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Abstract. Modal logic enjoys topological semantics that may be traced
back to McKinsey and Tarski, and the classi�cation of topological spaces
via modal axioms is a lively area of research. In the past two decades,
there has been interest in extending topological modal logic to the lan-
guage of the µ-calculus, but previously no class of topological spaces
was known to be µ-calculus de�nable that was not already modally de-
�nable. In this paper we show that the full µ-calculus is indeed more
expressive than standard modal logic, in the sense that there are classes
of topological spaces (and weakly transitive Kripke frames) which are
µ-de�nable, but not modally de�nable. The classes we exhibit satisfy a
modally de�nable property outside of their perfect core, and thus we
dub them imperfect spaces. We show that the µ-calculus is sound and
complete for these classes. Our examples are minimal in the sense that
they use a single instance of a greatest �xed point.

Keywords: Mu-calculus · Expressivity · Topological semantics.

1 Introduction

Topological semantics for modal logic originated with McKinsey and Tarski [17]
in the 1940's, but saw a more recent revival due to the work of Esakia [9], She-
htman [20], and others. In what we call the closure semantics, the modal ♦ is
interpreted as the topological closure, and � as the interior. The logic of all
topological spaces in this semantics is S4, and we refer to [4] for an overview
of topological completeness of modal logics above S4. The more expressive [16]
derivational semantics has gained traction in recent years, but was already con-
sidered by McKinsey and Tarski. It is obtained by interpreting the modal ♦
as the Cantor derivative.3 Esakia [8,9] showed that the derivative logic of all
topological spaces is the modal logic wK4 = K+ (♦♦p→ p ∨ ♦p). This is also
the modal logic of all weakly transitive frames, i.e., those for which the re�exive
closure of the accessibility relation is transitive. It is well-known that the modal

3 Recall that the derivative d(A) of a set A consists of all limit points of A.
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logic of transitive frames is K4 [6,7], which moreover corresponds to a natural
class of topological spaces denoted Td. Many familiar topological spaces are Td,
such as Euclidean spaces.

Even more recently, topological semantics have been extended to the language
of the µ-calculus [3,10,11,13]. The relational µ-calculus is notoriously challeng-
ing from a theoretical perspective, with di�cult completeness [21] and decid-
ability [15] proofs (see also [1,18,19] for more recent work exhibiting various
modi�cations to these results and their proofs). Since a transitive modality is
already de�nable in the basic µ-calculus, Goldblatt and Hodkinson [14] obtained
completeness and decidability as a corollary for transitive frames, and thus for
Td spaces. This does not work for weakly transitive frames, but surprisingly,
Baltag et al. [3] showed that the combination of the µ-calculus with topological
semantics is much more manageable than the original µ-calculus, with natural
and transparent proofs of decidability and completeness involving only classical
tools from modal logic (albeit intricately combined).

Thus the topological µ-calculus is decidable and complete, potentially plac-
ing it as a powerful yet technically manageable framework for reasoning about
topologically-de�ned �xed points. The Achilles' heel of this proposal is that de-
spite the sophisticated machinery, no class of topological spaces was formerly
known to be µ-de�nable, but not modally de�nable. Our goal is to exhibit such
classes of spaces. Here it is convenient to recall the notion of reducibility of formal
languages, following Kudinov and Shehtman [16]. If L and L′ are sub-languages
of the µ-calculus, then L reduces to L′ if every class of spaces de�nable in L is
also de�nable in L′ (see Section 2). If L reduces to L′, we may also say that L′
is at least as expressive as L, and if moreover L′ does not reduce to L, we say
that L′ is more expressive than L.4

More precisely, we manage to exhibit in�nitely many topologically complete
logics in the language of the µ-calculus whose classes of spaces are not modally
de�nable. These axioms separate spaces into two parts, a perfect part (i.e., with-
out isolated points), and a complement satisfying some property de�nable by a
modal formula ϕ; we call these spaces ϕ-imperfect spaces. The perfect part is
de�ned via a greatest �xed point operator.

The paper is structured as follows: in section 2, we present the relevant
material regarding derivative spaces, the µ-calculus and axiomatic expressivity.
In section 3, we use greatest �xed points to construct classes of spaces that are
not modally de�nable. Completeness results for some of these classes are then
laid out in section 4. We end with some concluding remarks in section 5.

4 Note that a stronger notion of expressivity is also considered in the literature: namely,
L′ is at least as expressive as L if for every ϕ ∈ L there is a logically equivalent
ϕ′ ∈ L′. To avoid confusion we may call the latter local expressivity, and the notion
we are concerned with axiomatic expressivity.With this terminology in mind, while it
was known that µ-calculus is locally more expressive than the basic modal language
over topological spaces (see e.g. [10]), here we will show that it is also axiomatically
more expressive.
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2 Background

In this section we review the syntax and semantics of the topological µ-calculus.
Following [3,12], we present our semantics in the general setting of derivative
spaces, and work in a language with ν (rather than µ) as primitive.

De�nition 1. We �x a countable set Prop of atomic propositions (also called
variables). The language Lµ of the modal µ-calculus is de�ned by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | νp.ϕ

where p ∈ Prop and in the construct νp.ϕ, the formula ϕ is positive in p, that
is, every occurrence of p lies under the scope of an even number of negations.
The abbreviations ϕ ∨ ψ, �ϕ, ⊥ and > are de�ned as usual. We denote by
ϕ[ψ1, . . . , ψn/p1, . . . , pn] the formula ϕ where each formula ψi is substituted for
every free occurrence of the variable pi. We then introduce the abbreviation
µp.ϕ := ¬νp.¬ϕ[¬p/p]. Finally, the basic modal language L♦ is the fragment of
Lµ without occurrences of ν.

De�nition 2. A derivative space is a pair X = (X, d), where X is a set of
points and d : P(X) → P(X) is an operator on subsets of X, satisfying for all
A,B ⊆ X:

� d(∅) = ∅,
� d(A ∪B) = d(A) ∪ d(B),
� d(d(A)) ⊆ A ∪ d(A).

A derivative model based on X is a tuple of the form M = (X, d, V ) with
V : Prop → P(X) a valuation. Given x ∈ X we then call (M, x) a pointed

derivative model. If p ∈ Prop and A ⊆ X, we de�ne the valuation V [p := A] by

V [p := A](q) :=

{
A if p = q

V (q) otherwise
.

We then write M[p := A] := (X, d, V [p := A]).

De�nition 3. Given a derivative model M = (X, d, V ), we de�ne by induction
on a formula ϕ ∈ Lµ the extension JϕKM of ϕ in M as follows:

JpKM := V (p) J¬ϕKM := X \ JϕKM
Jϕ ∧ ψKM := JϕKM ∩ JψKM J♦ϕKM := d(JϕKM)

Jνp.ϕKM :=
⋃
{A ⊆W | A ⊆ JϕKM[p:=A]}

We then write M, x � ϕ whenever x ∈ JϕKM and we say that ϕ is true at the
point x. If M is based on X and M, x � ϕ, we say that ϕ is satis�able on M, or
on X , or on X , x (depending on what is deemed relevant).

If JϕKM = X, we write M � ϕ. If M � ϕ for all models M based on X
we write X � ϕ and we say that ϕ is valid on X . We also have a notion of
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pointwise validity, that is, if M, x � ϕ for every model M based on X , then we
write X , x � ϕ. If X � ϕ for all derivative spaces X , we write � ϕ. Given a class
C of derivative spaces, we write C � ϕ whenever X � ϕ for all X ∈ C. If Γ is a
set of formulas we write M, x � Γ whenever M, x � ϕ for all ϕ ∈ Γ , and all of
the other notations are adapted accordingly.

In modal logic it is customary to study morphisms that preserve validity. In
the context of derivative spaces, these are known as d-morphisms (see e.g. [16]).

De�nition 4. Let X = (X, d) and X ′ = (X ′, d′) be two derivative spaces. A
map f : X → X ′ is called a d-morphism from X to X ′ if it satis�es f−1[d′(A′)] =
d(f−1[A′]) for all A′ ⊆ X ′.

Proposition 5. Let X = (X, d) and X ′ = (X ′, d′) be two derivative spaces and

f : X → X ′ a d-morphism. If ϕ ∈ Lµ and X � ϕ, then X ′ � ϕ.

Presenting our semantics in terms of derivative spaces is useful, as both
weakly transitive Kripke frames and topological spaces (either with the closure
or the d operator) can be viewed as special cases of derivative spaces. While our
`intended' semantics is topological, Kripke semantics will be useful in establishing
many of our main results.

De�nition 6. A Kripke frame is a pair F = (W,R), with W a set of possible
worlds and R ⊆ W 2. We denote by R+ := R ∪ {(w,w) | w ∈ W} the re�exive

closure of R. The frame F is said to be rooted in r if for all w ∈ W we have
rR+w. We say that F is weakly transitive if wRu and uRv implies wR+v. In this
case F is also called a wK4 frame, and it induces a derivative space (W, d) with
d de�ned by d(A) := {w | wRu and u ∈ A}.

Slightly abusing terminology, we will identify F and (W, d) (since one can be
constructed from the other). Then (pointed) derivative models based on wK4
frames will be called (pointed) Kripke models, while d-morphisms between wK4
frames will be called bounded morphisms.

Now we turn our attention to the `o�cial' semantics of the topological µ-calculus.

De�nition 7. Let X be a set of points. A topology on X is a set τ ⊆ P(X)
containing ∅ and X, closed under arbitrary unions, and closed under �nite
intersections. The pair (X, τ) is then called a topological space. The elements
of τ are called the open sets of X. The complement of an open set is called a
closed set. If x ∈ U ∈ τ then U is called an open neighbourhood of x. Slightly
abusing notation, we will often keep τ implicit and let X refer to the space
(X, τ).

De�nition 8. Let X be a topological space, A ⊆ X and x ∈ X. The point x
is said to be a limit point of A if for all open neighbourhoods U of x, we have
U ∩ A \ {x} 6= ∅. We denote by d(A) the set of all limit points of A and call it

the derived set of A. The dual of d is de�ned by d̂(A) := X \ d(X \A).
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Given a topological space X, it is easily observed that the pair (X, d) is a
derivative space. Conversely, the topology τ can be recovered from d since for
all A ⊆ X, the set A is closed if and only if d(A) ⊆ A. For this reason we choose,
again, to identify (X, τ) and (X, d). Then (pointed) derivative models based on
topological spaces will be called (pointed) topological models. Observe that the
familiar closure and interior operators can be de�ned by Cl(A) := A ∪ d(A)

and Int(A) := A ∩ d̂(A). Writing �+ϕ := ϕ ∧�ϕ and ♦+ϕ := ϕ ∨ ♦ϕ, we then
have J�+ϕKM = Int(JϕKM) and J♦+ϕKM = Cl(JϕKM) for all topological models
M. We recall some important classes of topological spaces that will be useful
throughout the text.

De�nition 9. Let X be a topological space. A point x ∈ X is said to be isolated
if {x} is open. Given x ∈ A ⊆ X we say that x is isolated in A if there exists U
open such that {x} = U ∩A. The space X is called dense-in-itself if it contains
no isolated point. The space X is called scattered if any subspace of X contains
an isolated point. We say that X is Td if every x ∈ X is isolated in Cl({x}). We
say that X is extremally disconnected if Cl(U) is open for every open set U , and
Aleksandro� if arbitrary intersections of open sets are open.

Aleksandro� spaces are closely connected to Kripke frames, via the following
construction.

De�nition 10. Let F := (W,R) be a wK4 frame. A set U ⊆ W is called an
upset if w ∈ U and wRu implies u ∈ U . The collection τR of all upsets over W
is then a topology, and (W, τR) is called the topological space induced by F. If
M = (W,R, V ) is a Kripke model based on F, then ((W, τR), V ) is the topological
model induced by M.

It is not hard to check that a space of the form (W, τR) is always Aleksandro�
(and, indeed, every Aleksandro� space is of this form [2]). In fact we will sim-
ply not distinguish a weakly transitive Kripke frame from the topological space
induced by it. This is partly motivated by the following proposition.

Proposition 11. Let M = (W,R, V ) be an irre�exive and weakly transitive

Kripke model, and M′ := ((W, τR), V ) the space induced by it. For all w ∈ W
and ϕ ∈ Lµ we have

M, w � ϕ ⇐⇒ M′, w � ϕ.

The modal logic of all topological spaces is known as wK4, and consists of
the following induction rules and axioms:

Name Axiom/inference rule

All propositional tautologies

Uniform substitution From ϕ infer ϕ[ψ1, . . . , ψn/p1, . . . , pn]

K (Distribution) �(p→ q)→ (�p→ �q)
Modus Ponens From ϕ and ϕ→ ψ infer ψ

Necessitation From ϕ infer �ϕ

Weak transitivity ♦♦p→ p ∨ ♦p
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The axiomatic system K4 is the extension of wK4 with the axiom 4 := ♦p →
♦♦p. The axiomatic system µwK4 is the extension of wK4 with the �xed point

axiom νp.ϕ→ ϕ[νp.ϕ/p] and the induction rule

from ϕ→ ψ[ϕ/p] infer ϕ→ νp.ψ.

De�nition 12. Let L be a logic in a sub-language of Lµ. If ϕ is a formula,
the statement L ` ϕ says that ϕ is derivable in L. We say that L is sound and

complete with respect to a class C of derivative spaces if for all formulas ϕ we
have L ` ϕ i� C � ϕ. We call L Kripke complete if it is sound and complete with
respect to some class of Kripke frames, and topologically complete if it is sound
and complete with respect to some class of topological spaces.

Theorem 13 ([3]). The logic µwK4 is sound and complete with respect to the

class of all wK4 frames, with respect to the class of all topological spaces, and

with respect to the class of all derivative spaces.

In order to compare the expressivity of di�erent languages, we need to intro-
duce the notion of de�nable classes.

De�nition 14. Given a formula ϕ, we let C(ϕ) be the class of derivative spaces
X such that X � ϕ. Let C0 be a class of derivative spaces and L ⊆ Lµ. We say
that C is L-de�nable within C0 if there exists ϕ ∈ L such that C(ϕ)∩C0 = C ∩C0.

If L,L′ ⊆ Lµ, we say that L′ is at least as expressive as L over C0 if every
class de�nable in L within C0 is also de�nable in L′ within C0. If L′ is at least as
expressive as L but L is not at least as expressive as L′, we say that L′ is more

expressive than L over C0.
In particular, a L♦-de�nable class will be called modally de�nable, and a Lµ-
de�nable class will be called µ-de�nable. As discussed in Footnote 4, this notion
of expressivity is also known as reducibility or axiomatic expressivity. The choice
to compare expressivity relatively to a class of derivative spaces is convenient as
it allows to derive all kinds of auxiliary results. We will consider the following
classes of interest:

Call := {X | X is a derivative space}
Cfin := {(X, d) ∈ Call | X is �nite}
CKripke := {F | F is a wK4 frame}
Cirrefl := {F ∈ CKripke | F is irre�exive}
Ctopo := {X | X is a topological space}
CK4 := {X ∈ Call | X � K4}

It is well established that CKripke∩CK4 is the class of transitive Kripke frames [6],
while Ctopo ∩ CK4 is the class of Td spaces [4].

3 Classes de�ned by greatest �xed points

The goal of this section is to exhibit µ-de�nable classes that are not modally
de�nable. It turns out that a whole family of formulas of the form θ∨ νp.♦p will
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yield the desired result. We easily see that given a pointed Kripke model (M, x),
we have M, x � νp.♦p if and only if there exists an in�nite path starting from
x. Topologically, νp.♦p holds in the perfect core of X, the largest dense-in-itself
subset of X. While the existence of an in�nite path is not in general modally
de�nable, it is not hard to check that C(νp.♦p) = C(♦>), as this is just the class
of dense-in-themselves spaces. However, the story becomes more complicated if
we only require certain points in the space to satisfy νp.♦p. In this case, the
following can be applied to exhibit many modally unde�nable classes of spaces.

Theorem 15. Let θ ∈ Lµ and suppose that for all n ∈ N there exists a wK4
frame Fn = (Wn, Rn) and rn ∈Wn such that:

1. Fn is rooted in rn and Fn, rn 2 θ ∨ νp.♦p;
2. Fn contains a path of length n;

3. for all w ∈Wn \ {rn} we have Fn, w � θ.

Then C(θ ∨ νp.♦p) is not modally de�nable within Cirrefl ∩ CK4. If in addition

every Fn is �nite, then C(θ ∨ νp.♦p) is not modally de�nable within Cirrefl ∩ Cfin

and CKripke ∩ Cfin ∩ CK4.

Remark 16. We recall that both Kripke frames and topological spaces are iden-
ti�ed with their respective derivative spaces, so Cirrefl ∩ CK4 can equivalently be
regarded as the class of all Td Aleksandro� spaces, and Cirrefl ∩ Cfin as the class
of �nite topological spaces. Thus Theorem 15 applies to classes of topological
spaces, as well as Kripke frames.

Remark 17. It is easily observed that if C is not modally de�nable within C0
and C0 ⊆ C1, then C is not modally de�nable within C1 as well. This allows us
to draw interesting consequences from Theorem 15, as Cirrefl ∩ CK4 is a subclass
of Call, CKripke, Ctopo, Ctopo ∩ CK4 and many other relevant classes.

From now on, we �x a formula θ and a family of frames (Fn)n∈N satisfying
the assumptions of Theorem 15. For all n ∈ N, we assume that Wn ∩ω = ∅. We
start with an elementary observation.

Claim 18. For all n ∈ N, the frame Fn is irre�exive and transitive.

Proof. First assume that Fn is not irre�exive, so that there is w with wRnw.
Then, (rn, w, w . . .) is an in�nite path beginning on rn, contradicting Fn, rn 2
νp.♦p. If instead Fn is not transitive, then since Fn is weakly transitive, this can
only occur if there exist w, u ∈Wn such that wRnu, uRnw and not wRnw. Then,
(rn, w, u, w, u, . . .) is an in�nite path beginning on rn (or else (w, u,w, u, . . .) in
case w = rn). ut

Given a world w ∈ Wn, we de�ne the wK4 frames Fpoint
n,w = (W 0, R0),

Fcycle
n,w = (W 1, R1) and Fspine

n,w = (W 2, R2) by:
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W 0 := Wn ∪ {0}
R0 := Rn ∪ {(rn, 0), (0, 0)} ∪ {(0, u) | wR+

n u}
W 1 := Wn ∪ {0, 1}
R1 := Rn ∪ {(rn, 0), (rn, 1), (0, 1), (1, 0)} ∪ {(k, u) | k ∈ {0, 1} and wR+

n u}
W 2 := Wn ∪ ω
R2 := Rn ∪ {(rn, k) | k ∈ ω} ∪ {(m, k) | m < k < ω} ∪ {(k, u) | k ∈ ω, wR+

n u}
In words, Fpoint

n,w is the frame Fn endowed with a re�exive point reachable from
the root, and which sees all the successors of w (as well as w itself). The frames
Fcycle
n,w and Fspine

n,w are constructed similarly, but with respectively a two-element
loop and an in�nite branch, instead of a re�exive point. The three frames are
depicted in Figure 1.

rn

w

FnFpoint
n,w

rn

w

FnFcycle
n,w

rn

w

FnFspine
n,w

Fig. 1. The frames Fpoint
n,w , F

cycle
n,w and Fspine

n,w

If some modal formula ψ de�nes the same class of spaces as θ ∨ νp.♦p, then
by construction ψ should be refuted at Fn, rn for all n, but not at Fspine

n,w , rn or

Fcycle
n,w , rn or Fpoint

n,w , rn since in all three of them there is an in�nite path starting
from the root. Yet we will prove that if n is big enough and ¬ψ is satis�able
on Fn, rn, then it is also satis�able on Fpoint

n,w , rn for some w, leading to a contra-
diction.5 The proof is rather technical, but we can sketch the main lines of our
strategy. First, it is clear that transferring the satis�ability of a diamond formula
(i.e., of the form ♦ϕ) or a Boolean formula from Fn, rn to Fpoint

n,w , rn is immediate,
so the challenge really comes from box formulas (of the form �ϕ). The central
argument is that since n may be arbitrarily large, we can select some Fn with an
arbitrarily long path. By means of a pigeonhole argument, we will then manage
to show that on some point w of this path, if �ϕ is satis�ed, then so is �+ϕ
(when �ϕ is any subformula of ¬ψ). Then, transferring the truth of �ϕ to the
re�exive point of Fpoint

n,w will be straightforward.
First, we recall that the negative normal form (or NNF for short) for modal

logic is the syntax generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ.

It is well known that for all modal formulas, there exists an equivalent formula
in NNF. We also introduce a notion of type of a possible world.

5 Later we will see that the same result with Fspine
n,w , rn and Fcycle

n,w , rn follows for free.
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De�nition 19. Let ϕ be a modal formula. We write ψ E ϕ whenever ψ is a
subformula of ϕ. We also call the box size |ϕ|� of ϕ the number of subformulas of
ϕ of the form �ψ. If M is a derivative model and w a world in M, we de�ne the
box type of w relative to ϕ as the set tϕM(w) := {�ψ | �ψ E ϕ and M, w � �ψ}.

As explained above, the following result allows to transfer the satis�ability
of box formulas as soon as the parameter n is large enough.

Claim 20. Let ϕ be a modal formula in NNF and n > 2|ϕ|� . Suppose that there

exists a valuation V over Fn such that Fn, V, rn � �ϕ. Then there exists a world

w ∈Wn and a valuation V ′ over Fpoint
n,w such that Fpoint

n,w , V
′, rn � �ϕ, and V and

V ′ coincide over Fn.

Proof. First, we know that Fn contains a path (wi)i∈[1,n] of length n. By con-

struction there are 2|ϕ|� di�erent box types relative to ϕ. Thus, by the pigeonhole
principle, there exists i, j ∈ N such that 1 ≤ i < j ≤ n and tϕM(wi) = tϕM(wj).
We then de�ne a valuation V ′ over Fpoint

n,wj by setting, for all p ∈ Prop:

V ′(p) :=

{
V (p) ∪ {0} if wj ∈ V (p)

V (p) otherwise
.

So V and V ′ coincide over Fn, and V
′ is de�ned over 0 so that this point satis�es

the same atomic propositions as wj . We then prove by induction on ψ E ϕ that
Fn, V, wj � ψ implies Fpoint

n,wj , V
′, 0 � ψ:

� If ψ is of the form ψ = p or ψ = ¬p with p ∈ Prop this is just true by
construction.

� If ψ is of the form ψ = ψ1∧ψ2, then Fn, V, wj � ψ1∧ψ2 implies Fn, V, wj � ψ1

and Fn, V, wj � ψ2 and it su�ces to apply the induction hypothesis. If ψ is
of the form ψ = ψ1 ∨ ψ2, then Fn, V, wj � ψ1 ∨ ψ2 implies Fn, V, wj � ψ1 or
Fn, V, wj � ψ2 and the result follows in the same way.

� Suppose that ψ is of the form ψ = ♦ψ0 and Fn, V, wj � ψ. Then since V
and V ′ coincide over Fn, we have Fpoint

n,wj , V
′, wj � ψ as well. By transitivity

it follows that Fpoint
n,wj , V

′, 0 � ψ.
� Suppose that ψ is of the form ψ = �ψ0 and that Fn, V, wj � ψ. Then since
tϕM(wi) = tϕM(wj), we have Fn, V, wi � ψ as well. Since wiRnwj it follows
Fn, V, wj � ψ0, and then Fpoint

n,wj , V
′, 0 � ψ0 by the induction hypothesis. Since

V and V ′ coincide over Fn we also have Fpoint
n,wj , V

′, wj � �+ψ0. All in all we

obtain Fpoint
n,wj , V

′, 0 � �ψ0 as desired.

Now observe that since wiRnwj we must have wj 6= rn, otherwise we would
obtain rnRnrn by transitivity. Thus rnRnwj and from Fn, V, rn � �ϕ we obtain
Fn, V, wj � ϕ, and then Fpoint

n,wj , V
′, 0 � ϕ. Since V and V ′ coincide over Fn, we

conclude that Fpoint
n,wj , V

′, rn � �ϕ. ut

We can then extend the result to any modal formula.
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Claim 21. Let ϕ be a modal formula. There exists n ∈ N such that if ϕ is

satis�able on Fn, rn, then there exists a world w ∈Wn such that ϕ is satis�able

on Fspine
n,w and Fcycle

n,w and Fpoint
n,w .

Proof. Applying the theorem of disjunctive normal form for propositional logic,
and using the fact that � and ∧ commute, we can assume that ϕ is of the form
ϕ =

∨m
i=1 σi with σi = ρi ∧ �ψi ∧

∧mi
j=1 ♦θi,j for all i ∈ [1,m], where ρi is a

propositional formula. Note that since �> is a tautology, we can always assume
the presence of �ψi. We also suppose that ψi is presented in NNF. We then
de�ne

n := 1 +max {2|ψi|� | 1 ≤ i ≤ m}

and assume that there exists a valuation V such that Fn, V, rn � ϕ. Then there
exists i ∈ [1,m] such that Fn, V, rn � σi. It follows that Fn, V, rn � �ψi with
n > 2|ψi|� , so by Claim 20 there exists w ∈ Wn and a valuation V ′ over Fpoint

n,w

such that Fpoint
n,w , V

′, rn � �ψi, and V and V ′ coincide over Fn. It is then clear

that Fpoint
n,w , V

′, rn � σi, and thus Fpoint
n,w , V

′, rn � ϕ.
This proves that ϕ is satis�able on Fpoint

n,w . Now consider the function f which
maps every n ∈ ω (resp. n ∈ {0, 1}) to 0, and every w ∈Wn to w itself. Then f

de�nes a bounded morphism from Fspine
n,F (resp. Fcycle

n,w ) to Fpoint
n,w , and we conclude

that ϕ is satis�able on Fspine
n,w and Fcycle

n,w . ut

We are now ready to prove Theorem 15:

Proof. Suppose toward a contradiction that there is a formula ψ ∈ L♦ de�ning
the same class as θ ∨ νp.♦p within Cirrefl ∩ CK4. Let n be the integer obtained by
applying Claim 21 to ¬ψ. By Claim 18, the frame Fn is irre�exive and transitive,
and we also have Fn 2 θ ∨ νp.♦p by assumption, so Fn 2 ψ as well.

Thus ¬ψ is satis�able on Fn, v for some v ∈ Wn. If v 6= rn, we denote by F
the subframe of Fn generated by v. Then F does not contain rn, for otherwise
we would have vRnrnRnv and thus vRnv, a contradiction. The assumption on
Fn yields F � θ, so F � θ ∨ νp.♦p and thus F � ψ. Therefore Fn, v � ψ, a
contradiction. We conclude that rn = v. Then by Claim 21 there exists w ∈Wn

such that ¬ψ is satis�able on Fspine
n,w . Yet Fspine

n,w ∈ Cirrefl∩CK4 and Fspine
n,w � θ∨νp.♦p,

so Fspine
n,w � ψ, a contradiction.
Now suppose that every Fn is �nite. By the same reasoning, we can show that

C(θ ∨ νp.♦p) is not modally de�nable within Cirrefl ∩ Cfin and CKripke ∩ Cfin ∩ CK4.
To that end it su�ces to replace Fspine

n,w by respectively Fcycle
n,w , which is irre�exive

and �nite, and Fpoint
n,w , which is transitive and �nite. ut

Theorem 15 remains a very general statement, and it is worth instantiating it
with examples. The following result shows the existence of in�nitely many non-
modally de�nable classes of spaces.

Proposition 22. Given m ∈ N we de�ne .2+m := (♦+�+q → �+♦+q) ∨ �m⊥
and IP.2+m := .2+m ∨ νp.♦p. Then the class of topological spaces X such that

X � IP.2+m is not modally de�nable. In addition, whenever m, k ≥ 1 and m 6= k
we have µwK4+ IP.2+m 6= µwK4+ IP.2+k .
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Proof. It su�ces to prove that the assumptions of Theorem 15 are satis�ed for
θ := .2+m. In ♦

+�+q → �+♦+q we recognize a variant of the axiom .2 [7], but
relative to the re�exive closure R+; we call it .2+, and this also explains the
name .2+m. Thus, given a frame F = (W,R) we have F � IP.2+m i� for all w ∈ W
one of the following holds:

� for all u, v ∈ W such that wR+u and wR+v, there exists t ∈ W such that
uR+t and vR+t;

� there exists no path of length m+ 1 starting from w;
� there exists an in�nite path starting from w.

Consider, for all n ∈ N, the frame Fmn := (Wm
n , R

m
n ) depicted in Figure 2. We

can see that the Fmn 's ful�l all the conditions of Theorem 15, so we are done
(see Remark 17 for why the result applies to topological spaces). Finally, if
1 ≤ m < k we can see that Fm−11 � IP.2+m whereas Fm−11 2 IP.2+k , and this
proves that µwK4+ IP.2+m 6= µwK4+ IP.2+k . ut

rmn

(0, 0)

(m, 0)

(0, 1)

(n, 1)

Fig. 2. The fork-like frame Fmn

In Section 5 we will analyze these axioms further to see that they are well-
behaved, but we �nd it appropriate to end this section by presenting an intuitive
topological interpretation of the axiom IP.2+0 , which reduces to .2

+∨νp.♦p. Given
a formula θ and a space X, we say that X is θ-imperfect if there exist two disjoint
subspaces Y and Z of X such that X = Y ∪ Z, Y � θ and Z is dense-in-itself.

Proposition 23. Let θ ∈ Lµ and X a topological space. Then X � θ ∨ νp.♦p if

and only X is θ-imperfect.

Proof. From left to right, assume that X � θ ∨ νp.♦p. We set Z := {x ∈ X |
X,x � νp.♦p} and Y := X \ Z. The �xed point equation immediately gives
Z = d(Z), so Z is dense-in-itself. From d(Z) ⊆ Z we also obtain that Z is
closed and Y is open. Now, let x ∈ Y and V be a valuation over Y . We have
X,V, x � θ ∨ νp.♦p and by construction X,V, x 2 νp.♦p, so X,V, x � θ. Since Y
is open we obtain Y, V, x � θ. Therefore Y � θ.
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From right to left, suppose that such a decomposition X = Y ∪ Z exists.
Let x ∈ X and V be a valuation over X. Suppose that x ∈ Z. Since Z is
dense-in-itself we have Z ⊆ d(Z) = J♦pKX,V [p:=Z] so Z ⊆ Jνp.♦pKX,V . Therefore
X,V, x � νp.♦p. Otherwise, we have x ∈ Y . If x /∈ Int(Y ), then x ∈ Cl(Z)
and since x /∈ Z it follows that x ∈ d(Z). We have seen that X,V, z � νp.♦p
for all z ∈ Z, so X,V, x � ♦νp.♦p, and then the �xed point equation gives
X,V, x � νp.♦p. Otherwise we have x ∈ Int(Y ). Since Y � θ and Int(Y ) is open
in Y , we have Int(Y ) � θ. Then Int(Y ), V, x � θ and since Int(Y ) is open, we
�nally get X,V, x � θ. In all cases we obtain X,V, x � θ ∨ νp.♦p as desired. ut

Remark 24. By inspection of the proof for the left-to-right implication, we can
also assume that Y is scattered and Z is perfect (i.e., closed and dense-in-itself).

In our example, the axiom .2+ is known to de�ne the class of extremally discon-
nected spaces [4] (see De�nition 9). We thus obtain the following result:

Corollary 25. The class of spaces that can be written as the disjoint union of an

extremally disconnected subspace and a perfect subspace is not modally de�nable.

4 Completeness for imperfect spaces

We have shown that there are µ-de�nable classes that are not modally de�nable,
including in�nitely many classes of imperfect spaces. We can make these exam-
ples even stronger by showing that the logics we have exhibited are complete for
these classes. To this end, we construct the canonical model and use the tech-
nique of the �nal model applied by Fine and Zakharyashev to modal logic (see
[5,7]) and by Baltag et al. [3] to the µ-calculus. Central will be the notion of
co�nal subframe logic.

De�nition 26. Let F = (W,R) be a Kripke frame. A subframe F′ = (W ′, R′)
of F is called a co�nal subframe of F if w′ ∈W ′ and w′Rw implies the existence
of u′ ∈W ′ such that wR+u′. Given M based on F and M′ a submodel of M, we
call M′ a co�nal submodel of M if it is based on a co�nal subframe F′ of F.

De�nition 27. Let L be an extension of K. The logic L is called co�nal sub-

frame if whenever F � L and F′ is a co�nal subframe of F, we have F′ � L.

De�nition 28. Let L be an extension of K. The canonical model of L is the
model M := (Ω,R, V ) with:

� Ω the set of maximal L-consistent subsets of L♦;
� R := {(Γ,∆) | �ϕ ∈ Γ =⇒ ϕ ∈ ∆};
� V (p) := {Γ ∈ Ω | p ∈ Γ} for all p ∈ Prop.

The so-called Truth Lemma then establishes an equivalence between truth and
membership at the worlds of M, i.e., M, Γ � ϕ if and only if ϕ ∈ Γ . Combined
with the Lindenbaum's Lemma, this yields completeness of L with respect to
its canonical model [6, sec. 4.2]. If L is an extension of µwK4, the canonical
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model is de�ned in the same way, but the Truth Lemma then fails to hold. The
technique designed in [3] consists in restricting oneself to an appropriate co�nal
submodel of M. First, given a L-consistent formula ψ, one can construct a �nite
set of formulas Σ containing ψ, closed under subformulas, and closed (up to
logical equivalence in L) under negation and ♦+. We then de�ne the so-called
Σ-�nal model as follows.

De�nition 29. A world Γ ∈ Ω is called Σ-�nal if there exists ϕ ∈ Σ ∩ Γ such
that whenever ΓR∆ and ϕ ∈ ∆, we have ∆RΓ . The Σ-�nal model is then the
submodel MΣ of M induced by ΩΣ := {Γ ∈ Ω | Γ is Σ-�nal}.

Under the right assumptions it can be proven that (1) MΣ is a co�nal submodel
of M, (2) ψ belongs to some Σ-�nal world, (3) the Truth Lemma holds in MΣ

for the formulas in Σ. This yields Kripke completeness of µwK4 and, in fact, of
any logic of the form µwK4+ θ where θ ∈ L♦ and wK4+ θ is a canonical and
co�nal subframe logic. Note that this result is limited to extensions of µwK4
with basic modal axioms. This is to be contrasted with the work of the present
section, which o�ers completeness results for axioms with �xed points. First, we
need a technical lemma.

Lemma 30. If µwK4+ θ ` ϕ, then µwK4+ (θ ∨ νp.♦p) ` ϕ ∨ νp.♦p.

Proof. We write L0 := µwK4 + θ and L := µwK4 + (θ ∨ νp.♦p). We proceed
by induction on the length of a proof.

� If ϕ is an axiom of µwK4 or θ itself, then this is clear.
� Suppose that this holds for ϕ, and that L0 ` ϕ[ψ1, . . . , ψn/p1, . . . , pn] is
obtained from L0 ` ϕ. By the induction hypothesis we have L ` ϕ ∨ νp.♦p
and by substitution it follows that L ` ϕ[ψ1, . . . , ψn/p1, . . . , pn] ∨ νp.♦p.

� Suppose that this holds for ϕ and ϕ→ ψ, and that L0 ` ψ is obtained from
L0 ` ϕ and L0 ` ϕ→ ψ. By the induction hypothesis we have L ` ϕ∨νp.♦p
and L ` (ϕ→ ψ) ∨ νp.♦p, and we deduce L ` ψ ∨ νp.♦p.

� Suppose that this holds for ϕ, and that L0 ` �ϕ is obtained from L0 ` ϕ.
By the induction hypothesis we have L ` ϕ∨νp.♦p, and by necessitation we
obtain L ` �(ϕ∨νp.♦p) or equivalently L ` �(¬νp.♦p→ ϕ). By distribution
we obtain L ` �¬νp.♦p→ �ϕ, and the implication ¬νp.♦p→ �¬νp.♦p can
also be derived in µwK4. Therefore L ` ¬νp.♦p → �ϕ, or equivalently
L ` �ϕ ∨ νp.♦p.

� Suppose that this holds for ϕ→ ψ[ϕ/p] and that L0 ` ϕ→ νp.ψ is obtained
from L0 ` ϕ→ ψ[ϕ/p]. By the induction hypothesis we have

L ` νp.♦p ∨ (ϕ→ ψ[ϕ/p])

and we prove that

µwK4 ` ψ[ϕ/p] ∧ ¬νp.♦p→ ψ[ϕ ∧ ¬νp.♦p/p].

Indeed, consider a wK4 frame M rooted in w and assume that M, w �
ψ[ϕ/p] ∧ ¬νp.♦p. From � ¬νp.♦p → �¬νp.♦p we obtain M � ¬νp.♦p, so
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M � ϕ↔ (ϕ∧¬νp.♦p) and thus M � ψ[ϕ/p]↔ ψ[ϕ∧¬νp.♦p/p]. Therefore
M, w � ψ[ϕ ∧ ¬νp.♦p/p] and the result follows by Theorem 13. We then
obtain

L ` ϕ ∧ ¬νp.♦p→ ψ[ϕ ∧ ¬νp.♦p/p]

and by the induction rule we derive L ` ϕ∧¬νp.♦p→ νp.ψ, or equivalently
L ` νp.♦p ∨ (ϕ→ νp.ψ).

ut

Theorem 31. Let θ be a modal formula such that wK4+ θ is co�nal subframe

and canonical. Then µwK4+ θ ∨ νp.♦p is Kripke complete.

Proof. We write L := µwK4 + θ ∨ νp.♦p and L0 := µwK4 + θ. Suppose that
L 0 ¬ψ and let Σ be a �nite set of formulas containing ψ and νp.♦p, and with
the closure properties enumerated above. We introduce:

� M = (Ω,R, V ) the canonical model of L, based on F = (Ω,R);

� MΣ = (ΩΣ , RΣ , VΣ) the Σ-�nal submodel of M, based on FΣ = (ΩΣ , RΣ);

� M0 = (Ω0, R0, V0) the canonical model of L0, based on F0 = (Ω0, R0).

See Figure 3 for a visual depiction of these frames. We know that FΣ is a co�nal
subframe of F. In addition we have L ⊆ L0, so for all maximal consistent sets
Γ such that L0 ⊆ Γ we also have L ⊆ Γ ; it is also clear that R and R0 coincide
over Ω0, so F0 is a subframe of F. We then introduce

Ω′ := {Γ ∈ ΩΣ |MΣ , Γ � ¬νp.♦p}

which induces a generated subframe F′ = (Ω′, R′) of F. Indeed, if Γ ∈ Ω′

and ΓR+
Σ∆, then since MΣ , Γ � ¬νp.♦p we have MΣ , ∆ � ¬νp.♦p too and

thus ∆ ∈ Ω′. Also, given Γ ∈ Ω′ we have MΣ , Γ � ¬νp.♦p, and we obtain
¬νp.♦p ∈ Γ by the Truth Lemma. If L0 ` ϕ, then L ` ϕ ∨ νp.♦p by Lemma 30,
and from ϕ ∨ νp.♦p ∈ Γ and ¬νp.♦p ∈ Γ we deduce ϕ ∈ Γ . Therefore L0 ⊆ Γ ,
and we obtain Γ ∈ Ω0. This proves that F

′ is a subframe of F0.

Now, suppose Γ ∈ Ω′, ∆ ∈ Ω0 and ΓR∆. Since FΣ is co�nal in F, there
exists Λ ∈ ΩΣ such that ∆R+Λ. By weak transitivity it follows that ΓR+Λ, and
since F′ is a generated subframe of FΣ it follows that Λ ∈ Ω′. Therefore F′ is
a co�nal subframe of F0. As observed in [3], that wK4+ θ is canonical implies
that µwK4+θ is canonical too, so F0 � θ. Since L0 is co�nal subframe it follows
that F′ � θ as well.

Now let V• be a valuation over ΩΣ and Γ ∈ ΩΣ . If Γ ∈ Ω′, let (Ω′, R′, V ′•) be
the submodel of (ΩΣ , RΣ , V•) induced by Ω′. We know that (Ω′, R′, V ′•), Γ � θ,
and since F′ is a generated subframe of FΣ , it follows that (ΩΣ , RΣ , V•), Γ � θ.
Otherwise we have MΣ , Γ � νp.♦p, but since νp.♦p contains no free variable, its
truth value does not depend on the valuation VΣ , and thus (ΩΣ , RΣ , V•), Γ �
νp.♦p. Therefore FΣ � θ ∨ νp.♦p. As mentioned earlier, ψ is satis�able on MΣ

and this proves Kripke completeness. ut
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F

FΣ F0
F′

Fig. 3. The canonical frame of L and its subframes

In order to prove topological completeness, we apply the technique used in [3]
to turn a wK4 frame into an appropriate topological space. The construction
essentially consists of replacing every re�exive point w of a frame by countably
many copies of w, and to arrange them all into a dense-in-itself subspace, so as
to mimic the re�exivity of w in a topological manner.

De�nition 32. Let F = (W,R) be a wK4 frame. We denote by W r the set
of re�exive worlds of F, and by W i the set of irre�exive worlds of F. We then
introduce the unfolding of F as the space XF := (W r×ω)∪ (W i×{ω}) endowed
with the topology τF of all sets U such that for all (w,α) ∈ U :

1. there exists nUw,α < ω such that for all (u, β) ∈ XF, if wRu, uRw and

β ≥ nUw,α then (u, β) ∈ U ;
2. if (u, β) ∈ XF, wRu and not uRw then (u, β) ∈ U .

Proposition 33 ([3]). The pair (XF, τF) is a topological space and the map

π : XF →W de�ned by π(w,α) := w is a surjective d-morphism.

Theorem 34. Let θ be a modal formula such that wK4+ θ is co�nal subframe

and canonical. Then µwK4+ θ ∨ νp.♦p is topologically complete.

Proof. Suppose that ψ is consistent in µwK4+θ∨νp.♦p. We keep the notations
of the proof of Theorem 31. We introduce the spaces X := XFΣ , Y := π−1[Ω′]
and Z := X \Y . We prove that Y and Z satisfy the conditions of Proposition 23.
First, we know that F′ is a generated subframe of FΣ , so Ω

′ is open, and thus
so is π−1[Ω′] = Y . In addition, since F′ � ¬νp.♦p, the frame F′ is irre�exive, so
Y = Ω′ × {ω} and π|Y is injective. Since π is a d-morphism, the maps π and
π−1 are continuous, and since Y is open, so are π|Y and π|Y

−1. Therefore π|Y
is a homeomorphism between Y and F′. From F′ � θ and Proposition 11, we
conclude that Y � θ.

We then prove that Z is dense-in-itself. Let (Γ, α) ∈ Z and U be an open
neighbourhood of (Γ, α). From (Γ, α) ∈ Z we know that Γ /∈ Ω′, that is,MΣ , Γ �
νp.♦p. If α 6= ω, then Γ is re�exive. We select some β ≥ nUw,α such that β 6=
α, and by de�nition of nUw,α we obtain (Γ, β) ∈ U . We also have (Γ, β) ∈ Z.
Otherwise we have α = ω, and then Γ is irre�exive. From this and MΣ , Γ �
νp.♦p we obtain the existence of ∆ 6= Γ such that ΓR∆ and MΣ , ∆ � νp.♦p. We
set β := nUw,α if ∆ is re�exive, and β := ω otherwise; we then have (∆,β) ∈ Z by
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de�nition. Depending on whether ∆RΓ or not, we apply either item 1 or item 2
of De�nition 32, and in both cases we obtain (∆,β) ∈ U . Both cases bring the
existence of some element in U ∩ Z di�erent from (Γ, α), and we are done.

It follows that X � θ∨νp.♦p. We know that ψ is satis�able on FΣ , and since
π is a d-morphism it follows by Proposition 5 that ψ is satis�able on X as well.
This concludes the proof. ut

In the following corollary, we �nally apply these results to our examples.

Corollary 35. For all m ∈ N, the logic µwK4+ IP.2+m is Kripke and topologi-

cally complete.

Proof. Since (♦♦p→ p∨♦p)∧ .2+m is a Sahlqvist formula, the logic L0 := wK4+
.2+m is canonical [6, sec. 4.3]. In order to apply Theorem 31 and Theorem 34 we
prove that L0 is co�nal subframe. Let F = (W,R) be a wK4 frame such that
F � L0, and let F′ = (W ′, R′) be a co�nal subframe of F′.

Let w ∈ W ′. First, suppose that F, w � .2+. Then if wR+u and wR+v with
u, v ∈ W ′, we have by assumption uR+t and vR+t for some t ∈ W . Then since
F′ is co�nal in F we have tR+t′ for some t′ ∈ W ′, and thus uR+t′ and vR+t′.
This proves that F′, w � .2+. Otherwise there exists a valuation V such that
F, V, w 2 .2+, and since F, V, w � .2+m it follows that F, V, w � �m⊥. From this
we deduce F′, w � �m⊥. In both cases we obtain F′, w � .2+m. Therefore F′ � L0

and this proves the claim. ut

5 Conclusion

We have established some fundamental results regarding the expressivity of the
topological µ-calculus as opposed to basic modal logic. We have shown that
the latter is indeed more expressive axiomatically than the former, a fact that
was surprisingly di�cult to prove. Accordingly, the examples we have exhibited
are optimal in the sense that they involve topologically complete logics, which
we have argued correspond to natural classes of spaces. In particular, they are
related to the perfect core of a space, equivalent to the unary version of the
tangled derivative, perhaps the most fundamental topological �xed point. This
suggests that we are only scratching the surface of the jungle of spatial µ-logics,
and their classi�cation could be a bold new direction in the study of topological
modal logics.
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