Weak bisimulations and weak mu-calculus

Quentin Gougeon

Unpublished note

1 Introduction

The modal μ-calculus is a logic that allows definition of operators through fixpoint equations, and praised for its high expressiveness. More precisely, Janin and Walukiewicz [JW96] proved that the μ-calculus is exactly the bisimulation-closed fragment of Monadic Second Order Logic (or MSO): any formula of MSO that can not discriminate bisimilar transitions systems, can be translated in the μ-calculus.

The standard notion of bisimulation admits several variants, including weak bisimulation [Mil89]. We have identified the weak bisimulation-closed fragment of MSO, which appears to be a variant of the μ-calculus that we call the weak μ-calculus. In section 2 , we introduce notations and recall some standard results. In section 3, we prove that the weak μ-calculus is indeed embedded into MSO, an easy but necessary step. In section 4 , we introduce τ-equivalence between states and show that it implies logical equivalence with respect to the weak μ-calculus. In section 5 , we define the closure of a transition system, which is similar to the construction used to eliminate ϵ-transitions in automata. This powerful tool allows us to show that the weak μ-calculus is closed under weak bisimulation. In section 6 , we prove the final result as follows: given a weak bisimulation-closed class \mathcal{C} of transition systems, we apply Janin and Walukiewicz's theorem, before tweaking the resulting formula of the μ-calculus into a formula of the weak μ-calculus; we then show that this new formula defines \mathcal{C}.

2 Background

For everything below we consider A a set of actions, $\tau \in \mathrm{A}$ and Prop a set of atomic propositions.

2.1 Transition systems

Definition. A transition system is a tuple $\mathcal{M}=\left(S, s_{0},\left(a^{\mathcal{M}}\right)_{a \in \mathrm{~A}},\left(p^{\mathcal{M}}\right)_{p \in \operatorname{Prop}}\right)$ where:

- S is a set of states;
- $s_{0} \in S$ is an initial state;
- for every $a \in \mathrm{~A}, a^{\mathcal{M}}$ is a binary relation over S;
- for every $p \in \operatorname{Prop}, p^{\mathcal{M}}$ is a subset of S.

Given two states s and $t, s \xrightarrow{a} \mathcal{M} t$ holds for $(s, t) \in a^{\mathcal{M}}$. This notation can be extended to any regular expression e : we write $s \xrightarrow{e} \mathcal{M} t$ whenever there exists a word $a_{1} \ldots a_{n} \in \mathcal{L}(e)$ and some states $\left(t_{i}\right)_{i \in \llbracket 0, n \rrbracket}$ such that $t_{0}=t, t_{n}=t$ and for all $i \in \llbracket 1, n-1 \rrbracket, t_{i} \xrightarrow{a_{i}} t_{i+1}$. Intuitively, $s \xrightarrow{a} \mathcal{M} t$ means that action a performs a transition from state s to state t, while $s \in p^{\mathcal{M}}$ means that property p is true at state s.

2.2 Bisimulations

The notion of bisimulation between two transition systems is meant to express the property of behaving in the same way.

Definition. A bisimulation between two transition systems \mathcal{M} and \mathcal{M}^{\prime} is a relation $\mathfrak{R} \subseteq S \times S^{\prime}$ such that for every $\left(s, s^{\prime}\right) \in \mathfrak{R}$:

- $\forall p \in \operatorname{Prop}, s \in p^{\mathcal{M}} \Longleftrightarrow s^{\prime} \in p^{\mathcal{M}^{\prime}} ;$
- for all $a \in \mathrm{~A}$ and $t \in S$, if $s \xrightarrow{a} \mathcal{M} t$, then there exists $t^{\prime} \in S^{\prime}$ such that $\left(t, t^{\prime}\right) \in \mathfrak{R}$ and $s^{\prime} \xrightarrow{a} \mathcal{M}^{\prime} t^{\prime}$;
- for all $a \in \mathrm{~A}$ and $t^{\prime} \in S$, if $s^{\prime} \xrightarrow{a} \mathcal{M}^{\prime} t^{\prime}$, then there exists $t \in S$ such that $\left(t, t^{\prime}\right) \in \mathfrak{R}$ and $s \xrightarrow{a} \mathcal{M} t$.

If $\left(s, s^{\prime}\right) \in \mathfrak{R}$ then we write $\mathcal{M}, s \leftrightarrows \mathcal{M}^{\prime}, s^{\prime}$. If $\left(s_{0}, s_{0}^{\prime}\right) \in \mathfrak{R}$ then we write $\mathcal{M} \leftrightarrows \mathcal{M}^{\prime}$ and in this case \mathcal{M} and \mathcal{M}^{\prime} are said to be bisimilar.

Weak bisimulation is a variant where τ-transitions are considered to be invisible to an external observer.

Definition. A weak bisimulation between two transition systems \mathcal{M} and \mathcal{M}^{\prime} is a relation $\mathfrak{R} \subseteq S \times S^{\prime}$ such that for every $\left(s, s^{\prime}\right) \in \mathfrak{R}$:

- for all $p \in$ Prop and $t \in p^{\mathcal{M}}$, if $s \xrightarrow{\tau^{*}} \mathcal{M} t$, then there exists $t^{\prime} \in p^{\mathcal{M}^{\prime}}$ such that $s^{\prime} \xrightarrow{\tau^{*}} \mathcal{M}^{\prime} t^{\prime}$;
- for all $t \in S$, if $s \xrightarrow{\tau^{*}} \mathcal{M}$, then there exists $t^{\prime} \in S^{\prime}$ such that $\left(t, t^{\prime}\right) \in \mathfrak{R}$ and $s^{\prime} \xrightarrow{\tau^{*}} \mathcal{M}^{\prime} t^{\prime}$;
- for all $a \in \mathrm{~A} \backslash\{\tau\}$ and $t \in S$, if $s \xrightarrow{\tau^{*} a \tau^{*}} \mathcal{M} t$, then there exists $t^{\prime} \in S^{\prime}$ such that $\left(t, t^{\prime}\right) \in \mathfrak{R}$ and $s^{\prime} \xrightarrow{\tau^{*} a \tau^{*}} \mathcal{M}^{\prime} t^{\prime}$;
- for all $p \in$ Prop and $t^{\prime} \in p^{\mathcal{M}^{\prime}}$, if $s^{\prime} \xrightarrow{\tau^{*}} \mathcal{M}^{\prime} t^{\prime}$, then there exists $t \in p^{\mathcal{M}}$ such that $s \xrightarrow{\tau^{*}} \mathcal{M} t$;
- for all $t^{\prime} \in S^{\prime}$, if $s^{\prime} \xrightarrow{\tau^{*}} \mathcal{M}^{\prime} t^{\prime}$, then there exists $t \in S$ such that $\left(t, t^{\prime}\right) \in \mathfrak{R}$ and $s \xrightarrow{\tau^{*}} \mathcal{M} t$;
- for all $a \in \mathrm{~A} \backslash\{\tau\}$ and $t^{\prime} \in S^{\prime}$, if $s^{\prime} \xrightarrow{\tau^{*} a \tau^{*}} \mathcal{M}^{\prime} t^{\prime}$, then there exists $t \in S$ such that $\left(t, t^{\prime}\right) \in \mathfrak{R}$ and $s \xrightarrow{\tau^{*} a \tau^{*}} \mathcal{M} t ;$

If $\left(s, s^{\prime}\right) \in \mathfrak{R}$ then we write $\mathcal{M}, s \unlhd_{\tau} \mathcal{M}^{\prime}, s^{\prime}$. If $\left(s_{0}, s_{0}^{\prime}\right) \in \mathfrak{R}$ then we write $\mathcal{M} \unlhd_{\tau} \mathcal{M}^{\prime}$ and in this case \mathcal{M} and \mathcal{M}^{\prime} are said to be weakly bisimilar.

Note that \leftrightarrow and $\overleftrightarrow{\leftrightarrow}_{\tau}$ are both equivalence relations, and that any bisimulation is also a weak bisimulation.

2.3 Logics over transition systems

Here we recall the syntax of MSO and the μ-calculus, but we do not expand on their semantics since it is well known. We also introduce a variant of the μ-calculus named the weak μ-calculus. We fix a countable set Var of variables.

Definition. The syntax of MSO is defined as follows:

$$
\phi=\mathrm{r}(X)|p(X)| a(X, Y)|X \subseteq Y| \neg \phi|\phi \wedge \phi| \exists X . \phi(X)
$$

Definition. The set \mathcal{L}_{μ} of the formulas of the μ-calculus is defined as follows:

$$
\phi=p|X| \phi \wedge \phi|\neg \phi|\langle a\rangle \phi \mid \mu X . \phi
$$

where in every formula of the form μX. ϕ, the variable X only appears under an even number a negations.
Given a transition system \mathcal{M} and a valuation $V: \operatorname{Var} \rightarrow \mathcal{P}(S)$, we denote by $\llbracket \phi \rrbracket^{\mathcal{M}, V} \subseteq S$ the extension of ϕ in \mathcal{M}. We $\mathcal{M}, V, s \vDash \phi$ whenever $s \in \llbracket \phi \rrbracket^{\mathcal{M}, V}$. If ϕ has no free variable, we simply write $\mathcal{M}, s \vDash \phi$. In case $s=s_{0}$ we simply write $\mathcal{M}, V \vDash \phi$. If V is a valuation, $X \in \operatorname{Var}$ and $B \subseteq S$, the valuation $V[B / X]$ is defined by:

- $V[B / X](X)=B$
- $V[B / X](Y)=V(Y)$ for all $Y \neq X$

We also recall well known properties of the μ-calculus [BvBW06]:
Proposition 1. MSO is more expressive than the μ-calculus, i.e. every formula of \mathcal{L}_{μ} is equivalent to some formula of MSO.

Proposition 2. The μ-calculus is bisimulation-closed, i.e. for any close formula $\phi \in \mathcal{L}_{\mu}$, if $\mathcal{M} \vDash \phi$ and $\mathcal{M} \leftrightarrows \mathcal{M}^{\prime}$ then $\mathcal{M}^{\prime} \vDash \phi$.

Just like a weak bisimulation is a bisimulation where τ-transitions are counted for free, the weak μ-calculus is the μ-calculus without the ability to talk about τ-successors:

Definition. The set \mathcal{L}_{μ}^{τ} of the formulas of the weak μ-calculus is defined as follows:

$$
\psi=p^{\tau}\left|X^{\tau}\right| \psi \wedge \psi|\neg \psi|\left\langle\tau^{*} a \tau^{*}\right\rangle \psi\left|\left\langle\tau^{*}\right\rangle \psi\right| \mu X . \psi
$$

where $a \neq \tau$ and, as above, X appears under an even number a negations in every formula of the form $\mu X . \psi$. To avoid misunderstanding when dealing with those two versions of the μ-calculus, ϕ will always denote a formula of \mathcal{L}_{μ}, while ψ will always denote a formula of \mathcal{L}_{μ}^{τ}. The semantics for those new formulas is the following:

- $\llbracket p^{\tau} \rrbracket^{\mathcal{M}, V}=\left\{s \in S \mid \exists t \in p^{\mathcal{M}}, s \xrightarrow{\tau^{*}} \mathcal{M} t\right\}$
- $\llbracket X^{\tau} \rrbracket^{\mathcal{M}, V}=\left\{s \in S \mid \exists t \in V(X), s \xrightarrow{\tau^{*}} \mathcal{M} t\right\}$
- $\llbracket\left\langle\tau^{*}\right\rangle \psi \rrbracket^{\mathcal{M}, V}=\left\{s \in S \mid \exists t \in \llbracket \psi \rrbracket^{\mathcal{M}, V}, s \xrightarrow{\tau^{*}} \mathcal{M} t\right\}$
- $\llbracket\left\langle\tau^{*} a \tau^{*}\right\rangle \psi \rrbracket^{\mathcal{M}, V}=\left\{s \in S \mid \exists t \in \llbracket \psi \rrbracket^{\mathcal{M}, V}, s \xrightarrow{\tau^{*} a \tau^{*}} \mathcal{M} t\right\}$

2.4 Classes of models

Let ϕ be a close MSO formula. We denote by $\bmod (\phi)=\{\mathcal{M}$ transition system $\mid \mathcal{M} \vDash \phi\}$ the class of all models of ϕ. Let \mathcal{C} be a class of transition systems. Given a logic \mathcal{L}, \mathcal{C} is said to be \mathcal{L}-definable if there exists a close formula $\phi \in \mathcal{L}$ such that $\bmod (\phi)=\mathcal{C}$. Moreover, \mathcal{C} is said to be closed under bisimulation (respectively closed under weak bisimulation) if $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \leftrightarrows \mathcal{M}^{\prime}$ (respectively $\mathcal{M} \overleftrightarrow{T}_{\tau} \mathcal{M}^{\prime}$) implies $\mathcal{M}^{\prime} \in \mathcal{C}$. The theorem attributed to Janin and Walukiewicz [JW96] we mentioned in the introduction is the following:

Theorem 1. Every MSO-definable and bisimulation-closed class is \mathcal{L}_{μ}-definable.

3 Matters of expressivity

The first step is to show that MSO is more expressive than the weak μ-calculus, and that the weak μ-calculus is closed under bisimulation.

Proposition 3. The μ-calculus is more expressive than the weak μ-calculus.
Proof. We define $\operatorname{tr}: \mathcal{L}_{\mu}^{\tau} \rightarrow \mathcal{L}_{\mu}$ by induction:

- $\operatorname{tr}\left(p^{\tau}\right)=\mu X .(p \vee\langle\tau\rangle X)$
- $\operatorname{tr}\left(X^{\tau}\right)=\mu Y .(X \vee\langle\tau\rangle Y)$
- $\operatorname{tr}\left(\left\langle\tau^{*}\right\rangle \psi\right)=\mu X .(\langle\tau\rangle X \vee \operatorname{tr}(\psi))$
- $\operatorname{tr}\left(\langle a\rangle^{\tau} \psi\right)=\mu X .(\langle\tau\rangle X \vee\langle a\rangle \mu Y .(\operatorname{tr}(\psi) \vee\langle\tau\rangle Y))$
- $\operatorname{tr}(\neg \psi)=\neg \operatorname{tr}(\psi)$
- $\operatorname{tr}\left(\psi \wedge \psi^{\prime}\right)=\operatorname{tr}(\psi) \wedge \operatorname{tr}\left(\psi^{\prime}\right)$
- $\operatorname{tr}(\mu X . \psi)=\mu X \cdot \operatorname{tr}(\psi)$

It is then clear that $\operatorname{tr}(\psi) \equiv \psi$ for all $\psi \in \mathcal{L}_{\mu}^{\tau}$.
From proposition 1, proposition 2 and proposition 3 we derive the following results:
Corollary 1. Every formula of \mathcal{L}_{μ}^{τ} is equivalent to some formula of MSO.
Corollary 2. The weak μ-calculus is closed under bisimulation.

4 The relation of τ-equivalence

In this section we define the relation of τ-equivalence between states: two states are τ-equivalent if one can be reached from another through a sequence of τ-transitions. We then prove lemma 1 , a crucial result that we will use extensively, and which states that τ-equivalent states satisfy the same formulas of the weak μ-calculus.

Definition. Let \mathcal{M} be a transition system. The equivalence relation \sim_{τ} is defined by

$$
s \sim_{\tau} t \Longleftrightarrow s{\xrightarrow{\tau^{*}}}_{\mathcal{M}} t \wedge t{\xrightarrow{\tau_{\mathcal{M}}^{*}} s, ~}_{\mathcal{M}}
$$

for all $s, t \in S$.
Lemma 1. Assume that $s \sim_{\tau} t$. Then for all close formula $\psi \in \mathcal{L}_{\mu}^{\tau}$, we have $\mathcal{M}, s \vDash \psi$ if and only if $\mathcal{M}, t \vDash \psi$.

Proof. We proceed by induction on ψ. The only non-trivial case is for formulas of the form $\mu X . \psi$. So assume that $H(\psi)$ and let V be a valuation. Assume that $\mathcal{M}, V, s \vDash \mu X . \psi$ and let B^{*} be the smallest fixpoint of $B \mapsto \llbracket \psi \rrbracket^{\mathcal{M}, V[B / X]}$. We have $s \in B^{*}=\llbracket \psi \rrbracket^{\mathcal{M}, V\left[B^{*} / X\right]}$, so $\mathcal{M}, V\left[B^{*} / X\right], s \vDash \psi$, so $\mathcal{M}, V\left[B^{*} / X\right], t \vDash \psi$ as well according to $H(\psi)$. Consequently $t \in B^{*}$ and $\mathcal{M}, V, t \vDash \mu X . \psi$. The proof of the other implication is similar.

$5 \quad \tau$-closures

Here we define the τ-closure of a transition system \mathcal{M}. For any $s \in S$, we write $\bar{s}=\left\{t \in S \mid s \xrightarrow{\tau^{*}} \mathcal{M} t\right\}$. For any $B \subseteq S$, we write $\bar{B}=\{\bar{s} \mid s \in S\}$. For any $V: \operatorname{Var} \rightarrow \mathcal{P}(S)$, we write $\bar{V}: X \mapsto \overline{V(X)}$.
Definition. The τ-closure of a transition system \mathcal{M} is the system $\overline{\mathcal{M}}=\left(\bar{S}, \overline{s_{0}},\left(a^{\overline{\mathcal{M}}}\right)_{a \in \mathrm{~A}},\left(p^{\overline{\mathcal{M}}}\right)_{p \in \operatorname{Prop}}\right)$ where:

- for all $a \in \mathrm{~A} \backslash\{\tau\}, a^{\overline{\mathcal{M}}}=\left\{(\bar{s}, \bar{t}) \in \bar{S}^{2} \mid s \xrightarrow{\tau^{*} a \tau^{*}} \mathcal{M} t\right\}$;
- $\tau^{\overline{\mathcal{M}}}=\left\{(\bar{s}, \bar{t}) \in \bar{S}^{2} \mid s \xrightarrow{\tau^{*}}{ }_{\mathcal{M}} t\right\}$
- for all $p \in$ Prop, $p^{\overline{\mathcal{M}}}=\left\{\bar{s} \in S \mid \exists t \in p^{\mathcal{M}}, s \xrightarrow{\tau_{\mathcal{M}}^{*}} t\right\}$.

Note that $a^{\overline{\mathcal{M}}}$ and $p^{\overline{\mathcal{M}}}$ are well defined, as they do not depend on the representative of any element of \bar{S}.
Proposition 4. Let \mathcal{M} be a transition system. Then $\mathcal{M} \overleftrightarrow{\natural}_{\tau} \overline{\mathcal{M}}$.
Proof. It suffices to point out that $\mathfrak{R}=\{(s, \bar{s}) \mid s \in S\}$ is a weak bisimulation.
Proposition 5. If $\mathcal{M} \unlhd_{\tau} \mathcal{M}^{\prime}$ then $\overline{\mathcal{M}} \leftrightarrow \overline{\mathcal{M}^{\prime}}$.
Proof. Suppose \mathfrak{R} is a bisimulation between \mathcal{M} and \mathcal{M}^{\prime} such that $\left(s_{0}, s_{0}^{\prime}\right) \in \mathfrak{R}$. One can see that $\overline{\mathfrak{R}}=\left\{\left(\bar{s}, \overline{s^{\prime}}\right) \mid\left(s, s^{\prime}\right) \in \mathfrak{R}\right\}$ is a weak bisimulation relating $\overline{s_{0}}$ to $\overline{s_{0}^{\prime}}$.

Lemma 2. Let $\psi \in \mathcal{L}_{\mu}^{\tau}$ and \mathcal{M} a transition system. Then $\mathcal{M} \vDash \psi$ if and and only if $\overline{\mathcal{M}} \vDash \psi$.

Proof. We proceed by induction on ψ. Again, we only consider the case $\mu X . \psi$.

- Assume that $\mathcal{M}, V, s \vDash \mu X . \psi$ and let B^{*} be the smallest fixpoint of $\bar{F}: B \mapsto \llbracket \psi \rrbracket^{\overline{\mathcal{M}}, \bar{V}\left[B^{*} / X\right]}$. Writing $B^{\prime}=\left\{t \in S \mid \bar{t} \in B^{*}\right\}$ it is clear that $B^{*}=\overline{B^{\prime}}$, and also that $\bar{V}\left[B^{*} / X\right]=\bar{V}\left[\overline{B^{\prime}} / X\right]=$ $\overline{V\left[B^{\prime} / X\right]}$. We now show that B^{\prime} is the smallest fixpoint of $F: B \mapsto \llbracket \psi \rrbracket^{\mathcal{M}, V[B / X]}$.
- We have

$$
\begin{aligned}
\mathcal{M}, V\left[B^{\prime} / X\right], t \vDash \psi & \Longleftrightarrow \overline{\mathcal{M}}, \bar{V}\left[\overline{B^{\prime}} / X\right], \bar{t} \vDash \psi \\
& \Longleftrightarrow \bar{t} \in \overline{B^{\prime}} \\
& \Longleftrightarrow t \in B^{\prime}
\end{aligned}
$$

by the induction hypothesis
because $\overline{B^{\prime}}$ is a fixpoint of \bar{F}
which means that $F\left(B^{\prime}\right)=B^{\prime}$

- Let $B^{\prime \prime}$ bet an other fixpoint of F. To show that $B^{\prime} \subseteq B^{\prime \prime}$, we first prove that $\overline{B^{\prime \prime}}$ is a fixpoint of \bar{F}. If $\bar{t} \in \bar{F}\left(\overline{B^{\prime \prime}}\right)$ then $t \in F\left(B^{\prime \prime}\right)$ by the induction hypothesis, so $t \in B^{\prime \prime}$ by assumption, which means that $\bar{t} \in \overline{B^{\prime \prime}}$.
Conversely, if $\bar{t} \in \overline{B^{\prime \prime}}$, then there exists $u \in B^{\prime \prime}$ such that $\bar{t}=\bar{u}$. Then $u \in F\left(B^{\prime \prime}\right)$, so $t \in F\left(B^{\prime \prime}\right)$ as well thanks to lemma 1. Consequently we have $\bar{t} \in \bar{F}\left(\overline{B^{\prime \prime}}\right)$ by the induction hypothesis.
Since $\overline{B^{\prime}}$ is the smallest fixpoint of \bar{F}, we get $\overline{B^{\prime}} \subseteq \overline{B^{\prime \prime}}$ and we now prove that it implies $B^{\prime} \subseteq B^{\prime \prime}$. Let $t \in B^{\prime}$. We have $\bar{t} \in \overline{B^{\prime \prime}}$ by assumption, so there exists $u \in B^{\prime \prime}$ such that $\bar{t}=\bar{u}$. Using lemma 1 again, we deduce from $u \in F\left(B^{\prime \prime}\right)$ that $t \in F\left(B^{\prime \prime}\right)$ as well, which means that $t \in B^{\prime \prime}$.

Now the conclusion comes easily: by assumption we have $s \in \overline{B^{\prime}}$, and therefore $\bar{s} \in \overline{B^{\prime}}=B^{*}$ which means that $\overline{\mathcal{M}}, \bar{V}, \bar{s} \vDash \mu X . \psi$.

- Conversely, assume $\overline{\mathcal{M}}, \bar{V}, \bar{s} \vDash \mu X . \psi$. We only give the proof scheme which is very similar to the previous one (here again lemma 1 is very useful). Let B^{*} be the smallest fixpoint of F. We show that $\overline{B^{*}}$ is the smallest fixpoint of \bar{F}.
- We check that $\bar{F}\left(\overline{B^{*}}\right)=\overline{B^{*}}$.
- Given a fixpoint B^{\prime} of \bar{F}, let $B^{\prime \prime}=\left\{s \in S \mid \bar{s} \in B^{\prime}\right\}$ so that $B^{\prime}=\overline{B^{\prime \prime}}$. Again we show that $B^{\prime \prime}$ is a fixpoint of F, which implies $B^{*} \subseteq B^{\prime \prime}$. From this we obtain $\overline{B^{*}} \subseteq \overline{B^{\prime \prime}}=B^{\prime}$.

Consequently $\bar{s} \in \overline{B^{*}}$ by assumption and lemma 1 yields $s \in B^{*}$, which means that $\mathcal{M}, V, s \vDash \mu X . \psi$.

We can now assert the following:
Theorem 2. \mathcal{L}_{μ}^{τ} is closed under weak bisimulation.
Proof. Let $\psi \in \mathcal{L}_{\mu}^{\tau}$ and assume $\mathcal{M} \vDash \psi$ and $\mathcal{M} \unlhd_{\tau} \mathcal{M}^{\prime}$. By lemma 2 we get $\overline{\mathcal{M}} \vDash \psi$. By proposition 5 we also have $\overline{\mathcal{M}} \leftrightarrow \overline{\mathcal{M}^{\prime}}$. Therefore corollary 2 yields $\overline{\mathcal{M}^{\prime}} \vDash \psi$. By lemma 2 again we finally get $\mathcal{M}^{\prime} \vDash \psi$.

6 Formula weakening

As mentioned in the introduction, we now introduce a way to weaken a formula of the μ-calculus into a formula of the weak μ-calculus. This operation presents some desirable properties regarding the τ-closure, and will allow us to derive theorem 3 from theorem 1 in a quite straightforward way.

Definition. The application $f: \mathcal{L}_{\mu} \rightarrow \mathcal{L}_{\mu}^{\tau}$ is defined as follows:

- $f(p)=p^{\tau}$
- $f(X)=X^{\tau}$
- $f(\langle\tau\rangle \phi)=\left\langle\tau^{*}\right\rangle f(\phi)$
- $f(\langle a\rangle \phi)=\left\langle\tau^{*} a \tau^{*}\right\rangle f(\phi)$ for all $a \in \mathrm{~A} \backslash\{\tau\}$
- $f(\neg \phi)=\neg f(\phi)$
- $f\left(\phi \wedge \phi^{\prime}\right)=f(\phi) \wedge f\left(\phi^{\prime}\right)$
- $f(\mu X . \phi)=\mu X . f(\phi)$

Lemma 3. Let \mathcal{M} be a transition system and $\phi \in \mathcal{L}_{\mu}$. Then $\overline{\mathcal{M}} \vDash \phi$ if and only if $\overline{\mathcal{M}} \vDash f(\phi)$.
Proof. It is not difficult to prove by induction on ψ that for all valuation $V: \operatorname{Var} \rightarrow \mathcal{P}(\bar{S})$, for all $\bar{s} \in \bar{S}$, we have $\overline{\mathcal{M}}, V, \bar{s} \vDash \phi$ if and only if $\overline{\mathcal{M}}, V, \bar{s} \vDash f(\phi)$.

From lemma 2 and lemma 3 we get the following corollary:
Corollary 3. Let \mathcal{M} be a transition system and $\phi \in \mathcal{L}_{\mu}$. Then $\overline{\mathcal{M}} \vDash \phi$ if and only if $\mathcal{M} \vDash f(\phi)$.
We are now ready to prove our final theorem:
Theorem 3. Every MSO-definable and weak bisimulation-closed class is \mathcal{L}_{μ}^{τ}-definable.
Proof. Let \mathcal{C} be a MSO-definable, weak bisimulation-closed class. Then \mathcal{C} is bisimulation-closed as well and from theorem 1 there exists $\phi \in \mathcal{L}_{\mu}$ such that $\mathcal{C}=\bmod (\phi)$. We show that $\mathcal{C}=\bmod (f(\phi))$:

$$
\begin{aligned}
\mathcal{M} \vDash f(\phi) & \Longleftrightarrow \overline{\mathcal{M}} \vDash \phi \quad \text { by corollary } 3 \\
& \Longleftrightarrow \overline{\mathcal{M}} \in \mathcal{C} \quad \text { by assumption on } \phi \\
& \Longleftrightarrow \mathcal{M} \in \mathcal{C} \quad \text { because proposition } 4 \text { yields } \mathcal{M} \unlhd_{\tau} \overline{\mathcal{M}}
\end{aligned}
$$

References

[BvBW06] Patrick Blackburn, Johan van Benthem, and Frank Wolter. Handbook of modal logic, volume 3. Elsevier, 2006.
[JW96] David Janin and Igor Walukiewicz. On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In International Conference on Concurrency Theory, pages 263-277. Springer, 1996.
[Mil89] Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc., 1989.

