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Divergence from Randomness (DFR) 

•  Proposed by Amati and Rijsbergen 
•  The idea is to compute term weights by measuring 

the divergence between a term distribution 
produced by a random process (within the 
collection) and the actual term distribution (within 
the document) 

•  Thus, the name divergence from randomness 
•  The model is based on two fundamental 

assumptions, as follows 



DFR: First assumption 

•  Not all words are equally important for describing the 
content of the documents 

•  Words that carry little information are assumed to be 
randomly distributed over the whole document 
collection C 
–  Given a term ti, its probability distribution over the 

whole collection is referred to as P(ti|C) 
–  The amount of information associated with this 

distribution is given by −log P(ti|C) 



DFR: Second assumption 

•  A complementary term distribution can be obtained by 
considering just the subset of documents that contain 
term ti 

•  This subset is referred to as the elite set 
•  The corresponding probability distribution, computed 

with regard to document dj, is referred to as P(ti|dj) 
–  Smaller the probability of observing a term ti in a 

document dj, more rare and important is the term 
considered to be 

•  Thus, the amount of information associated with the 
term in the elite set is defined as  1 − P(ti|dj) 



DFR: term weighting 

•  Given these assumptions, the weight wi,j of a term ti 
in a document dj is defined as 

 wi,j = [−log P(ti|C)] * [1 − P(ti|dj)] 
•  Two term distributions are considered: in the 

collection and in the subset of docs in which it 
occurs 

•  The rank R(dj , q) of a document dj with regard to a 
query q is then computed as 

  
where tfi,q is the frequency of term ti in the query 

R(dj,q) = tfi,q
ti∈q
∑ ×wi, j



Distribution of terms in the collection:
(Random Distribution) 

•  To compute the distribution of terms in the collection, 
distinct probability models can be considered 

•  Binomial distribution 
–  To illustrate, consider a collection with 1000 documents and a 

term ti that occurs 10 times in the collection 
–  Then, the probability of observing 4 occurrences of term ti in 

a document is given by 
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Distribution of terms in the collection:
(Binomial distribution) 

•  In general, let p = 1/N be the probability of observing a term 
in a document, where N is the number of docs 

•  The probability of observing fi,j occurrences of term ti in 
document dj is described by a binomial distribution: 

 
 
 

 
 

TFi is the total frequency of term ti in the collection (N 
documents) 
–  The average occurrence of term t is :  

P(t j C) =
TFi
tfi, j
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Distribution of terms in the collection: Binomial 
approximationà Poisson 

•  As N>30 et p < 0.05  
•  Under these conditions, we can approximate the 

binomial distribution by a Poisson process, which 
yields 

P(t j C) =
e−λiλ
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tfi, j

tfi, j !



Binomial approximationà Poisson 

•  The amount of information associated with term ti in the 
collection can then be computed as 

•  in which the logarithms are in base 2 and the factorial ter 
fi,j! was approximated by the Stirling’s formula 

− logP(t j C) =



Distribution of terms in the collection: 
Bose-Enstein distibution 

•  Randomness Model can be estimated as Bose-Einstein 
distribution and approximate it by a geometric distribution: 

 where p = 1/(1 + λi)  (estimation of λi) 
•  The amount of information associated with term ti in the 

collection can then be computed as 

P(t j C) =

− logP(t j C)

P(t j C) = p(1− p)
tf



Distribution over the Elite documents 

•  The amount of information associated with term 
distribution in elite docs can be computed by using 

     Laplace’s law of succession 

•  Another possibility is to adopt the ratio of two Bernoulli 
processes, which yields 

•  ni is the number of documents in which the term occurs 

1−P(t j d j ) =
1

tfi, j +1

1−P(t j d j ) =
TFi +1

ni × (tfi, j +1)



Normalization 

•  These formulations do not take into account the 
length of the document dj. This can be done by 
normalizing the term frequency tfi,j 

•  Distinct normalizations can be used, such as 

where avg_dl is the average document length in the 
collection and dl(dj) is the length of document dj 

tf 'i, j = tfi, j ×
avg_ dl
dl(dj )

or

tf 'i, j = tfi, j × log(1+
avg_ dl
dl(dj )

)



Normalization 

•  To compute wi,j weights using normalized term 
frequencies, just substitute the factor tfi,j by  tf’i,j 

•  we consider that a same normalization is applied 
for computing P(ti|C) and P(ti|dj) 

•  By combining different forms of computing P(ti|C) 
and P(ti|dj) with different normalizations, various 
ranking formulas can be produced 


