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1 Introduction

The modal µ-calculus is a logic that allows de�nition of operators through �xpoint equations, and praised
for its high expressiveness. More precisely, Janin and Walukiewicz [JW96] proved that the µ-calculus
is exactly the bisimulation-closed fragment of Monadic Second Order Logic (or MSO): any formula of
MSO that can not discriminate bisimilar transitions systems, can be translated in the µ-calculus.

The standard notion of bisimulation admits several variants, including weak bisimulation [Mil89].
We have identi�ed the weak bisimulation-closed fragment of MSO, which appears to be a variant of
the µ-calculus that we call the weak µ-calculus. In section 2, we introduce notations and recall some
standard results. In section 3, we prove that the weak µ-calculus is indeed embedded into MSO, an easy
but necessary step. In section 4, we introduce τ -equivalence between states and show that it implies
logical equivalence with respect to the weak µ-calculus. In section 5, we de�ne the closure of a transition
system, which is similar to the construction used to eliminate ε-transitions in automata. This powerful
tool allows us to show that the weak µ-calculus is closed under weak bisimulation. In section 6, we prove
the �nal result as follows: given a weak bisimulation-closed class C of transition systems, we apply Janin
and Walukiewicz's theorem, before tweaking the resulting formula of the µ-calculus into a formula of the
weak µ-calculus; we then show that this new formula de�nes C.

2 Background

For everything below we consider A a set of actions, τ ∈ A and Prop a set of atomic propositions.

2.1 Transition systems

De�nition. A transition system is a tupleM = (S, s0, (a
M)a∈A, (p

M)p∈Prop) where:

� S is a set of states;

� s0 ∈ S is an initial state;

� for every a ∈ A, aM is a binary relation over S;

� for every p ∈ Prop, pM is a subset of S.

Given two states s and t, s
a−→M t holds for (s, t) ∈ aM. This notation can be extended to any regular

expression e: we write s
e−→M t whenever there exists a word a1 . . . an ∈ L(e) and some states (ti)i ∈[[0,n]]

such that t0 = t, tn = t and for all i ∈ [[1, n− 1]], ti
ai−→M ti+1. Intuitively, s

a−→M t means that action a
performs a transition from state s to state t, while s ∈ pM means that property p is true at state s.
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2.2 Bisimulations

The notion of bisimulation between two transition systems is meant to express the property of behaving
in the same way.

De�nition. A bisimulation between two transition systems M and M′ is a relation R ⊆ S × S′ such
that for every (s, s′) ∈ R:

� ∀p ∈ Prop, s ∈ pM ⇐⇒ s′ ∈ pM′ ;

� for all a ∈ A and t ∈ S, if s a−→M t, then there exists t′ ∈ S′ such that (t, t′) ∈ R and s′
a−→M′ t′;

� for all a ∈ A and t′ ∈ S, if s′ a−→M′ t′, then there exists t ∈ S such that (t, t′) ∈ R and s
a−→M t.

If (s, s′) ∈ R then we writeM, s ↔ M′, s′. If (s0, s′0) ∈ R then we writeM ↔M′ and in this case
M andM′ are said to be bisimilar.

Weak bisimulation is a variant where τ -transitions are considered to be invisible to an external
observer.

De�nition. A weak bisimulation between two transition systemsM andM′ is a relation R ⊆ S × S′
such that for every (s, s′) ∈ R:

� for all p ∈ Prop and t ∈ pM, if s
τ∗−→M t, then there exists t′ ∈ pM′ such that s′

τ∗−→M′ t′;

� for all t ∈ S, if s τ∗−→M t, then there exists t′ ∈ S′ such that (t, t′) ∈ R and s′
τ∗−→M′ t′;

� for all a ∈ A \ {τ} and t ∈ S, if s τ∗aτ∗−−−−→M t, then there exists t′ ∈ S′ such that (t, t′) ∈ R and

s′
τ∗aτ∗−−−−→M′ t′;

� for all p ∈ Prop and t′ ∈ pM′ , if s′ τ
∗

−→M′ t′, then there exists t ∈ pM such that s
τ∗−→M t;

� for all t′ ∈ S′, if s′ τ
∗

−→M′ t′, then there exists t ∈ S such that (t, t′) ∈ R and s
τ∗−→M t;

� for all a ∈ A \ {τ} and t′ ∈ S′, if s′ τ
∗aτ∗−−−−→M′ t′, then there exists t ∈ S such that (t, t′) ∈ R and

s
τ∗aτ∗−−−−→M t;

If (s, s′) ∈ R then we write M, s ↔τ M′, s′. If (s0, s
′
0) ∈ R then we write M ↔τ M′ and in this

caseM andM′ are said to be weakly bisimilar.

Note that ↔ and ↔τ are both equivalence relations, and that any bisimulation is also a weak
bisimulation.

2.3 Logics over transition systems

Here we recall the syntax of MSO and the µ-calculus, but we do not expand on their semantics since
it is well known. We also introduce a variant of the µ-calculus named the weak µ-calculus. We �x a
countable set Var of variables.

De�nition. The syntax of MSO is de�ned as follows:

φ = r(X) | p(X) | a(X,Y ) | X ⊆ Y | ¬φ | φ ∧ φ | ∃X.φ(X)

De�nition. The set Lµ of the formulas of the µ-calculus is de�ned as follows:

φ = p | X | φ ∧ φ | ¬φ | 〈a〉φ | µX.φ

where in every formula of the form µX.φ, the variable X only appears under an even number a negations.

Given a transition system M and a valuation V : Var → P(S), we denote by [[φ]]M,V ⊆ S the
extension of φ inM. WeM, V, s � φ whenever s ∈ [[φ]]M,V . If φ has no free variable, we simply write
M, s � φ. In case s = s0 we simply write M, V � φ. If V is a valuation, X ∈ Var and B ⊆ S, the
valuation V [B/X] is de�ned by:
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� V [B/X](X) = B

� V [B/X](Y ) = V (Y ) for all Y 6= X

We also recall well known properties of the µ-calculus [BvBW06]:

Proposition 1. MSO is more expressive than the µ-calculus, i.e. every formula of Lµ is equivalent to
some formula of MSO.

Proposition 2. The µ-calculus is bisimulation-closed, i.e. for any close formula φ ∈ Lµ, ifM � φ and
M ↔M′ thenM′ � φ.

Just like a weak bisimulation is a bisimulation where τ -transitions are counted for free, the weak
µ-calculus is the µ-calculus without the ability to talk about τ -successors:

De�nition. The set Lτµ of the formulas of the weak µ-calculus is de�ned as follows:

ψ = pτ | Xτ | ψ ∧ ψ | ¬ψ | 〈τ∗aτ∗〉ψ | 〈τ∗〉ψ | µX.ψ

where a 6= τ and, as above, X appears under an even number a negations in every formula of the form
µX.ψ. To avoid misunderstanding when dealing with those two versions of the µ-calculus, φ will always
denote a formula of Lµ, while ψ will always denote a formula of Lτµ. The semantics for those new formulas
is the following:

� [[pτ ]]M,V = {s ∈ S | ∃t ∈ pM, s τ∗−→M t}

� [[Xτ ]]M,V = {s ∈ S | ∃t ∈ V (X), s
τ∗−→M t}

� [[〈τ∗〉ψ]]M,V = {s ∈ S | ∃t ∈ [[ψ]]M,V , s
τ∗−→M t}

� [[〈τ∗aτ∗〉ψ]]M,V = {s ∈ S | ∃t ∈ [[ψ]]M,V , s
τ∗aτ∗−−−−→M t}

2.4 Classes of models

Let φ be a close MSO formula. We denote by mod(φ) = {M transition system | M � φ} the class of all
models of φ. Let C be a class of transition systems. Given a logic L, C is said to be L-de�nable if there
exists a close formula φ ∈ L such that mod(φ) = C. Moreover, C is said to be closed under bisimulation

(respectively closed under weak bisimulation) ifM∈ C andM↔M′ (respectivelyM↔τ M′) implies
M′ ∈ C. The theorem attributed to Janin and Walukiewicz [JW96] we mentioned in the introduction is
the following:

Theorem 1. Every MSO-de�nable and bisimulation-closed class is Lµ-de�nable.

3 Matters of expressivity

The �rst step is to show that MSO is more expressive than the weak µ-calculus, and that the weak
µ-calculus is closed under bisimulation.

Proposition 3. The µ-calculus is more expressive than the weak µ-calculus.

Proof. We de�ne tr : Lτµ → Lµ by induction:

� tr(pτ ) = µX.(p ∨ 〈τ〉X)

� tr(Xτ ) = µY.(X ∨ 〈τ〉Y )

� tr(〈τ∗〉ψ) = µX.(〈τ〉X ∨ tr(ψ))

� tr(〈a〉τψ) = µX.(〈τ〉X ∨ 〈a〉µY.(tr(ψ) ∨ 〈τ〉Y ))

� tr(¬ψ) = ¬tr(ψ)
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� tr(ψ ∧ ψ′) = tr(ψ) ∧ tr(ψ′)

� tr(µX.ψ) = µX.tr(ψ)

It is then clear that tr(ψ) ≡ ψ for all ψ ∈ Lτµ.

From proposition 1, proposition 2 and proposition 3 we derive the following results:

Corollary 1. Every formula of Lτµ is equivalent to some formula of MSO.

Corollary 2. The weak µ-calculus is closed under bisimulation.

4 The relation of τ -equivalence

In this section we de�ne the relation of τ -equivalence between states: two states are τ -equivalent if one
can be reached from another through a sequence of τ -transitions. We then prove lemma 1, a crucial
result that we will use extensively, and which states that τ -equivalent states satisfy the same formulas
of the weak µ-calculus.

De�nition. LetM be a transition system. The equivalence relation ∼τ is de�ned by

s ∼τ t ⇐⇒ s
τ∗−→M t ∧ t

τ∗−→M s

for all s, t ∈ S.

Lemma 1. Assume that s ∼τ t. Then for all close formula ψ ∈ Lτµ, we have M, s � ψ if and only if
M, t � ψ.

Proof. We proceed by induction on ψ. The only non-trivial case is for formulas of the form µX.ψ.
So assume that H(ψ) and let V be a valuation. Assume that M, V, s � µX.ψ and let B∗ be the
smallest �xpoint of B 7→ [[ψ]]M,V [B/X]. We have s ∈ B∗ = [[ψ]]M,V [B∗/X], so M, V [B∗/X], s � ψ, so
M, V [B∗/X], t � ψ as well according to H(ψ). Consequently t ∈ B∗ andM, V, t � µX.ψ. The proof of
the other implication is similar.

5 τ -closures

Here we de�ne the τ -closure of a transition systemM. For any s ∈ S, we write s = {t ∈ S | s τ∗−→M t}.
For any B ⊆ S, we write B = {s | s ∈ S}. For any V : Var→ P(S), we write V : X 7→ V (X).

De�nition. The τ -closure of a transition system M is the system M = (S, s0, (a
M)a∈A, (p

M)p∈Prop)
where:

� for all a ∈ A \ {τ}, aM = {(s, t) ∈ S2 | s τ∗aτ∗−−−−→M t} ;

� τM = {(s, t) ∈ S2 | s τ∗−→M t}

� for all p ∈ Prop, pM = {s ∈ S | ∃t ∈ pM, s τ∗−→M t}.

Note that aM and pM are well de�ned, as they do not depend on the representative of any element of S.

Proposition 4. LetM be a transition system. ThenM ↔τ M.

Proof. It su�ces to point out that R = {(s, s) | s ∈ S} is a weak bisimulation.

Proposition 5. IfM ↔τ M′ thenM ↔M′.

Proof. Suppose R is a bisimulation between M and M′ such that (s0, s
′
0) ∈ R. One can see that

R = {(s, s′) | (s, s′) ∈ R} is a weak bisimulation relating s0 to s′0.

Lemma 2. Let ψ ∈ Lτµ andM a transition system. ThenM � ψ if and and only ifM � ψ.
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Proof. We proceed by induction on ψ. Again, we only consider the case µX.ψ.

� Assume thatM, V, s � µX.ψ and let B∗ be the smallest �xpoint of F : B 7→ [[ψ]]M,V [B∗/X].
Writing B′ = {t ∈ S | t ∈ B∗} it is clear that B∗ = B′, and also that V [B∗/X] = V [B′/X] =
V [B′/X]. We now show that B′ is the smallest �xpoint of F : B 7→ [[ψ]]M,V [B/X].

� We have

M, V [B′/X], t � ψ ⇐⇒ M, V [B′/X], t � ψ by the induction hypothesis

⇐⇒ t ∈ B′ because B′ is a �xpoint of F

⇐⇒ t ∈ B′

which means that F (B′) = B′

� Let B′′ bet an other �xpoint of F . To show that B′ ⊆ B′′, we �rst prove that B′′ is a �xpoint
of F . If t ∈ F (B′′) then t ∈ F (B′′) by the induction hypothesis, so t ∈ B′′ by assumption,
which means that t ∈ B′′.
Conversely, if t ∈ B′′, then there exists u ∈ B′′ such that t = u. Then u ∈ F (B′′), so
t ∈ F (B′′) as well thanks to lemma 1. Consequently we have t ∈ F (B′′) by the induction
hypothesis.

Since B′ is the smallest �xpoint of F , we get B′ ⊆ B′′ and we now prove that it implies
B′ ⊆ B′′. Let t ∈ B′. We have t ∈ B′′ by assumption, so there exists u ∈ B′′ such that t = u.
Using lemma 1 again, we deduce from u ∈ F (B′′) that t ∈ F (B′′) as well, which means that
t ∈ B′′.

Now the conclusion comes easily: by assumption we have s ∈ B′, and therefore s ∈ B′ = B∗ which
means thatM, V , s � µX.ψ.

� Conversely, assume M, V , s � µX.ψ. We only give the proof scheme which is very similar to the
previous one (here again lemma 1 is very useful). Let B∗ be the smallest �xpoint of F . We show
that B∗ is the smallest �xpoint of F .

� We check that F (B∗) = B∗.

� Given a �xpoint B′ of F , let B′′ = {s ∈ S | s ∈ B′} so that B′ = B′′. Again we show that
B′′ is a �xpoint of F , which implies B∗ ⊆ B′′. From this we obtain B∗ ⊆ B′′ = B′.

Consequently s ∈ B∗ by assumption and lemma 1 yields s ∈ B∗, which means thatM, V, s � µX.ψ.

We can now assert the following:

Theorem 2. Lτµ is closed under weak bisimulation.

Proof. Let ψ ∈ Lτµ and assumeM � ψ andM↔τ M′. By lemma 2 we getM � ψ. By proposition 5 we

also haveM↔M′. Therefore corollary 2 yieldsM′ � ψ. By lemma 2 again we �nally getM′ � ψ.

6 Formula weakening

As mentioned in the introduction, we now introduce a way to weaken a formula of the µ-calculus into a
formula of the weak µ-calculus. This operation presents some desirable properties regarding the τ -closure,
and will allow us to derive theorem 3 from theorem 1 in a quite straightforward way.

De�nition. The application f : Lµ → Lτµ is de�ned as follows:

� f(p) = pτ

� f(X) = Xτ

� f(〈τ〉φ) = 〈τ∗〉f(φ)
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� f(〈a〉φ) = 〈τ∗aτ∗〉f(φ) for all a ∈ A \ {τ}

� f(¬φ) = ¬f(φ)

� f(φ ∧ φ′) = f(φ) ∧ f(φ′)

� f(µX.φ) = µX.f(φ)

Lemma 3. LetM be a transition system and φ ∈ Lµ. ThenM � φ if and only ifM � f(φ).

Proof. It is not di�cult to prove by induction on ψ that for all valuation V : Var→ P(S), for all s ∈ S,
we haveM, V, s � φ if and only ifM, V, s � f(φ).

From lemma 2 and lemma 3 we get the following corollary:

Corollary 3. LetM be a transition system and φ ∈ Lµ. ThenM � φ if and only ifM � f(φ).

We are now ready to prove our �nal theorem:

Theorem 3. Every MSO-de�nable and weak bisimulation-closed class is Lτµ-de�nable.

Proof. Let C be a MSO-de�nable, weak bisimulation-closed class. Then C is bisimulation-closed as well
and from theorem 1 there exists φ ∈ Lµ such that C = mod(φ). We show that C = mod(f(φ)):

M � f(φ) ⇐⇒ M � φ by corollary 3
⇐⇒ M ∈ C by assumption on φ
⇐⇒ M ∈ C because proposition 4 yieldsM ↔τ M
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