ⊥.
We followed a remark of Schwichtenberg, about how a set of rewrite rules could
be (or not) enough to decide equality in Heyting Arithmetic. In the work we
present here, we answer positively to this question and present a set of rewrite
rules that de�ne a new Heyting Arithmetic modulo HA−→, that is

• an extension of axiomatic Heyting Arithmetic : all the theorems of arith-
metic and, in particular, all instances of Leibniz' scheme can be proved in
HA−→

• this extension is conservative with respect to a very simple translation

• all proofs of HA−→ strongly normalize.

This work suggests new ways to consider equality of inductive types in general,
not anymore with Leibniz's axiom as it is the case in Coq for instance, but
building speci�c rewrite rules to de�ne equality in an algorithmic way.

2 De�nitions

2.1 Deduction Modulo

Modern type theories feature a rule called conversion rule which allows to iden-
tify proposition which are equal modulo beta-equivalence. It is often presented
as follows :

13

Γ ⊢ t : T Γ ⊢ T : Type Γ ⊢ T ′ : Type
T ≡β T ′

Γ ⊢ t : T ′

where T ≡β T ′ is read T is convertible to T ′.
This convertibility is not checked by logical rules but by computation with the
rule β. The idea of natural deduction modulo is to �import� this computation
of convertibility inside the natural deduction but replacing ≡β by an arbitrary
congruence ≡ de�ned by a con�uent rewrite system. For instance, the axiom
rule and the ⇒ elimination rules are the following :

Ax if A ∈ Γ and A ≡ B
Γ ⊢≡ B

Γ ⊢≡ C Γ ⊢≡ A
⇒e if C ≡ A ⇒ B

Γ ⊢≡ B

The other rules of natural deduction modulo are built the same way upon natural
deduction [DHK03].
The convertibility ≡ is not �xed. It can be any congruence de�ned by the
re�exive, symmetric and transitive closure of a rewrite system which is con�uent,
rewrites term to term and atomic proposition to proposition.

2.2 Theories in natural deduction modulo

De�nition 1 (Axiomatic theory)
An axiomatic theory is a set of axioms.

De�nition 2 (Modulo theory)
A modulo theory is a set of axioms and a congruence de�ned as the re�exive,

transitive and symmetric closure of a set of rewrite rules.

De�nition 3 (Purely computational theory)
A purely computational theory is a modulo theory where the set of axioms is

empty.

3 Heyting Arithmetic - from axioms to rewrite

rules

3.1 The axiomatic presentation of Heyting Arithmetic

The language of arithmetic formed by the functional symbols 0 of arity 0, S of
arity 1, + and × of arity 2. The predicate symbol = of arity 2. The axioms are
structured in four groups as follow :

14

The axioms of equality
Reflexivity Leibniz′ axiom scheme

∀x x = x ∀x ∀y x = y ⇒ P (x) ⇔ P (y)

The axioms 3 and 4 of Peano
∀x ∀y (S(x) = S(y) ⇒ x = y) ∀x 0 = S(x) ⇒ ⊥

The induction scheme
(P{x := 0} ∧ ∀y (P{x := y} ⇒ P{x := S(y)})) ⇒ ∀n P{x := n}

The axioms of addition and multiplication.
∀y (0 + y = y) ∀x ∀y (S(x) + y = S(x + y))
∀y (0 × y = 0) ∀x ∀y (S(x) × y = x × y + y)

3.2 The steps to go from an axiomatic theory of Heyting
Arithmetic (HA) to a purely computational one

We shall introduce four successive theories to reach the �nal purely compu-
tational theory we aim at, each of them being an equivalent or conservative
extension of HA.

3.2.1 HAR

Induction axiom scheme
(P{x := 0} ∧ ∀y (P{x := y} ⇒ P{x := S(y)})) ⇒ ∀n P{x := n}

Rewrite rules
0 = 0 −→ ⊤ 0 + y −→ y

0 = S(x) −→ ⊥ S(x) + y −→ S(x + y)
S(x) = 0 −→ ⊥ 0 × y −→ 0
S(x) = S(y) −→ x = y S(x) × y −→ x × y + y

The axioms of addition and multiplication are transformed in a very intuitive
way into rewrite rules : for instance, the axiom ∀x 0 + x = x becomes the
rewrite rule 0 + x −→ x. We keep the induction axiom scheme. We drop the
Leibniz axiom and add 4 rewrite rules to de�ne equality. We prove this theory
is equivalent to HA.

15

3.2.2 HAN

Induction axiom scheme

∀n N(n) ⇒ (P{x := 0}∧∀y (N(y) ⇒ P{x := y} ⇒ P{x := S(y)})) ⇒ P{x := n}

Axioms for N

N(0) ∀x N(x) ⇒ N(S(x))

Rewrite rules
0 = 0 −→ ⊤ 0 + y −→ y

0 = S(x) −→ ⊥ S(x) + y −→ S(x + y)
S(x) = 0 −→ ⊥ 0 × y −→ 0
S(x) = S(y) −→ x = y S(x) × y −→ x × y + y

We introduce a new predicate symbol N for the natural numbers and three
axioms to de�ne it. We prove this theory is a conservative extension of HAR

modulo a certain translation .

3.2.3 HAK

Comprehension scheme
∀x∀y1...∀yn (x ∈ fz,y1,...,yn,P (y1, . . . , yn) ⇔ P{z := x})

Induction axiom
∀n (N(n) ⇔ ∀f (0 ∈ f ⇒ ∀y (N(y) ⇒ y ∈ f ⇒ S(y) ∈ f) ⇒ n ∈ f))

Rewriting rules
0 = 0 −→ ⊤ 0 + y −→ y

0 = S(x) −→ ⊥ S(x) + y −→ S(x + y)
S(x) = 0 −→ ⊥ 0 × y −→ 0
S(x) = S(y) −→ x = y S(x) × y −→ x × y + y

We sort our theory with two sorts ι and κ. We add an in�nite number of func-
tion symbols of the form fz,y1,...,yn,P , one for each proposition P that can be
expressed in the language of HAN , where the free variables of P are y1, . . . , yn.
Each of those symbols is of rank 〈ι, ..., ι, κ〉. We add a symbol ∈ of rank 〈ι, κ〉.
Finally we add an axiom scheme expressing the equivalence of the proposition
x ∈ fz,y1,...,yn,P (y1, . . . , yn) with P . Notice that the free variables of these
propositions are the same. The induction axiom scheme is replaced by a single
axiom. We prove this theory is a conservative extension of HAN .

3.2.4 HA−→

We transform the remaining axioms of HAN into rewrite rules.
HA−→ is a purely computational presentation of Heyting Arithmetic.

16

3.3 HA
−→

, a purely computational presentation of Heyt-
ing Arithmetic

De�nition 4 (HA−→)

x ∈ fz,y1,...,yn,P (y1, . . . , yn) −→ P{z := x}

N(n) −→ ∀f (0 ∈ f ⇒ ∀y (N(y) ⇒ y ∈ f ⇒ S(y) ∈ f) ⇒ n ∈ f)

0 = 0 −→ ⊤ 0 + y −→ y

0 = S(x) −→ ⊥ S(x) + y −→ S(x + y)
S(x) = 0 −→ ⊥ 0 × y −→ 0
S(x) = S(y) −→ x = y S(x) × y −→ x × y + y

We introduce the following Translation | · | from HA to HA−→

|P | = P , if P is atomic,
|⊤| = ⊤,

|⊥| = ⊥,

|A ∧ B| = |A| ∧ |B|,
|A ∨ B| = |A| ∨ |B|,
|A ⇒ B| = |A| ⇒ |B|,
|∀x A| = ∀x (N(x) ⇒ |A|),
|∃x A| = ∃x (N(x) ∧ |A|)

Proposition 1
HA−→ is a conservative extension of HA, i.e. for all closed propositions A,

⊢HA A if and only if ⊢HA−→
|A|

We prove that each of the theories HA, HAR, HAN , HAK , HA−→ is a conser-
vative extension of the previous one.
The main di�culty lies in the �rst step: proving that HAR is an extension of
HA, and more speci�cally that the Leibniz's axiom scheme of HA is derivable
in HAR. This requires to prove successively the following properties of HAR

equality:

∀x (x = x)
∀x ∀y (x = y ⇒ y = x)

∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

∀x ∀y ∀z x = y ⇒ x + z = y + z

∀x ∀y ∀z x = y ⇒ z + x = z + y

∀x ∀y ∀z x = y ⇒ x × z = y × z

∀x ∀y ∀z x = y ⇒ z × x = z × y

∀x x × 0 = 0
∀y ∀x (y × S(x) = y × x + y)

∀x ∀y (x × y = y × x)

17

Thanks to those properties of equality in HAR, we can prove by induction on t

that for each term t, the proposition ∀a ∀b (a = b ⇒ t{y := a} = t{y := b}) is
provable in HAR.
This proposition is the basic case of an induction on P we made to prove that
each instance of Leibniz' scheme

∀x ∀y x = y ⇒ P (x) ⇔ P (y)

is provable in HAR.

Finally we also prove two other results :

Proposition 2
The congruence de�ned by the rewrite rules of HA−→ is decidable.

Proposition 3
HA−→ has cut elimination property.

4 Discussion

One can ask if this system is really e�cient in practice: in one hand, the proof
of x = y are shorter, in the other hand the proof of ∀x∀y x = y ⇒ P (x) ⇒ P (y)
is longer. There is no theoretical answer to that question, it's only by making
tests that we would see how the size of proof terms would change. An good
indication is that the way we manage to �simulate� an application of Leibniz
principle with our rewrite rules (the way it is shown in [All]) is linear in the size
of the proposition.

5 Conclusion

We have reached a presentation of Heyting Arithmetic without any axiom, sim-
ply de�ned by a rewrite rule system. A cornerstone of this presentation is that it
makes use of the decidability of the equality in Heyting Arithmetic, indeed the
equality is de�ned as a decision procedure, rather than as Leibniz's proposition
which becomes a consequence of the congruence of the system.

18

References

[All] Lisa Allali, Memoire de DEA, http://www.lix.polytechnique.fr/
Labo/Lisa.Allali/rapport_MPRI.pdf.

[DHK03] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving
modulo. Journal of Automated Reasoning, 31:32�72, 2003.

[DW05] Gilles Dowek and Benjamin Werner. Arithmetic as a theory modulo.
J. Giesl (Ed.), Term rewriting and applications (RTA), Lecture Notes
in Computer Science 3467, Springer-Verlag, 2005, pp. 423-437.

[Dow07] Gilles Dowek. Truth values algebras and normalization, to appear in
TYPES 2006, 2007.

[Dow99] Gilles Dowek. La part du calcul. Mémoire d'Habilitation à Diriger des

Recherches, Université Paris 7, 1999.

[vOvR94] Vincent van Oostrom, Femke van Raamsdonk. Weak Orthogonality
Implies Con�uence : The High-Order Case. Technical Report: ISRL-

94-5, December, 1994.

[Coq06] The Coq Development Team . Manuel de Référence de Coq V8.0.
http://coq.inria.fr/doc/main.html, LogiCal Project, 2004�2006.

19

20

Argument Filterings and Usable Rules for Simply

Typed Dependency Pairs∗

(extended abstract)

Takahito Aoto† Toshiyuki Yamada‡

June 4, 2007

1 Introduction

Simply typed term rewriting [Yam01] is a framework of higher-order term rewrit-
ing without bound variables. The authors extended the first-order dependency
pair approach [AG00] to the case of simply typed term rewriting [AY05]. They
gave a characterization of minimal non-terminating simply typed terms and in-
corporated the notions of dependency pairs, dependency graphs, and estimated
dependency graphs into the simply typed framework. They extended the sub-
term criterion [HM04] of first-order dependency pairs and introduced the head
instantiation technique to make the simply typed dependency pair method ef-
fectively applicable even in the presence of function variables.

In this paper, we incorporate termination criteria using reduction pairs and
related refinements into the simply typed dependency pair framework. In par-
ticular, we extend the notions of argument filterings [AG00] and usable rules
[HM04, TGSK04] of first-order dependency pairs to the case of simply typed
term rewriting.

Refinements of dependency pair technique for higher-order systems with
bound variables are studied in [Bla06, SK05], and an approach to deal within
the framework of first-order dependency pairs is studied in [GTSK05]. In our
framework the presence of simple types and higher-order variables/rules are re-
flected in more specific way comparing with [GTSK05]. On the other hand,
since bound variables are not included in our framework, our dependency pair
framework is simpler and thus easy to automate compared to the methods in
[Bla06, SK05].

2 Preliminaries

A simple type is either the base type o or a function type τ1 × · · · × τn → τ0.
The set of simple types is denoted by ST. The sets of constants, variables, and

∗The authors thank Jeroen Ketema and the referees for their comments.
†RIEC, Tohoku University, Japan. aoto@nue.riec.tohoku.ac.jp
‡Graduate School of Engineering, Mie University, Japan. toshi@cs.info.mie-u.ac.jp

21

simply typed terms are denoted by Σ, V , and T(Σ, V), respectively. The head

symbol of a simply typed term is defined as follows: head(a) = a for a ∈ Σ∪ V ;
head((t0 t1 · · · tn)) = head(t0). The set PV(t) of primary variables in a term t
is defined as follows: PV(t) = ∅ if t ∈ Σ ∪ V ; PV(t) = {t0} ∪

⋃

i>0 PV(ti) if t =
(t0 t1 · · · tn) and t0 ∈ V ; PV(t) =

⋃

i≥0 PV(ti) if t = (t0 t1 · · · tn) and t0 /∈ V .
Let R = 〈Σ, R 〉 be a simply typed term rewriting system (STTRS, for short).
The set Σd of defined symbols of R is defined by Σd = {head(l) | l → r ∈ R}.

Example 1 (simply typed term rewriting) Let R = 〈Σ, R 〉 be an STTRS
where Σ = { 0o, so→o, []

o
, : o×o→o, map(o→o)×o→o, ◦(o→o)×(o→o)→o→o,

twice(o→o)→o→o }, and

R =

(1) map F [] → []
(2) map F (: x xs) → : (F x) (map F xs)
(3) (◦ F G) x → F (G x)
(4) twice F → ◦ F F

.

Here is a rewrite sequence of R:

map (twice s) (: 0 []) →R map (◦ s s) (: 0 [])
→R : ((◦ s s) 0) (map (◦ s s) [])
→R : (s (s 0)) (map (◦ s s) [])
→R : (s (s 0)) [].

3 Termination by reduction pairs

The head rewrite step
h
→ is defined recursively as follows: s

h
→ t if (1) s = lσ

and t = rσ for some rewrite rule l → r and some substitution σ or (2)

s = (s0 u1 · · · un), t = (t0 u1 · · · un), and s0
h
→ t0. The non-head rewrite step

is defined by
nh
→ = →\

h
→. Let D be a set of dependency pairs of an STTRS R. In

simply typed term rewriting, a root rewrite step using a dependency pair is dis-
tinguished from the rewrite relation (since it is not in general type-preserving),
and denoted by D. A dependency chain of D is an infinite sequence t0, t1, . . .

on NTmin(R) such that ti
nh
→∗ · D ti+1 for all i ≥ 0. Here, NTmin(R) is

the set of minimal (with respect to the subterm relation E) non-terminating
terms. The family of all minimal (with respect to the set inclusion ⊆) sets of
dependency pairs that admit dependency chain is denoted by DCmin(R). For
D ∈ DCmin(R), every element of D occurs infinitely often in its dependency
chain.

Theorem 2 (termination by reduction pairs) Let R = 〈Σ, R 〉 be an STTRS
and D a finite set of dependency pairs. If there exists a reduction pair 〈&, >〉
such that R ⊆ &, D ⊆ &, and D ∩ > 6= ∅, then D /∈ DCmin.

In contrast to the first-order case, heads of rhs of dependency pairs need
not be constants in general. Based on the head instantiation technique [AY05],
however, it suffices to handle dependency pairs whose heads of rhs are constants.
Such dependency pairs are referred to as head-instantiated dependency pairs.

22

4 Argument filterings

Since argument filtering may not preserve well-typedness, we need an underlying
untyped calculus. For this, the framework of S-expression reduction systems

(SRSs for short) [Toy04] is suitable. An S-expression is a first-order term with a
special variadic function symbol @. The set S(Σ, V) of S-expressions is defined
as: Σ ∪ V ⊆ S(Σ, V); if s1, . . . , sn ∈ S(Σ, V) (n ≥ 0) then @(s1, . . . , sn) ∈
S(Σ, V). An S-expression @(s1, . . . , sn) is abbreviated as (s1 · · · sn). We note
that () and (()(())) are also S-expressions. Each simply typed term can be
regarded as an S-expression by forgetting its type information.

The first-order argument filtering is specified by function symbols, that is,
π(f(s1, . . . , sn)) is defined by the value of π(f). In contrast, the head symbol
of a simply typed term t is insufficient to specify filtering of t: e.g. (f x y) and
((f x y) z) have the same head symbol but may have different filtering—the
depth of head symbol occurrence needs to be considered additionally.

Definition 3 (filtering domain) Let X be a set of simply typed constants
and simply typed variables. We define the filtering domain D(X) ⊆ X × N for
X by D(X) =

⋃

τ{〈a, n〉 | a ∈ X, a is of type τ , 0 ≤ n < depth(τ)}. Here, the
depth of a simple type τ is defined as follows: depth(o) = 0; depth(τ1×· · ·×τn →
τ0) = depth(τ0) + 1.

The head depth of a simply typed term t is defined as follows: hdep(a) = 0
for a ∈ Σ ∪ V ; hdep((t0 t1 · · · tn)) = hdep(t0) + 1. The next lemma shows
that mappings from the filtering domain are suitable to specify all argument
filterings.

Lemma 4 Let X be a set of simply typed constants and simply typed variables.
If s has a function type and head(s) ∈ X, then 〈head(s),hdep(s)〉 ∈ D(X).

The marking of head symbols similar to the first-order dependency pairs is
useful to simplify the definition of argument filtering. For each a ∈ Σd, let a♯

be a new constant having the same type as a. Let Σ♯
d = {a♯ | a ∈ Σd} and

Σ♯ = Σ ∪ Σ♯
d.

For each s ∈ T(Σ, V) of type τ and n ≤ depth(τ), type(s, n) is defined as:
type(s, 0) = τ ; type(s, n + 1) = τ0 if type(s, n) = τ1 × · · · × τm → τ0. For any
function type τ , |τ | is defined as: |τ1 × · · · × τm → τ0| = m.

Definition 5 (argument filtering) Let L be the set of natural numbers and
lists of natural numbers. An argument filtering π is a function from D(Σ♯ ∪ V)
to L such that for each 〈f, n〉 ∈ D(Σ♯ ∪ V), either π(f, n) = [i1, . . . , ik] for some
0 ≤ i1 < · · · < ik ≤ |type(f, n)| or π(f, n) = i for some 0 ≤ i ≤ |type(f, n)|.
Note that k ≥ 0 and k = 0 means that the result is an empty list.

For a simply typed term t such that head(t) ∈ Σd, define t♯ recursively as

follows: t♯ = a♯ if t = a ∈ Σd; t♯ = (t♯0 t1 · · · tn) if t = (t0 t1 · · · tn). The set of
terms T(Σ, V) ∪ {t♯ | t ∈ T(Σ, V),head(t) ∈ Σd} is denoted by T♯(Σ, V).

Definition 6 (application of argument filtering) Let π be an argument
filtering. For each simply typed term t ∈ T♯(Σ, V), an S-expressions π(t) is
defined as follows: (1) π(a) = a for all a ∈ Σ♯ ∪ V ; (2) π((t0 t1 · · · tn)) =
(π(ti1) · · · π(tik

)) if π(head(t0),hdep(t0)) = [i1, . . . , ik]; (3) π((t0 t1 · · · tn)) =
π(ti) if π(head(t0),hdep(t0)) = i.

23

Filtering functions should consistently select the same argument positions
from both a term with head variable and its instance.

Example 7 (unsound filtering (1)) Let R = 〈Σ, R 〉 be an STTRS where
Σ = { 0o, fo→o, so→o } and

R =
{

f (F x) → f (s x)
}

.

If π is an argument filtering such that π(s, 0) = 1 and π(f, 0) = π(f♯, 0) =
π(F, 0) = [0, 1], the following satisfiable set of constraints is obtained: {f (F x) ≥
f x, f♯ (F x) > f♯ x}. Since R is not terminating, this argument filtering is
unsound.

Filtering functions should consistently select the same argument positions
from a term when its head is rewritten by a rule of function type.

Example 8 (unsound filtering (2)) Let R = 〈Σ, R 〉 be an STTRS where
Σ = { fo→o, go→o, ho→o } and

R =

{

f (h x) → f (g x)
g → h

}

.

Let D = {f♯ (h x) f♯ (g x)}. If π is an argument filtering such that π(f, 0) =
π(g, 0) = [], π(f♯, 0) = [0, 1], and π(h, 0) = [1], the following satisfiable set of
constraints is obtained: {() ≥ (), g ≥ h, (f♯ (x)) > (f♯ ())}. Since R is not
terminating, this argument filtering is unsound.

Definition 9 (stabilization domain) Let π be an argument filtering. For
any simply typed term t ∈ T♯(Σ, V), the set SDom(t) ⊆ D(Σ ∪ V) of sta-

bilization domain of t is defined as: SDom(a) = ∅; SDom((t0 t1 · · · tn)) =
⋃

{SDom(tij
) | 1 ≤ j ≤ k} if π(head(t0),hdep(t0)) = [i1, . . . , ik] and head(t0) ∈

Σ♯
d; SDom((t0 t1 · · · tn)) = {〈head(t0),hdep(t0)〉} ∪

⋃

{SDom(tij
) | 1 ≤ j ≤ k} if

π(head(t0),hdep(t0)) = [i1, . . . , ik] and head(t0) ∈ Σ∪V ; SDom((t0 t1 · · · tn)) =

SDom(ti) if π(head(t0),hdep(t0)) = i and head(t0) ∈ Σ♯
d; SDom((t0 t1 · · · tn)) =

{〈head(t0),hdep(t0)〉} ∪ SDom(ti) if π(head(t0),hdep(t0)) = i and head(t0) ∈
Σ ∪ V .

Definition 10 (stability) Let X be a set of simply typed constants and simply
typed variables. Let f be a function from D(X) to L. (1) f is stable w.r.t. a
simple type τ if for any 〈a, n〉, 〈b, m〉 ∈ D(X), type(a, n) = type(b, m) = τ
implies f(a, n) = f(b, m). (2) f is stable w.r.t. A ⊆ D(X) if f is stable w.r.t.
any τ in the set {type(a, n) | 〈a, n〉 ∈ A, a ∈ V }.

Definition 11 (stability w.r.t. rules) Let π be an argument filtering and
πnh = π↓D(Σ, V). Here, ↓ denotes the operation of restricting the domain.

1. π is stable w.r.t. a set R of simply typed rewrite rules if πnh is stable w.r.t.
⋃

l→r∈R SDom(l)∪SDom(r) and if R contains a simply typed rewrite rule

of function type τ then πnh is stable w.r.t. τ, . . . , τ + (depth(τ) − 1).

2. π is stable w.r.t. a set D of simply typed dependency pairs if πnh is stable
w.r.t.

⋃

lr∈D SDom(l♯) ∪ SDom(r♯).

24

Theorem 12 (argument filtering refinement) Let R = 〈Σ, R 〉 be an STTRS
and D a finite set of head-instantiated dependency pairs. If there exists a re-
duction pair 〈&, >〉 on S(Σ, V) and an argument filtering π stable w.r.t. R and
D, π(R) ⊆ &, π(D♯) ⊆ &, and π(D♯) ∩ > 6= ∅, then D /∈ DCmin.

5 Usable rules

Definition 13 (usable rules) We write f ◮ g when there exists a simply
typed rewrite rule l → r ∈ R such that head(l) = f and g ∈ Σd(r). We denote
the reflexive transitive closure of ◮ by ◮∗. For a set D of head-instantiated
dependency pairs,

UR(D♯) = {l → r ∈ R | f ◮∗ head(l) for some f ∈ Σd(RHS(D♯))}.

Let CE = 〈{nil, cons}, CE〉 be an SRS where CE = {(cons x y) → x, (cons x y) →
y}. Let us first explain that a naive extension of usual first-order usable rules
criteria is not adapted to the higher-order setting.

Example 14 (counterexample) Let R = 〈Σ, R 〉 be an STTRS where Σ = {
0o, f(o→o)×o→o, go→o } and

R =

{

f F 0 → f F (F 0)
g 0 → 0

}

.

For D = {f F 0 f F (F 0)}, there is an infinite dependency chain f g 0 D

f g (g 0) →R f g 0 D · · · . However UR(D♯) = ∅ and thus there is no infinite
dependency chain on D and CE ∪ UR(D♯).

Definition 15 (higher-order usable rules) 1. The range-order � is the
smallest partial order on ST satisfying τ1 × · · · × τn → τ0 � τ0.

2. We write f ◮h g when (1) there exists a simply typed rewrite rule l → r ∈
R such that head(l) = f and g ∈ Σd(r), or (2) there exists a simply typed
rewrite rule l → r ∈ R and F τ ∈ PV(r) such that head(l) = f , gρ ∈ Σd

for some ρ � τ . We denote the reflexive transitive closure of ◮h by ◮∗
h.

3. Let D be a set of head-instantiated dependency pairs. Then

Uh
R(D♯) = {l → r ∈ R | f ◮∗

h head(l) for some f ∈ Σd(RHS(D♯))}

Theorem 16 (usable rules refinement) Let R = 〈Σ, R 〉 be an STTRS and
D a finite set of head-instantiated dependency pairs. If there exists a reduction
pair 〈&, >〉 on S(Σ♯ ∪ {cons, nil}, V) such that CE ∪ Uh

R(D♯) ⊆ &, D♯ ⊆ &, and
D♯ ∩ > 6= ∅, then D /∈ DCmin.

Example 17 (termination proof) Let R be the STTRS of Example 1. The
set of dependency pairs of R is as follows:

(5) map F (: x xs) F x
(6) map F (: x xs) map F xs
(7) (◦ F G) x F (G x)
(8) (◦ F G) x G x
(9) twice F ◦ F F
(10) twice F ◦
(11) (twice F) x (◦ F F) x

.

25

Two SCCs are obtained from its (approximated) dependency graph—namely,
{(6)} and {(7), (8), (9)}. Let D = {(7), (8), (9)}. The head instantiation and
head marking of D yields the following set D′ of simply typed dependency pairs:

(7a) (◦♯ (◦ U V) G) x (◦♯ U V) (G x)

(7b) (◦♯ (twice U) G) x (twice♯ U) (G x)
(8a) (◦♯ F (◦ U V)) x (◦♯ U V) x

(8b) (◦♯ F (twice U)) x (twice♯ U) x

(9) (twice♯ F) x (◦♯ F F) x

.

We have Uh
R(D′) = {(3), (4)}. By taking a stable argument filtering π such that

π(F o→o, 0) = π(◦, 1) = π(twice, 1) = 1, π(twice, 0) = π(twice♯, 0) = π(◦♯, 1) =
[0, 1], and π(◦, 0) = π(◦♯, 0) = [0, 1, 2], we get the following set of constraints:

x ≥ x
twice F ≥ ◦ F F
(◦♯ (◦ U V) G) x > (◦♯ U V) (G x)

(◦♯ (twice U) G) x > (twice♯ U) (G x)
(◦♯ F (◦ U V)) x > (◦♯ U V) x

(◦♯ F (twice U)) x > (twice♯ U) x

(twice♯ F) x > (◦♯ F F) x

.

All constraints are satisfied by the lexicographic path ordering for S-expressions
[Toy04] with the precedence twice > twice♯ > ◦♯ and twice > ◦ > ◦♯. It is not
hard to show {(6)} /∈ DCmin in a similar way. Thus R is terminating.

References

[AG00] T. Arts and J. Giesl. Termination of term rewriting using depen-
dency pairs. TCS, 236(1–2):133–178, 2000.

[AY05] T. Aoto and T. Yamada. Dependency pairs for simply typed term
rewriting. In Proc. of RTA 2005, volume 3467 of LNCS, pages 120–
134. Springer-Verlag, 2005.

[Bla06] F. Blanqui. Higher-order dependency pairs. In Proc. of WST 2006,
pages 22–26, 2006.

[GTSK05] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and dis-
proving termination of higher-order functions. In Proc. of FroCoS

2005, volume 3717 of LNAI, pages 216–231. Springer-Verlag, 2005.

[HM04] N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In
Proc. of RTA 2004, volume 3091 of LNCS, pages 249–268. Springer-
Verlag, 2004.

[SK05] M. Sakai and K. Kusakari. On dependency pair method for proving
termination of higher-order rewrite systems. IEICE Trans. on Inf.

& Sys., E88-D(3):583–593, 2005.

[TGSK04] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular
termination proofs using dependency pairs. In Proc. of IJCAR 2004,
volume 3097 of LNAI, pages 75–90. Springer-Verlag, 2004.

26

[Toy04] Y. Toyama. Termination of S-expression rewriting systems: Lexico-
graphic path ordering for higher-order terms. In Proc. of RTA 2004,
volume 3091 of LNCS, pages 40–54. Springer-Verlag, 2004.

[Yam01] T. Yamada. Confluence and termination of simply typed term rewrit-
ing systems. In Proc. of RTA 2001, volume 2051 of LNCS, pages
338–352. Springer-Verlag, 2001.

27

28

Non-standard reductions in simply-typed, higher

order and dependently-typed systems

Lionel Marie-Magdeleine and Serguei Soloviev

Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier, Toulouse, France

Abstract of HOR 2007 talk on June 25, 2007

Earlier we studied some possibilities to add non-standard reductions to typed

lambda-calculus with inductive types in such a way that SN and CR properties

would be preserved. The aim was to open new possibilities for direct incorpo-

ration of computational algorithms in proof assistants. Some new methods to

prove SN and CR were developped. In this talk we discuss their generalization

to higher order and dependent type system cases.

29

30

CRSX – An Open Source Platform

for Experiments with Higher Order Rewriting

(Extended Abstract)

Kristoffer H. Rose

IBM Thomas J. Watson Research Center∗

June 4, 2007

Abstract

The SourceForge “CRSX” project aims at implementing a generic higher order

rewrite engine based on Klop’s Combinatory Reduction Systems (CRS) formalism.

The specific goals of the CRSX project are to

• provide a generic higher order rewrite engine that

• is easy to embed in other projects such as compiler optimizers,

• is simple to extend with experimental features, and

• runs on a universally available open source platform.

This paper summarizes how the current prototype implementation in Java (an open

source platform) partially achieves these goals: the CRS abstraction that is actually

implemented, the Java interfaces allowing using the engine on “foreign” terms, and

some extensions.

1 Introduction

Higher order rewriting is well established as a useful generic mechanism for formal-

izing program transformation and evaluation when binding constructs are involved.

Furthermore, mappings from most other formal mechanisms into higher order rewrite

systems have been described in the literature. This would seem to make higher or-

der rewriting an ideal mechanism for analysis and optimization in compilers in gen-

eral, and in particular for compiler that use an internal “intermediate” or “core” lan-

guage for analysis and optimizations. Some languages are even defined in terms of a

core language [MTH90, FHPe92], which allows for discussing appropriate optimiza-

tion analysis and transformation in the literature. However, it seems that every com-

piler writer invents her own “symbolic rewriting” engine to express these optimiza-

tions [RSF06]. We will argue that the techniques of higher-order rewriting in general

(CRS [Klo80, KvOvR93] with just a few encoding tricks in particular) provide ex-

cellent expressive support for the practical analyses and transformations required for

functional programs.

∗P. O. Box 704, Yorktown Heights, NY 10598 (USA); http://www.research.ibm.com/people/k/krisrose.

31

The CRSX engine [Ros07, Ros06] supports expression of CRS rules directly over

foreign expressions by having a rewrite engine defined entirely over an abstract or

virtual notion of term expressed through a Java interface definition, which explains

how expressions correspond to notions the CRS rewrite engine can understand, i.e., in

terms of “variables”, “construction”, “binding”, etc. Furthermore, the CRSX interfaces

provide abstract “hooks” designed to permit writing rule schemas that correspond to

infinite enumerations of similar rules.

Below we outline the key definition of virtualized CRS in Sec. 2 and the Java in-

terfaces realizing it in Sec. 3, including a simple example. In Sec. 4 we summarize the

state of the CRSX project and suggest extensions for the SourceForge project [Ros07].

2 Virtualized CRS

To understand how CRS are virtualized we first present a (brief) traditional definition

of CRS [Klo80, KvOvR93].

Definition 1 (CRS terms). The CRS terms over the variables v ∈ V , ranked function

symbols fn ∈ F, and ranked metavariables zn ∈Z, are the terms t∈ T generated by the

grammar

t ::= v | fn(b1, . . . ,bn) | zn(t1, . . . , tn) (term)

b ::= v.b | t (binder)

where the three term forms are called variable occurrence, construction, and metaap-

plication, respectively, and the purpose of v.b is to bind all free occurrences of v in b

as usual (but binders are restricted to occur as immediate subterms of constructions).

The free variables of a term t are denoted fv(t).

Definition 2 (CRS rewriting). A set of term pairs R ⊆ (T ×T), each written tL → tR,

constitutes a set of rewrite rules if

• every tL is a pattern, i.e., a closed construction where all contained metaappli-

cations have the form zn(v1, . . . ,vn) with distinct v1 . . .vn, and

• every tR is a contractum for the corresponding pattern, i.e., all the metavariables

must also occur in the pattern.

R generates the rewrite relation
R

// over T defined by the following steps:

• A valuation σ is a map of type ZK (V∗×T)⊥ where for all zn either σ(zn) = ⊥
or σ(zn) = 〈〈v1, . . . ,vn〉, t〉 with distinct v1 . . .vn and fv(t) ⊆ {v1, . . . ,vn}.

• The contraction of a term t with the valuation σ is written as σ(t) and defined as

the homomorphic extension to terms of the rule that if σ(zn) = 〈〈v1, . . . ,vn〉, t〉
then σ(zn(t1, . . . , tn)) = t[v1 := σ(t1), . . . ,vn := σ(tn)] (using usual simulta-

neous substitution).

•
R

// relates all pairs of terms C[σ(tL)]
R

// C[σ(tR)] for some rule tL → tR in R,

context C[], and valuation σ.

Remark 3 (omissions). We have here skipped over various “safety” constraints intended

to avoid variable capture, etc., as these are well covered in the literature [KvOvR93] and

32

will not interfere with virtualization below. We also assume standard set and domain

notations such as implicit naming like x,x ′,xn, . . . ∈ X, X⊥ for the usual lifting of X

to contain a distinct ⊥ member, and X∗ for the set of sequences of X-members ~x =

〈x1, . . . ,xn〉, including the empty sequence 〈〉.

The traditional definition relies on concrete comparison of terms with the notion

of rewriting defined directly on terms. However, to realize a generic rewrite engine

we need to separate the mechanics of rewriting from the concrete terms. The solution

is to shift to an extensional representation where the set of function symbols F is not

exposed except through a mechanism for function symbol matching.

The key to understanding how rewriting happens is manifest in the last part of

Def. 2: “[rewriting] which relates all pairs of terms C[σ(tL)]
R

// C[σ(tR)] for some

rule tL → tR, context C[], and valuation σ.” This means that the only extensionally

observable properties of terms are to

• allow navigation to place in a term corresponding to the “hole” of the context C[]

– the (potential) redex,

• permit establishing whether a valuation σ can be created that maps the pattern of

some rule to the redex, and

• construct a fresh copy of the term which is identical to the original term except

for the context being filled with the result of contracting the rule right hand side

with the valuation.

These properties are captured by the following.

Definition 4 (virtual CRS terms). Assume T , V , and Z, as in Def. 1, and the following

operations:

: T KN with N the natural numbers from 0 (arity)

v : T KV⊥ (variable occurrence check)

z : T KZ⊥ (metavariable check)

b : T ×NK (V∗)⊥ (binder check)

s : T ×NKT⊥ (subterm check)

m : T ×T ×ΣKΣ⊥ (match)

cc : T ×B∗
KT where B = V∗×T (copy constructor)

cv : V KT (copy variable occurrence)

The structure 〈T,V,Z,#,v,z,b,s,m,cc,cv〉 is a virtual CRS term structure if the follow-

ing constraints are satisfied:

• Subterms and bindings exist only where expected: 1 ≤ i ≤ #(t) ⇐⇒ s(t, i) 6=
⊥ ⇐⇒ b(t, i) 6= ⊥,

• Variables are consistent, i.e., v(t) = v implies #(t) = 0, z(t) =⊥, m(t,t ′,σ) =⊥,

and cc(t,~b) = ⊥.

• Metaapplications are consistent, i.e., z(t) = zn implies #(t) = n, v(t) = ⊥,

b(t, i) = 〈〉 for 1 ≤ i ≤ n, m(t,t ′,σ) = ⊥, and cc(t,~b) = ⊥.

33

• Construction (identified by v(t) = z(t) = ⊥ and with #(t) = n subterms with

optional binders ~b = 〈〈b(t,1),s(t,1)〉, . . . ,〈b(t,n),s(t,n)〉〉) is consistent, i.e.,

s(cc(t,~b), i) = s(t, i), b(cc(t,~b), i) = b(t, i), and m(cc(t,~b), t ′,σ) = m(t,t ′,σ).

• Finally, variable creation works: v(cv(v)) = v.

Definition 5 (virtual CRS rewriting). Define rewrite rules R and valuations as in

Def. 2. The rewrite relation
R

// over virtual CRS terms is defined as follows:

• The contraction of a virtual term with a valuation is defined relative to the oper-

ations.

• A path p is a sequence of integers corresponding to trail of s-indices; it is valid

if it selects a subterm.

• A virtual context C[] = 〈tC,pC〉 where pC is valid into tC and defined in terms

of paths.

• Rewriting is defined just as in Def. 2.

Proposition 6. Given a set of CRS terms T over V , F, and Z (Def. 1), and a virtual

CRS term structure 〈T,V,Z,#,v,z,b,s,m,cc,cv〉 (Def. 4). Then the rewrite relations

generated by the traditional (Def. 2) and virtualized (Def. 5) mechanism are equal.

Proof sketch. We construct the “implementation” of the virtual CRS operations over

real terms and show that (1) they obey the constraints and (2) the constraints create at

least as many relations as the concrete rewrite relation has.

3 CRSX

The CRSX code [Ros07] is based on virtual CRS terms realized by the Java interface

CRSTerm, summarized in Fig. 1, with some supporting interfaces in net.sf.crsx, over

which the rewrite engine CRS is implemented.

This realizes virtual CRS as discussed in the previous section with the following

further extensions that we have not yet fully formalized:

• Matching is constrained by requiring that the two methods crsPreMatch and

crsPostMatch succeed on all terms, which can be used to add additional match

constraints.

• All variable occurrences are created based on the same unique variable object

shared with the binding. This allows properties to be associated to variables and

accessed uniformly from all occurrences.

• All contraction invokes methods on the contractum: crsCopyConstructor for con-

structors, crsCopyVariableOccurrence for variable occurrences, and crsMetaAp-

plicationSubstitution for metaapplications.

• Destructive updating is supported to allow “in-place” updating of terms.

These additional conventions effectively allow working with rule “schemas” (finite de-

scriptions of an infinity of simple rules).

34

interface CRSTerm // Term t.

{
enum CRSKind {CONSTRUCTOR,VARIABLE OCCURRENCE,META APPLICATION};

public CRSKind crsKind(); // fast term kind dispatch

// Semantic abstract terms.

int crsArity(); // #(t)

CRSVariable crsVariable(); // v(t) using null for ⊥
String crsMetaVariable(); // z(t) using null for ⊥
CRSVariable[] crsBinders(int i); // b(t, i)

CRSTerm crsSub(int i); // s(t, i)

boolean crsPreMatch(CRSTerm other, CRS crs); // m(t, tother,σ)

boolean crsPostMatch(CRSTerm other, CRSMatching matching);

CRSTerm crsCopyConstructor(CRSVariable[][] subbinders, CRSTerm[] subterms); // cc(t,~b)

CRSTerm crsCopyVariableOccurrence(CRSVariable variable); // cv(v)

// Destructive update support.

void crsReplaceSub(int i, CRSTerm subterm);

// Rule schema support.

CRSTerm crsMetaApplicationSubstitution(CRSValuation valuation, int sequence,

CRSRenaming renaming, CRSTerm copy);

}

Figure 1: CRSX (net.sf.crsx) CRSTerm interface highlights.

Example 7 (XQuery with annotations). We use CRSX to implement the optimizer of

our “Virtual XML” XQuery compiler [RV+06]. The compiler comes with an existing

notion of internal “core language” with an abstract syntax tree (AST) implementation

in Java. To make CRSX work over these, the Java AST implementation was extended

to implement CRSTerm by

• mapping all the Java AST constructs to CRS constructors with appropriate binders,

and

• inserting a dummy “properties” constructor to hold annotations.

With this encoding, rewrite rules like the following can be used directly; R: is the prefix

used for pseudo-notations (so they can be parsed as XQuery expressions).

typeswitch (R:type(R:Expr0() instance of R:Type))

case $c as R:Type return R:YesCase1($c)

default $d return R:NoCase($d)

→

let $c as R:Type := R:Expr0() return R:YesCase1($c)

The trick is to encode the pseudo-terms in such a way that the pre- and post-matching

takes care of any additional match constraints. In this example, the pattern matches

if the expression is a typeswitch expression where the selection expression has been

shown to have a type, R:Type, which also appears in the type switch case. If so then

the expression rewrites to a simple let declaration.

It is also possible to encode analyses and inference rules.

35

4 Conclusion

The CRSX engine is available on SourceForge [Ros07] and already works well enough

to be used by our XQuery compiler [RV+06]. It has extensions for simple “rule

schema” as summarized above but these are not yet formally founded. We hope to

improve this through a “CRSX community” to get a great CRS engine that can be

embedded easily by other projects like we have done with ours.

Future work. The next steps will be to implement much more of the CRS culture

in CRSX: first of all classical formal CRS tests such as critical pair search (and or-

thogonality), configurable rewrite strategies, and a more precise notion of rule schema

to support, for example, pattern calculi [JK06]. Other obvious experiments include

providing a CRS term model for XML [BPSM+06] data and for CRS systems them-

selves. Finally, we shall have to implement a proper compiler for CRS to avoid having

to load the CRS rules on every run: an interesting aspect of this is what parts of code

generation should be delegated to the term representation.

References

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François

Yergeau. Extensible markup language (XML) 1.0 (fourth edition). Rec-

ommendation, W3C, August 2006.

[FHPe92] Joseph H. Fasel, Paul Hudak, Simon Peyton Jones, and Philip Wadler

(editors). Haskell special issue. SIGPLAN Notices, 27(5), May 1992.

[JK06] C. Barry Jay and Delia Kesner. Pure pattern calculus. In Proceedings

of the European Symposium on Programming (ESOP), Lecture Notes in

Computer Science, pages 100–114, Vienna, Austria, March-April 2006.

Springer-Verlag.

[Klo80] Jan Willem Klop. Combinatory Reduction Systems. Mathematical Centre

Tracts 127. Mathematisch Centrum, Amsterdam, 1980.

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk.

Combinatory reduction systems: Introduction and survey. Theoretical

Computer Science, 121(1-2):279–308, 1993.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard

ML. The MIT Press, 1990.

[Ros06] Kristoffer Rose. Stand-alone use of higher-order rewriting. Blog en-

try on http://domino.research.ibm.com/comm/research people.nsf/pages/

krisrose.blog.html, December 2006.

[Ros07] Kristoffer Rose. Combinatory reduction systems extended. SourceForge

project http://crsx.sf.net, April 2007.

[RSF06] Christopher Ré, Jérôme Siméon, and Mary Fernández. A complete and

efficient algebraic compiler for XQuery. In Proceedings of IEEE Interna-

tional Conference on Data Engineering (ICDE), Atlanta, Georgia, April

2006.

36

[RV+06] Kristoffer Rose, Lionel Villard, et al. Virtual XML. http://www.research.

ibm.com/virtualxml, November 2006.

37

Demonstration of CRSX

Kristoffer H. Rose
IBM Thomas J. Watson Research Center

P. O. Box 704, Yorktown Heights, NY 10598 (USA)
http://www.research.ibm.com/people/k/krisrose

Abstract of HOR 2007 system demo on June 25, 2007

I’ll demonstrate the capabilities of the CRSX engine:

• Using ”traditional CRS”, http://crsx.sourceforge.net/crsx-howto.

pdf

• Use of CRSX in the Virtual XML Query compiler, http://www.alphaworks.

ibm.com/tech/virtualxml

Everything is done with general normalization using CRS rewrite rules.

38

Elements of a Categorical Semantics

for the Open Calculus of Constructions

Max Schäfer∗

Institute of Information Science

Academia Sinica, Taipei 115, Taiwan

June 1st, 2007

The Open Calculus of Constructions [Ste02] is a type theory in the style
of the Calculus of Constructions [CH88] incorporating concepts from Rewriting
Logic [OM93]. Based on our exposition in [Sch07], we describe a categorical
semantics for a subsystem of OCC, which is obtained quite straightforwardly
by enriching a D-category based semantics with a 2-category structure. The
resulting semantics is sound and conceivably encompasses a wide variety of
different models for the calculus; thus it could serve as a basis for further meta-
theoretical investigations of OCC and perhaps also related systems.

1 The System OCC3

The variant of the Open Calculus of Constructions described here, which for
consistency with [Sch07] is called OCC3, provides four judgement forms:

• Typing judgements of the form Γ ⊢ M : A: Such a judgement expresses
that in the context Γ, which declares the types of all used variables, the
term M has type A.

• Structural equality judgements of the form Γ ⊢ ||(M = N) : A: Such a
judgement expresses that in the context Γ the terms M and N are both
of type A and operationally indistinguishable (i.e., they should be treated
as interchangeable).

• Computational equality judgements of the form Γ ⊢!!(M = N) : A: Such
a judgement expresses that in the context Γ the terms M and N are both
of type A, and M can be reduced to N (but not the other way around).

• Rewriting judgements of the form Γ ⊢ M → N : A: Such a judgement
expresses that in the context Γ the terms M and N are both of type A,
and there exists an (abstract) rewrite from the former to the latter.

Notice that this last form of judgement does not appear in the original
formulation of OCC. On the other hand, several of its other judgements involving

∗This work was partially supported by the iCAST project sponsored by the National Sci-

ence Council, Taiwan, under grants no. NSC95-3114-P-001-001-Y02 and NSC95-3114-P-001-

002-Y02.

39

features like assertional equality and subtyping, which are not considered in our
semantics, are omitted.

In general, OCC3’s syntax has more typing annotations than the original
OCC, which are needed for defining the semantic interpretation functions. This
is a common phenomenon when describing categorical semantics for type theo-
ries; see, for example, [Str91] for a discussion of this issue.

2 Inference Rules and Semantics

For space reasons, we cannot give all the inference rules of OCC3 here (see [Sch07]
for a complete list); according to the judgement form of the conclusion, however,
we can roughly distinguish four groups of rules, which correspond to different
aspects of the semantics.

2.1 Modelling Contexts, Universes, and Products

The rules for deriving typing judgements are mostly similar to those seen in the
Calculus of Constructions and this part of the calculus can indeed be modelled
using D-categories in a similar way as it was done for CC by Ehrhard [Ehr88]:

Contexts and their morphisms (which can be seen as generalized substitu-
tions) are interpreted as the objects and morphisms of a base category C. An-
other category E , which is fibred over C through a fibration functor p : E → C,
contains the semantic representations of types and terms.

Thus, a context Γ is modelled as an object C of C. The fiber over C is
the subcategory EC of E consisting of all objects X ∈ Ob(E) such that p(X) =
C and all arrows f such that p(f) = idC . Types and terms in context Γ
are interpreted inside this fiber: For a derivable judgement Γ ⊢ M : A, the
interpretation functions yield an object a representing type A and a morphism
m : 1C → a representing term M , where 1C is the terminal object of EC .

Substitutions are modelled as context morphisms, i.e. arrows in C. Since
p is a (split) fibration, every such morphism ϑ : D → C induces a reindexing
functor ϑ∗ : EC → ED modelling the application of a substitution to terms and
types. An example scenario is depicted in the diagram in Figure 1, where we
follow the convention of Jacobs [Jac91] depicting the objects and morphisms of
a fiber vertically above the corresponding object of the base category.

As usual, product types are modelled as right adjoints to weakening func-
tors plus a coherence condition. The product forming operation of OCC3 (like
the original OCC) is very powerful, since it allows product formation over a
user-definable universe hierarchy similar to pure type systems [Bar92]. These
universes are specified as a set of universe constants S, with two disjoint subsets
Si and Sp of impredicative and predicative universes, respectively. The product
forming rule depends, as with pure type systems, on a ternary relation R ⊆ S3

(which is required to be functional in its first two arguments):

Γ ⊢ S : s1 Γ, x : S ⊢ T : s2
(Pi) ,R(s1, s2) = s3

Γ ⊢ Πx : S.T : s3

It is well known that unbridled use of this feature can lead to inconsistent
systems (see, e.g., [Bar92]), so OCC poses a number of technical constraints to

40

1C

m

��

ϑ∗(1C) = 1D

ϑ∗(m)

��

E a ϑ∗(a)

C C D
ϑoo

Figure 1: Contexts, context morphisms, and reindexing functors

ensure that potentially dangerous systems are weeded out. For details we refer
to [Ste02] and [Sch07].

In the categorical semantics, the universes are modelled as designated objects
of E with a mapping U that converts between their categorical elements and
objects of E . This reflects the double role of types in the calculus, which can be
seen both as terms belonging to a universe, and as types to which other terms
belong.

For instance, a type Nat of natural numbers could inhabit a universe Type of
types, and could itself be inhabited by the term 42. In its first role, Nat would
be modelled as an object N of category E , and 42 as its categorical element.
In its second role, on the other hand, Nat would be modelled as a categorical
element n of another object representing universe Type. The mapping U maps
the arrow n to the object N , thus corresponding to the (syntactic) constructor
Proof(-) found in some formulations of CC.

2.2 Modelling Equality and Rewriting

The rules for deriving equality and rewriting judgements form the bulk of the
inference system. Following [Mes05], we model rewriting by a 2-category struc-
ture. Briefly, a 2-category is a category in which every homset has itself a
category structure; in particular, there are “morphisms between (parallel) mor-
phisms”, which are called 2-cells.

Since terms are modelled as morphisms of E , it seems natural to model
rewrites between terms as 2-cells between the corresponding morphisms. We
then need to require that all categories, functors, and adjunctions in the model
are in fact 2-categories, 2-functors, and 2-adjunctions (i.e., they also act on
2-cells).

Using this approach, we can neatly model the equality/rewriting hierarchy
of OCC by corresponding classes of 2-cells:

• Structural equality is modelled by the class of identity 2-cells: If two terms
are structurally equal, then there should be an identity 2-cell between their
interpretations, i.e. their interpretations should be equal.

• Computational equality is modelled by a class of reduction 2-cells: If two

41

terms are computationally equal, then there should be such a reduction
2-cell between their interpretations.

• Rewriting is modelled by the class of all 2-cells: If one term can be rewrit-
ten to another, there should be a 2-cell between the former and the latter’s
interpretation.

The class of reduction 2-cells is closed under identity and vertical composi-
tion, mirroring the reflexivity and transitivity of computational equality. The
same is trivially true of the class of identity 2-cells which is additionally closed
under “change of direction”: for every identity 2-cell α : f ⇒ g, there is another
identity 2-cell β : g ⇒ f (in fact, f = g and β = α). This is, of course, needed to
model symmetry of structural equality. Further flavors of equality could likewise
be modelled by defining a corresponding class of 2-cells.

The rules for deriving structural equality judgements describe the basic prop-
erties of structural equality, and also the structural equality type constructor:
For two terms M and N of type A, there is a type StrEqA(M,N) of proofs
of structural equality for M and N . Following an approach outlined by Stre-
icher [Str91], we model this type constructor as a family of objects in E with two
extraction morphisms that allow access to the terms M and N being compared.

This approach readily generalizes to computational equality types
CompEqA(M,N) and rewriting types RwA(M,N) by requiring that the ex-
traction morphisms be connected by a reduction 2-cell resp. any 2-cell at all.
Also, the existence of an inhabitant of a structural or computational equality
or rewriting type implies that the two terms compared are actually structurally
equal/computationally equal/rewritable, thus these type constructors are in fact
strong.

The rules for the computational equality and rewriting judgements, finally,
closely parallel the structural equality rules. But while structural equality ex-
hibits congruence closure (roughly speaking, if the individual parts of two terms
are equal, then so are the terms themselves), computational equality does not.
Computational equality can be used for type reduction: If a term M has type
A and type A is computationally equal to type A′, then term M also has type
A′. The rewriting judgement, however, is completely passive in this respect:
the existence of a rewrite between two terms does not affect their typing or
operational behavior.

This completes our overview of the semantics. While the precise definition
of the interpretation functions is a bit technical, it is not very difficult, and one
readily obtains a soundness proof.

3 Future Directions and Related Work

We are confident that it will not be too hard to find examples of categorical
models for OCC3: Although we have not yet finished all the detailed verifica-
tions, it seems that a set-based model as well as a term model can be defined in
a more or less standard way. One might hope that the term model could then
be used to obtain a completeness proof of the inference system.

Another important use of example models would be the construction of
counter-examples; realizability models in particular have proved to be a fertile
source of independence proofs for the Calculus of Constructions [Str91].

42

Finally, OCC is not the only system aiming at a unification of type theory
and rewriting. The same two ingredients can be found in the Rho-Calculus
[CLW03], which however pursues quite different goals and uses a different ap-
proach. Although it is wider in scope and also more powerful than OCC, it
might be interesting to see if the ideas outlined here could be applied to it.

References

[Bar92] Henk Barendregt. Lambda calculi with types. In Abramsky, Gab-
bay, and Maibaum, editors, Handbook of Logic in Computer Science,
volume 2. Clarendon Press, Oxford, 1992.

[CH88] Thierry Coquand and Gerard Huet. The calculus of constructions.
Information and Computation, 76(2–3), 1988.

[CLW03] Horatiu Cirstea, Luigi Liquori, and Benjamin Wack. Rewriting cal-
culus with fixpoints: Untyped and first-order systems. In Types for

Proofs and Programs, volume 3085 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 2003.

[Ehr88] Thomas Ehrhard. A Categorical Semantics of Constructions. In Pro-

ceedings of LICS ’88, pages 264–273. IEEE, 1988.

[Jac91] Bart Jacobs. Categorical Type Theory. PhD thesis, University of
Nijmegen, The Netherlands, September 1991.

[Mes05] José Meseguer. Functorial semantics of rewrite theories. Lecture Notes

in Computer Science : Formal Methods in Software and Systems Mod-

eling, pages 220–235, 2005.

[OM93] Mart́ı N. Oliet and J. Meseguer. Rewriting logic as a logical and
semantic framework, 1993.

[Sch07] Max Schäfer. Towards a Categorical Semantics for the Open Calculus
of Constructions. Master’s thesis, TU Dresden, 2007. Available online
at http://www.iis.sinica.edu.tw/∼xiemaisi/publications.html.

[Ste02] Mark-Oliver Stehr. Programming, Specification, and Interactive The-

orem Proving. PhD thesis, University of Hamburg, September 2002.

[Str91] Thomas Streicher. Semantics of Type Theory: Correctness and Com-

pleteness. Progress in Theoretical Computer Science. Birkhäuser, De-
cember 1991.

43

44

Principal Typings for Explicit Substitutions

Calculi∗

Daniel Lima Ventura1†and Mauricio Ayala-Rincón1‡and

Fairouz Kamareddine2

1Grupo de Teoria da Computação, Dep. de Matemática

Universidade de Braśılia, Braśılia D.F., Brasil
2 School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, Scotland

{ventura,ayala}@mat.unb.br, fairouz@macs.hw.ac.uk

June 4, 2007

Abstract

Having principal typings (for short PT) is an important property of
type systems. This property guarantees the possibility of type deduction
which means it is possible to develop a complete and terminating type in-
ference mechanism. It is well-known that the simply typed λ-calculus has
this property, but recently, J. Wells has introduced a system-independent
definition of PT which allows to prove that some type systems, e.g. the
Hindley/Milner type system, do not satisfy PT. The main computational
drawback of the λ-calculus is the implicitness of the notion of substitu-
tion, a problem which in the last years gave rise to a number of extensions
of the λ-calculus where the operation of substitution is treated explicitly.
Unfortunately, some of these extensions do not necessarily preserve basic
properties of the simply typed λ-calculus such as preservation of strong
normalization. We consider two systems of explicit substitutions (λσ and
λse) and we show that they can be accommodated with an adequate no-
tion of PT. Specifically, our results can be summarized as follows:

• We introduce PT notions for the simply typed versions of the λσ

and the λse-calculus that are proved to agree with Wells’ notion of PT.
• We show that these versions of the λσ and the λse satisfy PT by

revisiting previously introduced type inference algorithms.

1 Introduction

The development of well-behaved calculi of explicit substitutions is of great
interest in order to bridge the formal study of the λ-calculus and its real imple-
mentations. Since β contraction depends on the definition of the operation of

∗Research supported by the CNPq Brazilian Research Council.
†Corresponding author, currently supported by a PhD scholarship of the CNPq at the

Heriot-Watt University.
‡Author partially supported by the CNPq.

45

substitution, which is informally given in the theory of λ-calculus, substitutions
are in fact made explicit, but obscurely developed (in and ad hoc manner), when
most computational environments based on the λ-calculus are implemented. A
remarkable exception is λProlog, for which its explicit substitutions calculus,
the suspension calculus, has been extracted and formally studied [NaWi98].

In the study of making substitutions explicit, several alternatives rose out
and all of them are directed to guarantee essential properties such as simu-
lating beta-reduction, confluence, noetherianity (of the associated substitution
calculus), subject reduction, having principal typings (for short PT), preserva-
tion of strong normalization etc. This is a non trivial task; for instance, the
λσ-calculus [ACCL91], that is one of the first proposed calculi of explicit sub-
stitutions, was reported to break the latter property after some years of its
introduction [Mel95]: this implies that infinite derivations starting from well-
typed λ-terms are possible in this calculus, which is at least questionable for
any mechanism supposed to simulate the λ-calculus explicitly. Here the focus
is on the PT property, which means that for any typable term a, there exists
a type judgment Γ ⊢ a : A, representing all possible typings for a, where for
a typing of a one understands the pair (Γ, A). In the simply typed λ-calculus
this corresponds to the existence of more representative typings. PT guarantees
compositional type inference helping in making a complete/terminating type
inference algorithm.

We assume the reader familiar with λ-calculus in de Bruijn notation and
with the type-free and simply typed versions of the λσ [ACCL91] and λse-calculi
[KR97]. The proofs are included in an extended version of this work available at
www.mat.unb/∼ayala/publications.html. In section 2 we present the type
assignment systems background and then we present simply typed systems for
each calculus. Following type systems presentation, we discuss the general no-
tion of principal typings defined in [We2002] and present notions of principal
typings for λ-calculus in de Bruijn notation, λσ and λse and prove they are
adequate ones. Then we conclude and present future work.

2 The Type Systems

Definition 1. The syntax of the simple types and contexts:
Types A ::= K |A → A Contexts Γ ::= nil |A.Γ

K ranges over type variables. A type assignment system S is a set of
rules which allows some terms of a given system be associated with a type. A
context gives the necessary information used by S rules to associate a type to
a term. In the simply typed λ-calculus[Hi97], the typable terms are strongly
normalizing. The ordered pair (Γ, A), of a context and a type, is called a typing

in S. For a term a, Γ ⊢ a : A denotes that a has type A in context Γ, and (Γ, A)
is called a typing of a. Let τ = (Γ, A) be a typing in S. S � a : τ denotes that
τ is a typing of a in S.

The contexts for λ-terms in de Bruijn notation are sequences of types. Let
Γ be some context and n ∈ N. Then Γ<n denotes the first n − 1 types of Γ.
Similarly we define Γ>n, Γ≤n and Γ≥n. Note that, for Γ>n and Γ≥n the final
nil element is included. For n=0, Γ≤0.Γ=Γ<0.Γ=Γ. The length of Γ is defined
as |nil|=0 and, if Γ is not nil, |Γ|=1+|Γ>1|. The addition of some type A at
the end of a context Γ is defined as Γ.A=Γ≤m.A.nil, where |Γ|=m.

46

Given a term a, an interesting question is whether it is typable in S or not.
Note that, we are using the so-called Curry-style or implicit typing, where in
terms of the form λ.a we did not specify the type of the bound variable(1). Such
terms have many types, depending on the context. Another important question
is whether given a term, its so-called most general typing can be found. An
answer to this question, which represents in some sense any other answer, is
called principal typing. Principal typing(which is context independent) is not
to be confused with a principal type(which is context dependent). Let τ be
a typing in S and TermsS(τ)={a|S � a:τ}. J. Wells introduced in [We2002]
a system-independent definition of PT and proved that it generalizes previous
system-specific definitions.

Definition 2 ([We2002]). A typing τ in system S is principal for some term
a if S � a : τ and for any τ ′ such that S � a : τ ′ we have that τ ≤S τ ′, where
τ1 ≤S τ2 ⇐⇒ TermsS(τ1) ⊆ TermsS(τ2).

In simply typed systems the principal typing notion is tied to type substi-
tution and weakening. Weakening allows one to add unnecessary informa-
tion to contexts. Type substitution maps type variables to types. Given
a type substitution s, the extension for functional types is straightforward as
s(A→B)=s(A)→s(B) and the extension for sequential contexts as s(nil)=nil
and s(A.Γ)=s(A).s(Γ). The extension for typings is given by s(τ)=(s(Γ), s(A)).

2.1 Principal typings for the simply typed λ-calculus in

de Bruijn notation TAλdB

Definition 3. (The System TAλdB) The TAλdB typing rules are given by

(λdB-var) A.Γ ⊢ 1 : A (λdB-varn)
Γ ⊢ n : B

A.Γ ⊢ n + 1 : B

(λdB-lambda)
A.Γ ⊢ b : B

Γ ⊢ λ.b : A → B
(λdB-app)

Γ ⊢ a : A → B Γ ⊢ b : A

Γ ⊢ (a b) : B

This system is similar to TAλ([Hi97]).

Lemma 1. Let a be a λ-term in de Bruijn notation. If Γ ⊢TAλdB
a : A, then

Γ.B ⊢TAλdB
a : A. Hence, the rule (λdB-weak) is admissible in the system

TAλdB, where
Γ ⊢ a : A

Γ.B ⊢ a : A
(λdB-weak).

Using the rule (λdB-weak) and type substitution, we can define principal
typing for the λ-calculus in de Bruijn notation similarly to the definition of
[We2002] for Hindley’s Principal Typing.

Definition 4. A principal typing in TAλdB of a λ-term a is the typing τ =
(Γ, B) such that

1. TAλdB � a : τ
2. If TAλdB �a : τ ′ for any typing τ ′ = (Γ′, B′), then exists some substitution

s such that s(Γ) = Γ′
≤|Γ|.nil and s(B) = B′.

Observe that, given the principal typing (Γ, A) of a, the context Γ is the
shortest context where a can be typable. This property corresponds to the
property of principal typing in the simply typed λ-calculus with names, where
the context of a principal typing is the smallest set as well[We2002]. As is

47

the case for the simply typed λ-calculus with names, the best way to assure
that Definition 4 is the correct translation of the PT concept, is to verify that
Definition 4 corresponds to Definition 2.
Theorem 1. A typing τ is principal in TAλdB according to Definition 4 iff τ
is principal in TAλdB according to Definition 2.

A type inference algorithm for terms from TAλdB is presented, similar to
the one in [AyMu2000] for λse. Given any term a, decorate each subterm with
a new type variable as subscript and a new context variable as superscript,
obtaining a new term denoted as a′. For example, for term λ.(2 1) we have
the decorated term (λ.(2 Γ1

A1
1 Γ1

A2
)Γ3
A3

)Γ4
A4

. Then, rules from Table 1 are applied
to pairs of the form 〈R,E〉, where R is a set of decorated terms and E a set of
equations on type and context variables.

(Var) 〈R ∪ {1Γ
A
}, E〉 → 〈R, E ∪ {Γ = A.Γ′}〉,where Γ′ is a fresh context

variable;
(Varn) 〈R ∪ {nΓ

A
}, E〉 → 〈R, E ∪ {Γ = A′

1. · · · .A′
n−1.A.Γ′}〉,where Γ′ and

A′
1, . . . , A′

n−1 are fresh context and type variables;

(Lambda) 〈R ∪ {(λ.a
Γ1
A1

)Γ2
A2

}, E〉 → 〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉, where A∗

is a fresh type variable;

(App) 〈R ∪ {(aΓ1
A1

b
Γ2
A2

)Γ3
A3

}, E〉→ 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

Table 1: Rules for Type Inference in System TAλdB

Type inference for a starts with 〈R0, ∅〉, where R0 is the set of all a′ sub-
terms. The rules from Table 1 are applied until reaches 〈∅, Ef 〉, where Ef is a
set of first-order equations over context and type variables.

Example 1. Let a = λ.(2 1). Then a′ = (λ.(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

)Γ4
A4

and R0 = { 2 Γ1
A1

,

1 Γ2
A2

, (2 Γ1
A1

1 Γ2
A2

)Γ3
A3

, (λ.(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

)Γ4
A4

}. Using the rules in Table 1 we have the
following reduction:

〈R0, ∅〉 →Varn

〈R1 = R0 r { 2 Γ1
A1

}, E1 = {Γ1 = A′
1.A1.Γ′

1}〉 →Var

〈R2 = R1 r { 1 Γ2
A2

}, E2 = E1 ∪ {Γ2 = A2.Γ′
2}〉 →App

〈R3 = R2 r {(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

}, E3 = E2 ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2→A3}〉 →Lambda

〈R4 = R3 r {(λ.(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

)Γ4
A4

}, E4 = E3 ∪ {A4 = A∗
1→A3, Γ3 = A∗

1.Γ4}〉

Thus, E4 = Ef . Solving the trivial equation over context variables, i.e. Γ1 =
Γ2 = Γ3, and using variables of smaller subscripts, one gets {A1 = A2→A3, A4 =

A∗
1→A3, Γ1 = A′

1.A1.Γ′
1, Γ1 = A2.Γ′

2, Γ1 = A∗
1.Γ4}. Thus, simplifying one gets {A1 =

A2→A3, A4 = A∗
1→A3, A′

1.A1.Γ′
1 = A2.Γ′

2 = A∗
1.Γ4}. From these equations one gets

the most general unifier (mgu for short) A4 = A2→A3 and Γ4 = (A2→A3).Γ
′
1,

for the variables of interest. Since the context must be the shortest one, Γ′
1 = nil

and (A2→A3, (A2→A3).nil) is the principal typing of a.
From Definition 4 and by the uniqueness of the solutions of the type inference

algorithm, one deduces that TAλdB satisfies PT. The next theorem says that
every typable term has a principal typing.
Theorem 2 (Principal Typings for TAλdB). TAλdB satisfies the property of
having principal typings.

2.2 Principal typings for TAλσ, the simply typed λσ

The typed version is presented in Curry style, instead of Church style presented
in [DoHaKi2000]. Thus, the syntax of λσ-terms and the rules are the same as
the untyped version.

48

The typing rules of the λσ-calculus provide types for objects of sort term as
well as for objects of sort substitution. An object of sort substitution, due to its
semantics, can be viewed as a list of terms. Consequently, its type is a context.
s � Γ denotes that the object of sort substitution s has type Γ.

Definition 5 (The System TAλσ). TAλσ is given by the following typing rules.

(var) A.Γ ⊢ 1 : A (lambda)
A.Γ ⊢ b : B

Γ ⊢ λ.b : A → B

(app)
Γ ⊢ a : A → B Γ ⊢ b : A

Γ ⊢ (a b) : B
(clos)

Γ ⊢ s � Γ′ Γ′ ⊢ a : A

Γ ⊢ a[s] : A

(id) Γ ⊢ id � Γ (shift) A.Γ ⊢↑ �Γ

(cons)
Γ ⊢ a : A Γ ⊢ s � Γ′

Γ ⊢ a.s � A.Γ′
(comp)

Γ ⊢ s′′ � Γ′′ Γ′′ ⊢ s′ � Γ′

Γ ⊢ s′ ◦ s′′ � Γ′

Observe that the name of the typing rules begin with lower-case letters, while
the rewriting rules with upper-case letters. We have verified that this version of
λσ in Curry style has the same properties as the version of λσ in Church style
given in [DoHaKi2000].

Since subterms of λσ-terms can be of sort either term or substitution, we
will enclose both sorts by the denomination λσ-expression (sub-expression). For
TAλσ the notion of typing has to be adapted since the λσ-expression of sort
substitution is decorated with contexts variables as types and as contexts. Thus,
one may say that τ = (Γ, T) is a typing of a λσ-expression in TAλσ, where T
can be either a type or a context. If the analysed expression belongs to the
λ-calculus, the notion of typing corresponds to that of TAλdB .

Lemma 2 (Weakening for λσ). Let a be a λσ-term and s a λσ-substitution.
If Γ ⊢ a : A, then Γ.B ⊢ a : A, for any type B. Similarly, if Γ ⊢ s � Γ′, then
Γ.B ⊢ s � Γ′.B. Hence, the rules (λσ-tweak) and (λσ-sweak) are admissible in
System TAλσ, where

Γ ⊢ a : A

Γ.B ⊢ a : A
(λσ-tweak)

Γ ⊢ s � Γ′

Γ.B ⊢ s � Γ′.B
(λσ-sweak)

The rules given in Lemma 2 and the type substitution allow us present a defi-
nition for PT in TAλσ.

Definition 6 (Principal Typings in TAλσ). A principal typing of an expres-
sion a in TAλσ is a typing τ = (Γ, T) such that

1. TAλσ � a : τ
2. If TAλσ �a : τ ′ for any typing τ ′ = (Γ′, T′), then there exists a substitution

s such that s(Γ) = Γ′
≤|Γ|.nil and if T is a type, s(T) = T′, otherwise we

have that s(T) = T′
≤|T|.nil.

We might verify if this PT definition has a correspondence with Wells’
system-independent definition [We2002].

Theorem 3. A typing τ is principal in TAλσ according to Definition 6 iff τ is
principal in TAλσ according to Definition 2.

An algorithm for type inference is presented, to verify if TAλσ has PT ac-
cording to Definition 6. Thus, given an expression a, we will work with the
decorated expression a′ but the type for substitutions is a context as well. We
use the same syntax for decorated expressions as in [Bo95].

The inference rules presented in the Table 2 are given according to the typing
rules of the system TAλσ presented in the Definition 5. The rules are applied
to pairs 〈R,E〉, starting from the pair 〈R0, ∅〉, as was done to TAλdB .

49

(Var) 〈R ∪ {1Γ
A
}, E〉 → 〈R, E ∪ {Γ = A.Γ′}〉,where Γ′ is a fresh context

variable;

(Lambda) 〈R ∪ {(λ.a
Γ1
A1

)Γ2
A2

}, E〉 → 〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉, where

A∗ is a fresh type variable;

(App) 〈R ∪ {(aΓ1
A1

b
Γ2
A2

)Γ3
A3

}, E〉 → 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

(Clos) 〈R ∪ {(aΓ1
A1

[sΓ2
Γ3

])Γ4
A2

}, E〉→ 〈R, E ∪ {Γ1 = Γ3, Γ2 = Γ4, A1 = A2}〉

(Id) 〈R ∪ {idΓ1
Γ2

}, E〉 → 〈R, E ∪ {Γ1 = Γ2}〉

(Shift) 〈R ∪ {↑Γ1
Γ2

}, E〉 → 〈R, E ∪ {Γ1 = A′.Γ2}〉,where A′ is a fresh type

variable;

(Cons) 〈R ∪ {(aΓ1
A1

.s
Γ2
Γ3

)Γ4
Γ5

}, E〉 → 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ4, Γ5 = A1.Γ3}〉

(Comp) 〈R ∪ {(sΓ1
Γ2

◦ t
Γ3
Γ4

)Γ5
Γ6

}, E〉→ 〈R, E ∪ {Γ1 = Γ4, Γ2 = Γ6, Γ3 = Γ5}〉

Table 2: Type inference rules for the λσ-calculus

Example 2. For a = (2 .id) ◦ ↑ one has a′ = (((1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

.id
Γ5
Γ6

)Γ7
Γ8

◦ ↑Γ9
Γ10

)Γ11
Γ12

.

Then R0 = {(1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

, ((1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

.id
Γ5
Γ6

)Γ7
Γ8

, (((1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

.id
Γ5
Γ6

)Γ7
Γ8

◦ ↑Γ9
Γ10

)Γ11
Γ12

,

1Γ1
A1

, ↑Γ2
Γ3

, id
Γ5
Γ6

, ↑Γ9
Γ10

}. Applying the rules from Table 2 to the pair 〈R0, ∅〉 until
obtain the pair 〈∅, Ef 〉 and simplifying Ef , as in example 1, one obtains the set
of equations {A1 = A2, Γ11 = Γ12 = A2.Γ2, Γ2 = A′

1.Γ1, Γ1 = A1.Γ
′
1}. From this

equational system one obtains the mgu Γ11=Γ12=A1.A
′
1.A1.Γ

′
1, for the variables

of interest. Thus, (A1.A
′
1.A1.nil, A1.A

′
1.A1.nil) is the principal typing of a.

Theorem 4 (Principal Typings for TAλσ). TAλσ satisfies the property of hav-
ing principal typings.

2.3 Principal typings for TAλse
, the simply typed λse

Definition 7 (The System TAλse
). TAλse

is given by the following typing rules.

(Var) A.Γ ⊢ 1 : A (Varn)
Γ ⊢ n : B

A.Γ ⊢ n + 1 : B

(Lambda)
A.Γ ⊢ b : B

Γ ⊢ λ.b : A → B
(App)

Γ ⊢ a : A → B Γ ⊢ b : A

Γ ⊢ (a b) : B

(Sigma)
Γ≥i ⊢ b : B Γ<i.B.Γ≥i ⊢ a : A

Γ ⊢ a σib : A
(Phi)

Γ≤k.Γ≥k+i ⊢ a : A

Γ ⊢ ϕi
k

a : A

As for λσ, the typed version of λse-calculus presented is in Curry style,
which we have verified that has the same properties of the version in Church
style presented in [ARKa2001a].

Lemma 3 (Weakening for λse). Let a be a λse-term. If Γ ⊢ a : A, then
Γ.B ⊢ a : A, for any type B. Hence, the rule (λse-weak) is admissible in System

TAλse
, where

Γ ⊢ a : A

Γ.B ⊢ a : A
(λse-weak).

Since λse remains close to the λ-calculus in de Bruijn notation, the definition
of principal typings in λse is the same as that for TAλdB. For the sake of
completeness we repeat it here.

Definition 8 (Principal Typings in TAλse
). A principal typing of a term a

in TAλse
is a typing τ = (Γ, B) such that

1. TAλse
� a : τ

2. If TAλse
�a : τ ′ for any typing τ ′ = (Γ′, B′), then there exists a substitution

s such that s(Γ) = Γ′
≤|Γ|.nil and s(B) = B′.

Theorem 5. A typing τ is principal in TAλse
according to Definition 8 iff τ is

principal in TAλse
according to Definition 2.

50

A type inference algorithm for the λse-calculus is presented, similarly to
that of [AyMu2000]. The decorated term associated with a, denoted as a′, has
syntax closer to the one of decorated λ-terms: any subterm is decorated with
its type and its context variables.

(Var) 〈R ∪ {1Γ
A
}, E〉 →

〈R, E ∪ {Γ = A.Γ′}〉, where Γ′ is a fresh context variable;

(Varn) 〈R ∪ {nΓ
A
}, E〉 →

〈R, E ∪ {Γ = A′
1. · · · .A′

n−1.A.Γ′}〉,where Γ′ and A′
1, . . . , A′

n−1

are fresh context and type variables;

(Lambda) 〈R ∪ {(λ.a
Γ1
A1

)Γ2
A2

}, E〉 →

〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉, where A∗ is a fresh type
variable;

(App) 〈R ∪ {(aΓ1
A1

b
Γ2
A2

)Γ3
A3

}, E〉 →

〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

(Sigma) 〈R ∪ {(aΓ1
A1

σib
Γ2
A2

)Γ3
A3

}, E〉 →

〈R, E ∪ {A1=A3, Γ1=A′
1. · · · .A′

i−1.A2.Γ2, Γ3=A′
1. · · · .A′

i−1.Γ2}〉,
where A′

1, . . . , A′
i−1 are new type variables and the sequence is

empty if i = 1;

(Phi) 〈R ∪ {(ϕi
k

a
Γ1
A1

)Γ2
A2

}, E〉 →

〈R, E ∪ {A1 = A2, Γ2 = A′
1. · · · .A′

k+i−1
.Γ′, Γ1 = A′

1. · · · .A′
k
.Γ′}〉,

where Γ′ and A′
1, . . . , A′

k+i−1
are new context and type variables

and if k + i − 1, k = 0 then the sequences A′
1, . . . , A′

k+i−1
and

A′
1, . . . , A′

k
, respectively, are empty.

Table 3: Type inference rules for the λse-Calculus

Similarly to the previous algorithm, the rules of the Table 3, developed
according to the rules of Definition 7, are applied to pairs 〈R,E〉, where R is a
set of decorated subterms of a′ and E a set of equations over type and context
variables.
Example 3. For the λse-term a = λ.((1σ22) (ϕ2

0 2)), one obtains the cor-
responding R0 from a′ = (λ.((1Γ1

A1
σ22Γ2

A2
)Γ3
A3

(ϕ2
0 2Γ4

A4
)Γ5
A5

)Γ6
A6

)Γ7
A7

. Then, applying
the rules in Table 3 to the pair 〈R0, ∅〉, obtaining the pair 〈∅, Ef 〉, and sim-
plifying Ef , similarly to the example 1, one obtains the system of equations
˘

A1 = A4 → A6 , A7 = A∗
1 → A6 , A1.Γ

′
1 = A′

2.A2.Γ2 , A′
2.Γ2 = A′

4.A
′
3.A4.Γ

′
3 =

A∗
1.Γ7 , Γ2 = A′

1.A2.Γ
′
2

¯

from which one has the mgu A7 = (A2 → A6) → A6

and Γ7 = A′
1.A2.Γ

′
2 for variables of interest.

Theorem 6 (Principal Typings for TAλse
). TAλse

satisfies the property of
having principal typings.

3 Conclusions and Future Work

We consider for λσ and λse particular notions of principal typings and presented
respective definitions which are proved to agree with the system-independent
notion introduced by Wells in [We2002]. The adaptation of this general notion
of principal typings for the λσ requires special attention, since this calculus en-
larges the language of the λ-calculus by introducing a new sort of substitution
objects, whose types are contexts. then the provided PT notion has to deal with
the principality of substitution objects as well. Then, the property of having
principal typings is straightforwardly proved by revisiting type inference algo-
rithms for the λσ and the λse, previously presented in [Bo95] and [AyMu2000],

51

respectively. The result is based on the correctness, completeness and unique-
ness of solutions given by adequate first-order unification algorithms(e.g. see
the unification algorithm given in [Hi97]).

Investigation of this property for more elaborated typing systems of explicit
substitutions is an interesting work to be done.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substi-
tutions. J. of Functional Programming, 1(4):375–416, 1991.

[ARMoKa2005] M. Ayala-Rincón, F. de Moura, and F. Kamareddine. Compar-
ing and Implementing Calculi of Explicit Substitutions with Eta-Reduction.
Annals of Pure and Applied Logic, 134:5–41, 2005.

[ARKa2001a] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-
Style of Explicit Substitution. The Logical Journal of the Interest Group
in Pure and Applied Logics, 9(4):489–523, 2001.

[AyMu2000] M. Ayala-Rincón and C. Muñoz. Explicit Substitutions and All
That. Revista Colombiana de Computación, 1(1):47–71, 2000.

[Bo95] P. Borovanský. Implementation of Higher-Order Unification Based on
Calculus of Explicit Substitutions. In M. Bartošek, J. Staudek, and J. Wie-
dermann, editors, Proceedings of the SOFSEM’95: Theory and Practice of
Informatics, volume 1012 of LNCS, pages 363–368. Springer Verlag, 1995.

[deBru72] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicae, 34:381–392, 1972.

[DoHaKi2000] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification
via Explicit Substitutions. Information and Computation, 157(1/2):183–
235, 2000.

[Hi97] J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1997.

[KR97] F. Kamareddine and A. Ŕıos. Extending a λ-calculus with Explicit Sub-
stitution which Preserves Strong Normalisation into a Confluent Calculus
on Open Terms. J. of Func. Programming, 7:395–420, 1997.

[Mel95] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not ter-
minate. In Proc. of TLCA’95, volume 902 of LNCS, pages 328–334. Springer
Verlag, 1995.

[NaWi98] G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A
Generalization of Environments. Theoretical Computer Science, 198:49–98,
1998.

[We2002] J. Wells. The essence of principal typings. In Proc. 29th International
Colloquium on Automata, Languages and Programming, ICALP 2002, vol-
ume 2380 of LNCS, pages 913–925. Springer Verlag, 2002.

52

A The type free calculi

A.1 λ-calculus in de Bruijn notation

Definition 9. The set ΛdB of λ-terms in de Bruijn notation is defined
inductively as

Terms a ::= n | (a a) |λ.a where n ∈ N∗= Nr{0}

Definition 10. Let a be a λ-term. A subterm a1 of a is n-deep in a, if the
least possible index of any free variable in a1 is greater than n. In other words,
a1 is in between n abstractors.

We say that i occurs as free index in a term a if any occurrence of i + n is n-
deep in a. Terms like ((((a1 a2) a3) . . .) an) are written as usual (a1 a2 . . . an).
The β-contraction definition in this notation needs a mechanism which detects
and update free indices of terms. It follows an operator similar to the one
presented in [ARKa2001a].

Definition 11. Let a ∈ ΛdB and i ∈ N. The i-lift of a, denoted as a+i, is
defined inductively as

1 . (a1 a2)
+i = (a+i

1 a+i
2) 3 . n+i =

{

n + 1 , if n > i
n , if n ≤ i.

2 . (λ.a1)
+i = λ.a

+(i+1)
1

The lift of a term a is its 0-lift, denoted as a+. Intuitively, the lift of a corre-
sponds to increment by 1 all free indices occurring in a. Using the i-lift, we are
able to present the definition of the substitution used by β-contractions, similar
to the one presented in [ARKa2001a].

Definition 12. Let m,n ∈ N∗. The β-substitution for free ocurrences of n
in a ∈ ΛdB by term b, denoted as {n /b}a, is defined inductively as

1 . {n /b}(a1 a2) = ({n /b}a1 {n /b}a2) 3 . {n /b}m =

m − 1 , if m > n
b, if m = n
m , if m < n2 . {n /b}λ.a1 = λ.{n + 1 /b+}a1

Observe that in item 2 of Def. 12, the lift operator is used to avoid captures of
free indices in b. We present the β-contraction as defined in [ARKa2001a].

Definition 13. β-contraction of λ-terms in de Bruijn notation is defined as
(λ.a b) →β {1 /b}a.

Notice that item 3 in Definition 12, for n = 1, is the mechanism which does
the substitution and updates the free indices in a as consequence of the lead
abstractor elimination.

A.2 The λσ-Calculus

The λσ-calculus is given by a first-order rewriting system, which makes substi-
tutions explicit by extending the language with two sorts of objects: terms and
substitutions.

Definition 14. The syntax of the type free λσ-calculus is given by
Terms a ::=1 | (a a) |λ.a | a[s] Substitutions s ::= id | ↑ | a.s | s ◦ s

Substitutions are lists of the form b/i indicating that the index i should be
changed to the term b. id represents a substitution of the form {1 /1 , 2 /2 , . . . }
and ↑ is the substitution { i + 1 / i |i∈N∗}. s ◦ s represents the composition of

53

substitutions. 1 [↑n], where n ∈ N∗, codifies the de Bruijn index n + 1 . i [s]
represents the value of i through the substitution s, which can be seen as a
function s(i). The substitution a.s has the form {a/1 , s(i)/i + 1 }, called the
cons of a in s. a[b.id] starts the simulation of the β-reduction of (λ.a b) in
λσ. Thus, in addition to the substitution of the free occurrences of the index 1
by the corresponding term, free occurrences of indices should be decremented
because of the elimination of the abstractor. The Table 4 includes the rewriting
system of the λσ-calculus, as presented in [DoHaKi2000].

(λ.a b) −→ a[b.id] (Beta)
(a b)[s] −→ (a[s] b[s]) (App)
1[a.s] −→ a (V arCons)
a[id] −→ a (Id)
(λ.a)[s] −→ λ.(a[1.(s◦↑)]) (Abs)
(a[s])[t] −→ a[s ◦ t] (Clos)
id ◦ s −→ s (IdL)
↑◦ (a.s) −→ s (ShiftCons)
(s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3) (AssEnv)
(a.s) ◦ t −→ a[t].(s ◦ t) (MapEnv)
s ◦ id −→ s (IdR)
1.↑ −→ id (V arShift)
1[s].(↑◦s) −→ s (Scons)
λ.(a 1) −→ b if a=σb[↑] (Eta)

Table 4: The rewriting system for the λσ-calculus with Eta rule

This system without (Eta) is equivalent to that of [ACCL91]. The associated
substitution calculus, denoted as σ, is the one induced by all the rules except
(Beta) and (Eta), and its equality is denoted as =σ.

A.3 The λse-Calculus

In contrast with λσ, The λse-calculus has a sole sort of objects maintaining its
syntax closer to the λ-calculus. The λse-calculus controls the atomization of the
substitution operation by introducing the use of arithmetic constraints through
two operators σ and ϕ, for substitution and updating, respectively.
Definition 15. The syntax of the untyped λse-calculus, where n, i, j ∈ N∗ and
k ∈ N is given as

Terms a ::= n | (a a) |λ.a | a σia |ϕj
k a

The term a σib represents the term {i /b}a; i.e., substitution of free occur-
rences of i in a by b, updating free variables in a (and in b). The term ϕj

k a

represents j − 1 applications of the k-lift to the term a; i.e., a+k(j−1)

. Table 5
contains the rewriting rules of the λse-calculus and the rule (Eta), as given in
[ARKa2001a]. =se

denotes the equality for the associated substitution calculus,
denoted as se, induced by all the rules except (σ-generation) and (Eta).

B Proofs

The proofs are divided in three parts: B.1, where the proof of weakening for
each type system are placed; B.2, where the three proofs of the correspondence

54

(λ.a b) −→ a σ1b (σ-generation)
(λ.a) σib −→ λ.(a σi+1b) (σ-λ-transition)
(a1 a2) σib −→ ((a1 σib) (a2 σib)) (σ-app-trans.)

n σib −→

n − 1 if n > i
ϕi

0 b if n = i
n if n < i

(σ-destruction)

ϕi
k (λ.a) −→ λ.(ϕi

k+1 a) (ϕ-λ-trans.)
ϕi

k (a1 a2) −→ ((ϕi
k a1) (ϕi

k a2)) (ϕ-app-trans.)

ϕi
k n −→

{

n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(a1 σia2) σjb −→ (a1 σj+1b) σi(a2 σj−i+1b) if i ≤ j (σ-σ-trans.)

(ϕi
k a) σjb −→ ϕi−1

k a if k < j < k + i (σ-ϕ-trans. 1)
(ϕi

k a) σjb −→ ϕi
k (a σj−i+1b) if k + i ≤ j (σ-ϕ-trans. 2)

ϕi
k (a σjb) −→ (ϕi

k+1 a) σj(ϕi
k+1−j b) if j ≤ k + 1 (ϕ-σ-trans.)

ϕi
k (ϕj

l a) −→ ϕj
l (ϕi

k+1−j a) if l + j ≤ k (ϕ-ϕ-trans. 1)

ϕi
k (ϕj

l a) −→ ϕj+i−1
l a if l ≤ k < l + j (ϕ-ϕ-trans. 2)

λ.(a 1) −→ b if a=se
ϕ2

0 b (Eta)

Table 5: The rewriting system of the λse-calculus with Eta rule

between system-independent and system-specific definition of PT are merged in
one; and B.3, where the three proofs of PT are also merged.

B.1 Proofs of weakening

Proof of Lemma 1(Weakening for TAλdB). Let Γ ⊢ a : A. We will prove a more
general result stating, for i ∈ N, that Γ≤i.B.Γ>i ⊢ a+i : A. The proof is done by
induction on a structure. Note that if i ≥ m, where m = |Γ|, then B is added
at the end of Γ.

1) a = n : Suppose Γ ⊢ n : A. If n ≤ i, then n+i = n . The B addition
at i+1-th position changes only types of indices greater or equal to i + 1 ,
thus one has trivially that Γ≤i.B.Γ>i ⊢ n : A. If n > i, then n+i = n + 1 .
By (TAdB-varn) i times one has Γ>i ⊢ n − i : A. Thus, by (TAdB-varn)
applied i + 1 times, one has that Γ≤i.B.Γ>i ⊢ n + 1 : A.

2) a = (b c): Suppose Γ ⊢ (b c) : A. By (TAdB-app) one has that Γ ⊢ b :
C → A and Γ ⊢ c : C. By IH one has Γ≤i.B.Γ>i ⊢ b+i : C → A and
Γ≤i.B.Γ>i ⊢ c+i : C. Thus, by (TAdB-app), Γ≤i.B.Γ>i ⊢ (b+i c+i) : A.

3) a = λ.b: Suppose Γ ⊢ λ.b : A. By (TAdB-lambda) one has that C.Γ ⊢ b :
D, where A = C → D. By IH one has C.Γ≤i.B.Γ>i ⊢ b+(i+1) : A. Thus,
by (TAdB-lambda), Γ≤i.B.Γ>i ⊢ λ.b+(i+1) : C → D = A.

Since all information about a free varibles is in context Γ, one has that a maxi-
mum value for a free index occurrence, at 0-deep in a, is m = |Γ|. Consequently,
a+j = a for any j ≥ m. Thus, for i = m, we have that Γ.B ⊢ a : A, for any
type B. Then a weak rule for TAλdB is admissible, adding types at the end of
the context. A type addition in any other position of context Γ would require
updating some free indices, then a+i would correspond to a different function
from the one to which term a corresponds.

55

The proof of Lemma 2 needs some auxiliar definitions and lemmas.

Definition 16. Let a be a λσ-object. Define ‖ · ‖ : Λσ → N as

‖(a b)‖ = ‖a‖ + ‖b‖ ‖1 ‖ = 0

‖λ.a‖ = ‖a‖ ‖id‖ = 0

‖a[s]‖ = ‖a‖ + ‖s‖ ‖ ↑ ‖ = 0

‖s ◦ t‖ = ‖s‖ + ‖t‖ ‖a.t‖ = 1 + ‖a‖ + ‖t‖

Lemma 4. Let s be a λσ-substitution such that ‖s‖ = 0. If Γ ⊢ s � Γ′, then
Γ.B ⊢ s � Γ′.B

Proof. Induction on s structure.

1) s = id: By (id) it has Γ.B ⊢ id � Γ′.B, trivially.

2) s =↑: Let Γ ⊢↑ �Γ′ where, by (shift), Γ = A.Γ′. Thus Γ.B ⊢↑ �Γ′.B.

3) s = u◦t: Let Γ ⊢ u◦t�Γ′. By (comp), it has that Γ ⊢ t�Γ′′ and Γ′′ ⊢ u�Γ′,
for some Γ′′. By induction hypothesis(IH) it has Γ.B ⊢ t � Γ′′.B and
Γ′′.B ⊢ u � Γ′.B. Thus, by (comp), Γ.B ⊢ u ◦ t � Γ′.B.

Lemma 5. Let a be a λσ-term such that ‖a‖ = 0. If Γ ⊢ a : A, then Γ.B ⊢ a : A.

Proof. Induction on a structure.

1) a = 1 : Let Γ ⊢ 1 : A. By (var) it has that Γ = A.Γ′, for some Γ′. Thus
it has Γ.B ⊢ 1 : A, trivially.

2) a = (b c): Let Γ ⊢ (b c) : A. By (app) it has that Γ ⊢ b : C → A and
Γ ⊢ c : C, for some C. By IH it has Γ.B ⊢ b : C → A and Γ.B ⊢ c : C.
Thus, by (app), Γ.B ⊢ (b c) : A.

3) a = λ.b: Let Γ ⊢ λ.b : A. By (lambda) it has that C.Γ ⊢ b : D, where A =
C → D. By IH it has C.Γ.B ⊢ b : D. Thus, by (lambda), Γ.B ⊢ λ.b : A.

4) a = b[s]: Let Γ ⊢ b[s] : A. By (clos) is has that Γ ⊢ s�Γ′ and Γ′ ⊢ b : A, for
some Γ′. It has ‖b[s]‖ = ‖b‖+‖s‖ = 0. Then, by Lemma 4, Γ.B ⊢ s�Γ′.B.
By IH it has that Γ′.B ⊢ b : A. Thus, by (clos), Γ.B ⊢ b[s] : A.

Proof of Lemma 2(Weakening for TAλσ). Induction on a structure with subin-
duction on ‖ · ‖, having Lemmas 4 and 5 as induction base(IB).

1) a = 1 : Let Γ ⊢ 1 : A. By (var) it has that Γ = A.Γ′, for some Γ′. Thus
it has Γ.B ⊢ 1 : A, trivially.

2) a = (b c): Let Γ ⊢ (b c) : A. By (app) it has that Γ ⊢ b : C → A and
Γ ⊢ c : C, for some C. By IH on structure it has Γ.B ⊢ b : C → A and
Γ.B ⊢ c : C. Thus, by (app), Γ.B ⊢ (b c) : A.

3) a = λ.b: Let Γ ⊢ λ.b : A. By (lambda) it has that C.Γ ⊢ b : D, where
A = C → D. By IH on structure it has C.Γ.B ⊢ b : D. Thus, by (lambda),
Γ.B ⊢ λ.b : A.

56

4) a = b[s]: Let Γ ⊢ b[s] : A. By (clos) is has that Γ ⊢ s � Γ′ and Γ′ ⊢ b : A,
for some Γ′. By IH on structure it has Γ′.B ⊢ b : A. Substitution s has to
be examined. If ‖b‖ > 0, then by IH on ‖ · ‖, as ‖b[s]‖ > ‖s‖, it has that
Γ.B ⊢ s � Γ′.B.

Else, if ‖b‖ = 0:

- If ‖s‖ = 0, then Lemma 4 can be applied.
- Otherwise, s = c.t or s = u ◦ t. If s = c.t, then by (cons) it has that

Γ ⊢ c : C and Γ ⊢ t � Γ′′, where Γ′ = C.Γ′′. As ‖c‖, ‖t‖ < ‖s‖ =
‖b[s]‖, by IH on ‖ · ‖ it has Γ.B ⊢ c : C and Γ.B ⊢ t � Γ′′.B. Thus,
by (cons), Γ.B ⊢ c.t � Γ′.B. If s = u ◦ t, then by (comp) it has that
Γ ⊢ t � Γ′′ and Γ′′ ⊢ u � Γ′, for some Γ′′. If ‖u‖, ‖t‖ > 0, the result
holds by IH on ‖ · ‖. Otherwise, at least one of the substitutions
has ‖ · ‖ greater than 0. Using induction on substitution s structure,
where ‖s‖ > 0, the result holds. Then, it has that Γ.B ⊢ t � Γ′′.B
and Γ′′.B ⊢ u � Γ′.B. Thus, by (comp), Γ.B ⊢ u ◦ t � Γ′.B.

Finally, by (clos), it has that Γ.B ⊢ b[s] : A.

Proof of Lemma 3(Weakening for TAλse
). Induction on a structure.

1) a = n : Let Γ ⊢ n : A. Since the type addition at the end of Γ do not
change any free index type, one has trivially that Γ.B ⊢ n : A.

2) a = (b c): Let Γ ⊢ (b c) : A. By (App) one has that Γ ⊢ b : C → A and
Γ ⊢ c : C, for some C. By IH one has Γ.B ⊢ b : C → A and Γ.B ⊢ c : C.
Thus, by (App), Γ.B ⊢ (b c) : A.

3) a = λ.b: Let Γ ⊢ λ.b : A. By (Lambda) one has that C.Γ ⊢ b : D,
where A = C → D. By IH one has C.Γ.B ⊢ b : D. Thus, by (Lambda),
Γ.B ⊢ λ.b : A.

4) a = b σic: Let Γ ⊢ b σic : A. By (Sigma) one has that Γ≥i ⊢ c : C and
Γ<i.C.Γ≥i ⊢ b : A. By IH one has Γ≥i.B ⊢ c : C and Γ<i.C.Γ≥i.B ⊢ b : A.
Thus, by (Sigma), Γ.B ⊢ b σic : A.

5) a = ϕi
kb: Let Γ ⊢ ϕi

kb : A. By (Phi) one has that Γ≤k.Γ≥k+i ⊢ b : A. By
IH one has Γ≤k.Γ≥k+i.B ⊢ b : A. Thus, by (Phi), Γ.B ⊢ ϕi

kb : A.

B.2 Proof of Correspondence

Proof of Theorems 1, 3 and 5. The proofs are an adapted version of that given
by Wells in [We2002]. Our adaptation deals with de Bruijn indices rather than
variables and the proof for λσ has an adaptation to deal with substitutions
too. Let u ∈ {λdB, λσ, λse} and Ou be the index updating operator of each
calculus. In other words, OλdB(a) = a+, Oλσ(a) = a[↑] and Oλse

(a) = ϕ2
0 a.

Let O1
u = Ou and On+1

u (a) = Ou(On
u(a)). For a type A, let T (A) be the set of

type variables ocurring in A. For brevity, 1 [↑n] is denoted as n + 1 .
⇒ proof: Let τu = (Γu, Bu) be a PT of some term au, according to Definitions
4, 6 and 8, and τ ′

u = (Γ′
u, B′

u) be a typing of au. By PT definition for each type
system, we have that exists a type substitution s such that s(Γu) = (Γ′

u)≤|Γu|
.nil

57

and s(Bu) = B′
u. By the property which says that if TAu � a : τu, then

TAu � a : s(τu), for any type substitution s, we have τu ≤TAu
s(τu). By the

weakening admissible rule for each type system ((λdB-weak), (λσ-tweak) and
(λse-weak)), we have that s(τu) ≤TAu

τ ′
u. Thus, τu is PT of au, according to

Definition 2.
The proof for a λσ-substitution t with PT τ = (Γ,∆) according to Definiton

6 and typing τ ′ = (Γ,∆) is similar to the proof for λσ-terms, using the proper
weakening rule (λσ-sweak).
⇐ proof: Let τu = (Γu, Bu) be a PT of some term au, according to Def-
initions 4, 6 and 8, and τ ′

u = (Γ′
u, B′

u) be a typing of au which is not PT
according to these definitions. Then, exists a type substitution s such that
s(Γu) = (Γ′

u)≤|Γu|
.nil and s(Bu) = B′

u and does not exist any substitution s′

such that s′(Γ′
u) = (Γu)≤|Γ′

u|
.nil and s′(B′

u) = Bu.

1. Suppose s(Γu) 6=Γ′
u. Then, mu = |Γu|< |Γ′

u|. Let bu =(λ.Ou(au) mu+1).

2. Otherwise, s(Γu) = Γ′
u. Let K be a type variable. Define the functions

φu
1 and φu

2 as:

φu
1 (K, K) = λ.λ.

`

1 (2 4) (2 3)
´

φu
1 (A → B, K) =

(

λ.λ.
`

1 (3 2) (O3
u(λ.φu

1 (A, K)) 2)
´

, if K ∈ T (A)

λ.
`

O2
u(λ.φu

1 (B, K)) (2 1)
´

, otherwise

φu
2 (K, K) = λ.λ.

`

1 (2 3) (2 4)
´

φu
2 (A → B, K) =

(

λ.λ.
`

1 (4 2) (O2
u(λ.φu

1 (A, K)) 2)
´

, if K ∈ T (A)

λ.
`

Ou(λ.φu
1 (B, K)) (3 1)

´

, otherwise

(a) Suppose s(Ku) is not a type variable for Ku ∈ T (τu)

i. Suppose Ku ∈ T (Bu).

Let bu=
(

λ.
(

λ. 2 λ.(Ou(λ.φu
2 (Bu,Ku)) λ. 2)

)

au

)

.

ii. Suppose Ku ∈ T ((Γu)iu
).

Let bu =
(

λ.Ou(a) λ.(λ.λ.φu
2 ((Γu)iu

,Ku) iu+1 λ. 2)
)

.

(b) Suppose s(K1
u) = s(K2

u) = L for distinct K1
u,K2

u ∈ T (τu)

i. Suppose Kj
u ∈ T ((Γu)iu,j

) for j ∈ {1, 2}.
Let pj

u =
(

λ.φu
1 ((Γu)iu,j

,Kj
u) iu,j+1

)

and pu = λ.λ.
(

1 Ou(p1
u)Ou(p2

u)
)

. Let bu =
(

λ.λ. 2 au pu

)

.

ii. Suppose K1
u ∈ T ((Γu)iu

) and K2
u ∈ T (Bu).

Let pu =λ.λ.
(

1
(

Ou(λ.φu
1 ((Γu)iu

,K1
u)) iu+3

)

Ou(φu
2 (Bu,K2

u))
)

and bu =
(

λ.(λ. 2 pu) au

)

.

iii. Suppose Ki
u ∈ T (Bu) for i ∈ {1, 2}.

Let pu = λ.λ.
(

1 Ou(φu
2 (Bu,K1

u)) Ou(φu
2 (Bu,K2

u))
)

and bu =
(

λ.(λ. 2 pu) au

)

.

Then, bu ∈ TermsTAu
(τ ′

u) r TermsTAu
(τu). Thus, τ ′

u �TAu
τu.

As consequence, if τ ′
u is not PT according to Definitions 4, 6 and 8, τ ′

u is not
PT according to Definition 2.

Let a be a λσ-substitution t and τ = (Γ,∆) be a PT of t, according to
Definition 6, and τ ′ = (Γ′,∆′) be a typing of t which is not PT according to

58

this definition. Then, exists a type substitution s such that s(Γ) = Γ′
≤|Γ|.nil

and s(∆) = ∆′
≤|∆|.nil and does not exist any substitution s′ such that s′(Γ′) =

Γ≤|Γ′|.nil and s′(∆′) = ∆≤|∆′|.nil.

1. Suppose s(Γ) 6= Γ′. Then, m = |Γ| < |Γ′|. Let si=(1 . 2 . · · · .m+1 .↑m+1)
and r = t ◦ si.

2. Otherwise, s(Γ) = Γ′. Define the functions φ1 as φλσ
1 and φ2 as φλσ

2

defined above.

(a) Suppose s(K) is not a type variable for K ∈ T (τ)

i. Suppose K∈T (∆i). Let b =
“

λ.
`

λ. 2 λ.((λ.φ2(∆i, K))[↑] λ. 2)
´

i
”

and let s′i = (1 . 2 . · · · . i−1 .b.↑i). Let r = s′i ◦ t.

ii. Suppose K ∈ T (Γi). Let b and s′i be as above. Let r = t ◦ s′i.

(b) Suppose s(K1) = s(K2) = L for distinct K1,K2 ∈ T (τ)

i. Suppose Kj ∈ T (Γij
) for j∈{1, 2}. Let pj=

(

λ.φ1(Γij
,Kj) ij+1

)

and p=λ.λ.
(

1 p1[↑] p2[↑]
)

. Let bj=
(

λ.λ. 2 ij p
)

, where j can be

either 1 or 2 and let sij
=(1 . 2 . · · · . ij−1 .bj . ↑

ij). Let r = t◦ sij
.

ii. Suppose Kj∈T (∆ij
), j∈{1, 2}. Let pj=

(

λ.φ1(∆ij
,Kj) ij+1

)

.
Then, for p, bj and sij

as above, let r = sij
◦ t.

iii. Suppose K1 ∈ T (Γi) and K2 ∈ T (∆j). Let b =
(

λ.(λ. 2 p) j [t]
)

,

where p = λ.λ.
(

1
(

(λ.φ1(Γi,K1))[↑] i+3
)

φ2(∆j ,K2)[↑]
)

. Let

r =
(

1 [t]. 2 [t]. · · · . j − 1 [t].b.(↑j ◦ t)
)

.

Then, r ∈ TermsTAλσ
(τ ′) r TermsTAλσ

(τ). Thus, τ ′ �TAλσ
τ

As consequence, if a typing τ ′ of some λσ-substitution is not PT according to
Definition 6, τ ′ is not PT according to Definition 2.

B.3 Proof of PT

Proof of Theorems 2, 4 and 6. Let a be any term (expression in λσ) and a′

its decorated version. Let R0 be the set of all sub-terms(sub-expression) of
a′. Starting with the pair 〈R0, ∅〉 and applying the rules of the type inference
algorithm in the Table 1, 2 or 3 one obtains a final pair after a finite number
of steps, because after each step the number of elements in the set of decorated
sub-terms(sub-expressions) of the pair is decremented. By the uniqueness in the
decomposition of the sub-terms(sub-expressions) in each calculus, one has that
a unique rule can be applied to each element of R0. Thus, the process finishes
with a pair 〈∅, Ef 〉, where Ef is a set of first-order equations over context
and type variables, according to the rules of the type systems TAλdB, TAλσ

and TAλse
respectively. An adequate first-order unification algorithm, e.g. see

[Hi97], is then applied. And by the correctness, completeness and uniqueness
of first-order unification, one has that the algorithm will find a mgu in the case
that a is typable. Otherwise, the algorithm will report that there are no unifier.
Consequently, the typing systems TAλdB , TAλσ and TAλse

satisfy PT.

59

