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1 Introduction

The modal p-calculus is a logic that allows definition of operators through fixpoint equations, and praised
for its high expressiveness. More precisely, Janin and Walukiewicz [JW96] proved that the p-calculus
is exactly the bisimulation-closed fragment of Monadic Second Order Logic (or MSO): any formula of
MSO that can not discriminate bisimilar transitions systems, can be translated in the p-calculus.

The standard notion of bisimulation admits several variants, including weak bisimulation [Mil89].
We have identified the weak bisimulation-closed fragment of MSO, which appears to be a variant of
the p-calculus that we call the weak p-calculus. In section 2, we introduce notations and recall some
standard results. In section 3, we prove that the weak p-calculus is indeed embedded into MSO, an easy
but necessary step. In section 4, we introduce T-equivalence between states and show that it implies
logical equivalence with respect to the weak p-calculus. In section 5, we define the closure of a transition
system, which is similar to the construction used to eliminate e-transitions in automata. This powerful
tool allows us to show that the weak p-calculus is closed under weak bisimulation. In section 6, we prove
the final result as follows: given a weak bisimulation-closed class C of transition systems, we apply Janin
and Walukiewicz’s theorem, before tweaking the resulting formula of the u-calculus into a formula of the
weak p-calculus; we then show that this new formula defines C.

2 Background

For everything below we consider A a set of actions, 7 € A and Prop a set of atomic propositions.

2.1 Transition systems
Definition. A transition system is a tuple M = (S, s0, (a™)aen, (P™)peprop) Where:
e Sis a set of states;
e sy € S is an nitial state;
e for every a € A, a’™ is a binary relation over S;
e for every p € Prop, p™ is a subset of S.

Given two states s and ¢, s <> o t holds for (s,t) € a™. This notation can be extended to any regular
expression e: we write s >, t whenever there exists a word a; ...a, € £(e) and some states (t;); efo.n]
such that to = t, t, =t and for all i € [1,n — 1], t; < ¢ t;11. Intuitively, s o t means that action a
performs a transition from state s to state ¢, while s € p™ means that property p is true at state s.



2.2 Bisimulations

The notion of bisimulation between two transition systems is meant to express the property of behaving
in the same way.

Definition. A bisimulation between two transition systems M and M’ is a relation R C S x S’ such
that for every (s,s’) € H:

e Vp € Prop,s € pM «— ¢ € pM’;
e forallac Aandtc S, if s t, then there exists ¢’ € S’ such that (£,#) € R and s’ Lo t/;
e forallac Aand t’' € S,if s % ¢ t/, then there exists t € S such that (¢,#') € 9t and s = .

If (s,s") € R then we write M, s & M',s". If (sg, s;) € R then we write M < M’ and in this case
M and M’ are said to be bisimilar.

Weak bisimulation is a variant where 7-transitions are considered to be invisible to an external
observer.

Definition. A weak bisimulation between two transition systems M and M’ is a relation R C S x S’
such that for every (s,s’) € R:

e for all p € Prop and t € pM., if s T t, then there exists ¢’ € p™’ such that s’ T t';
o forall t € S, if s —— 4 t, then there exists ¢’ € S’ such that (t,¢) € R and s’ = t';

e forallac A\{r} andt € S, if s ﬂ)M t, then there exists ¢’ € S’ such that (¢,t') € R and
; Tat”

s ——— i
e for all p € Prop and ¢’ € pM', if s’ T ¢ ¢/, then there exists t € p™ such that s = t;
e forall ' € §', if s’ T o t', then there exists ¢ € S such that (¢,#') € B and s —  t;

e foralla e A\ {r}and t' € &, if & ﬂ>Mf t’, then there exists ¢ € S such that (¢,t') € R and

T ar™*

§ ——m T

If (s,s") € R then we write M,s <, M’ s'. If (so,s() € R then we write M < M’ and in this
case M and M’ are said to be weakly bisimilar.

Note that < and <> are both equivalence relations, and that any bisimulation is also a weak
bisimulation.

2.3 Logics over transition systems

Here we recall the syntax of MSO and the p-calculus, but we do not expand on their semantics since
it is well known. We also introduce a variant of the p-calculus named the weak p-calculus. We fix a
countable set Var of variables.

Definition. The syntax of MSO is defined as follows:
p=r(X)[p(X)[a(X.Y)| X CY |~¢]pNd|IX.H(X)
Definition. The set £,, of the formulas of the p-calculus is defined as follows:
¢=plX|oANG| 0| (a)¢|pnX.d
where in every formula of the form pX.¢, the variable X only appears under an even number a negations.

Given a transition system M and a valuation V : Var — P(S), we denote by [¢]*V C S the
extension of ¢ in M. We M,V, s F ¢ whenever s € [¢]*V. If ¢ has no free variable, we simply write
M,s E ¢. In case s = sp we simply write M,V E ¢. If V is a valuation, X € Var and B C 5, the
valuation V[B/X] is defined by:



e V[B/X|(X)=RB
e VIB/X|(Y)=V(Y)forallY # X
We also recall well known properties of the u-calculus [BvBWO06]:

Proposition 1. MSO is more expressive than the p-calculus, i.e. every formula of £, is equivalent to
some formula of MSO.

Proposition 2. The p-calculus is bisimulation-closed, i.e. for any close formula ¢ € £,,, if M F ¢ and
M = M’ then M’ E ¢.

Just like a weak bisimulation is a bisimulation where 7-transitions are counted for free, the weak
p-calculus is the u-calculus without the ability to talk about 7-successors:

Definition. The set £}, of the formulas of the weak p-calculus is defined as follows:

Y=p" [ XT YN[ | (TRam)P | (7)Y [ uX 9

where a # 7 and, as above, X appears under an even number a negations in every formula of the form
nX.4p. To avoid misunderstanding when dealing with those two versions of the p-calculus, ¢ will always
denote a formula of £,,, while ¢ will always denote a formula of £],. The semantics for those new formulas
is the following:

o TIMY = {seS|FepM, s Topt}
o [XTIMV ={seS|IHeV(X), s ot}
o [(FUIMY = {s€ 5|3t e [WIMY, s Tou )

o [(Frar ) MY = {s € S |3t € []MY, s T 1}

2.4 Classes of models

Let ¢ be a close MSO formula. We denote by mod(¢) = {M transition system | M E ¢} the class of all
models of ¢. Let C be a class of transition systems. Given a logic £, C is said to be L-definable if there
exists a close formula ¢ € £ such that mod(¢) = C. Moreover, C is said to be closed under bisimulation
(respectively closed under weak bisimulation) if M € C and M < M’ (respectively M «_ M) implies
M’ € C. The theorem attributed to Janin and Walukiewicz [JW96] we mentioned in the introduction is
the following;:

Theorem 1. Every MSO-definable and bisimulation-closed class is £,,-definable.

3 Matters of expressivity

The first step is to show that MSO is more expressive than the weak p-calculus, and that the weak
p-calculus is closed under bisimulation.

Proposition 3. The p-calculus is more expressive than the weak p-calculus.
Proof. We define tr: £, — £, by induction:

o tr(p”) = uX.(p v (1) X)

(
tr(X7) = pY.(X V (1)Y)
tr((r)¢) = pX.((NX Vtr(4))
(
(

(]
o tr((a)7) = pX.((T) X V (@)Y (tr(¥) V (1)Y))
tr(—ep) = —tr(v)



o tr(Y AY') = tr(y) Atr(y)
o tr(uX.4)) = uX.tr(y)

It is then clear that tr(y) =+ for all ¢ € L], O
From proposition 1, proposition 2 and proposition 3 we derive the following results:

Corollary 1. Every formula of £], is equivalent to some formula of MSO.

Corollary 2. The weak p-calculus is closed under bisimulation.

4 The relation of T-equivalence

In this section we define the relation of 7-equivalence between states: two states are T-equivalent if one
can be reached from another through a sequence of 7-transitions. We then prove lemma 1, a crucial
result that we will use extensively, and which states that 7-equivalent states satisfy the same formulas
of the weak p-calculus.

Definition. Let M be a transition system. The equivalence relation ~. is defined by

S~y t = sT—>Mt A tT—>Ms
for all s,t € S.

Lemma 1. Assume that s ~. t. Then for all close formula ¢ € L], we have M, s I 1 if and only if
Mt E .

Proof. We proceed by induction on 3. The only non-trivial case is for formulas of the form pX.1.
So assume that H(¢) and let V be a valuation. Assume that M,V,s E uX.¢) and let B* be the
smallest fixpoint of B + []MVIB/X] We have s € B* = []MVIB/X] 50 M,V[B*/X],s E 1, so
M,V [B*/X],t E 1 as well according to H(¢). Consequently ¢ € B* and M,V t E uX.4). The proof of
the other implication is similar. O

5 7-closures

Here we define the 7-closure of a transition system M. For any s € S, we write 5 = {t € S | s i),\,l t}.
For any B C S, we write B = {5 | s € S}. For any V : Var — P(S), we write V : X — V(X).

Definition. The 7-closure of a transition system M is the system M = (3,3, (a™™)

where:

a€As (pM);DGProp)

o forallac A\ {r}, a™ = {GDHES |s s t};

o« M (G eS| s Tont)

e for all p € Prop, pM = {5€8|3tepM s i>M t}.
Note that a™ and pH are well defined, as they do not depend on the representative of any element of S.
Proposition 4. Let M be a transition system. Then M < M.
Proof. It suffices to point out that R = {(s,5) | s € S} is a weak bisimulation. O
Proposition 5. If M <_ M’ then M < M.

Proof. Suppose R is a bisimulation between M and M’ such that (so,s;) € R. One can see that
R={(5¢)] (s,8) € R} is a weak bisimulation relating 55 to sj. O

Lemma 2. Let ¢ € £}, and M a transition system. Then M E ¢ if and and only if M F ¢.



Proof. We proceed by induction on 1. Again, we only consider the case pX.1.

o Assume that M, Vs pX.¢) and let B* be the smallest fixpoint of F: B [[1/1]]ﬂ [Bz)i
Writing B’ = {t € S | t € B*} it is clear that B* = B’, and also that V[B*/X] = V[B'/X] =
V[B’/X]. We now show that B’ is the smallest fixpoint of F' : B s [y]MVIB/X],

— We have
M, VIB'/X|,tEY <= M,V[B'/X],TF by the induction hypothesis
— tec B because B’ is a fixpoint of F
<~ te B

which means that F(B’) = B’

— Let B bet an other fixpoint of F. To show that B’ C B”, we first prove that B” is a fixpoint
of F. Ift € F(B”) then t € F(B") by the induction hypothesis, so t € B” by assumption,
which means that t € B”.

Conversely, if £ € B”, then there exists v € B’ such that £ = w. Then u € F(B"), so
t € F(B") as well thanks to lemma 1. Consequently we have £ € F(B”) by the induction
hypothesis.

Since B’ is the smallest fixpoint of F, we get B’ C B” and we now prove that it implies
B' C B". Let t € B'. We have t € B” by assumption, so there exists u € B” such that £ = u.
Using lemma 1 again, we deduce from u € F(B”) that t € F(B") as well, which means that
te B".

Now the conclusion comes easily: by assumption we have s € B’, and therefore 5 € B’ = B* which
means that M,V ,s5FE uX..

e Conversely, assume M,V ,5 F uX.1). We only give the proof scheme which is very similar to the
previous one (here again lemma 1 is very useful). Let B* be the smallest fixpoint of . We show
that B* is the smallest fixpoint of F.

— We check that F(B*) = B*.

— Given a fixpoint B’ of F, let B” = {s € S | 5 € B’} so that B’ = B”. Again we show that
B is a fixpoint of F, which implies B* C B”. From this we obtain B* C B” = B’.

Consequently 5 € B* by assumption and lemma 1 yields s € B*, which means that M, V, s F uX.1.
O
We can now assert the following:

Theorem 2. L; is closed under weak bisimulation.

Proof. Let ¢ € £], and assume M F ¢ and M >, M'’. By lemma 2 we get M E 1). By proposition 5 we
also have M <> M’. Therefore corollary 2 yields M’ F ¢. By lemma 2 again we finally get M’ F . O

6 Formula weakening

As mentioned in the introduction, we now introduce a way to weaken a formula of the p-calculus into a
formula of the weak p-calculus. This operation presents some desirable properties regarding the 7-closure,
and will allow us to derive theorem 3 from theorem 1 in a quite straightforward way.

Definition. The application f : £, — L7, is defined as follows:
o flp)=p"
o f(X)=XT
o f((T)9) = (7")f(9)



fla)¢) = (T7a™) f(¢) for all a € A\ {7}

f(=0) =—f(9)

flong') = f(o) A f(d)

f(uX.¢) = pX.f(0)

Lemma 3. Let M be a transition system and ¢ € £,,. Then M E ¢ if and only if M E f(¢).

Proof. It is not difficult to prove by induction on ¢ that for all valuation V' : Var — P(9), for all 5 € S,
we have M, V.35 F ¢ if and only if M,V,5E f(¢). O

From lemma 2 and lemma 3 we get the following corollary:

Corollary 3. Let M be a transition system and ¢ € £,,. Then M E ¢ if and only if M E f(¢).
We are now ready to prove our final theorem:

Theorem 3. Every MSO-definable and weak bisimulation-closed class is £ -definable.

Proof. Let C be a MSO-definable, weak bisimulation-closed class. Then C is bisimulation-closed as well
and from theorem 1 there exists ¢ € £, such that C = mod(¢). We show that C = mod(f(¢)):

ME f(¢) <= ME¢ by corollary 3
< Me(C by assumption on ¢
< MeC because proposition 4 yields M «_ M
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