DFR

Divergence From Randomness

Quelques slides sont empruntés de Baeza-Yates \& Ribeiro-Neto

Divergence from Randomness (DFR)

- Proposed by Amati and Rijsbergen
- The idea is to compute term weights by measuring the divergence between a term distribution produced by a random process (within the collection) and the actual term distribution (within the document)
- Thus, the name divergence from randomness
- The model is based on two fundamental assumptions, as follows

DFR: First assumption

- Not all words are equally important for describing the content of the documents
- Words that carry little information are assumed to be randomly distributed over the whole document collection C
- Given a term t_{i}, its probability distribution over the whole collection is referred to as $\mathrm{P}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{C}\right)$
- The amount of information associated with this distribution is given by $-\log \mathrm{P}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{C}\right)$

DFR: Second assumption

- A complementary term distribution can be obtained by considering just the subset of documents that contain term t_{i}
- This subset is referred to as the elite set
- The corresponding probability distribution, computed with regard to document d_{j}, is referred to as $P\left(t_{i} \mid d_{j}\right)$
- Smaller the probability of observing a term t_{i} in a document d_{j}, more rare and important is the term considered to be
- Thus, the amount of information associated with the term in the elite set is defined as $1-\mathrm{P}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{d}_{\mathrm{j}}\right)$

DFR: term weighting

- Given these assumptions, the weight $w_{i, j}$ of a term t_{i} in a document dj is defined as

$$
w_{i, j}=\left[-\log P\left(t_{i} \mid C\right)\right] *\left[1-P\left(t_{i} \mid d_{j}\right)\right]
$$

- Two term distributions are considered: in the collection and in the subset of docs in which it occurs
- The rank $R\left(d_{j}, q\right)$ of a document d_{j} with regard to a query q is then computed as

$$
R\left(d_{j}, q\right)=\sum_{t_{i} \in q} t f_{i, q} \times w_{i, j}
$$

where $t f_{i, q}$ is the frequency of term t_{i} in the query

Distribution of terms in the collection: (Random Distribution)

- To compute the distribution of terms in the collection, distinct probability models can be considered
- Binomial distribution
- To illustrate, consider a collection with 1000 documents and a term t_{i} that occurs 10 times in the collection
- Then, the probability of observing 4 occurrences of term t_{i} in a document is given by

$$
P\left(t_{j} \mid C\right)=\binom{n}{k} p^{k}(1-p)^{(n-k)}=\binom{10}{4}\left(\frac{1}{1000}\right)^{4}\left(1-\frac{1}{1000}\right)^{6}
$$

Distribution of terms in the collection: (Binomial distribution)

- In general, let $\mathrm{p}=1 / \mathrm{N}$ be the probability of observing a term in a document, where N is the number of docs
- The probability of observing $f_{i, j}$ occurrences of term t_{i} in document d_{j} is described by a binomial distribution:

$$
\begin{gathered}
P\left(t_{j} \mid C\right)=\binom{T F_{i}}{t f_{i, j}} p^{t f_{i, j}}(1-p)^{T F_{i}-t f_{i, j}} \\
\mathrm{TF}_{\mathrm{i}}=\sum_{\mathrm{d}_{\mathrm{j}} \in C} \mathrm{tf}_{\mathrm{i}, \mathrm{j}}
\end{gathered}
$$

TF_{i} is the total frequency of term t_{i} in the collection $(\mathrm{N}$ documents)

- The average occurrence of term t is: $\quad \boldsymbol{\lambda}_{\mathrm{i}}=\boldsymbol{T} F_{i} / N$

Distribution of terms in the collection: Binomial approximation \rightarrow Poisson

- As $\mathrm{N}>30$ et $\mathrm{p}<0.05$
- Under these conditions, we can approximate the binomial distribution by a Poisson process, which yields

$$
P\left(t_{j} \mid C\right)=\frac{e^{-\lambda_{i}} \lambda_{i}^{t_{i, j}}}{t f_{i, j}!}
$$

Binomial approximation \rightarrow Poisson

- The amount of information associated with term t_{i} in the collection can then be computed as
$-\log P\left(t_{j} \mid C\right)=-\log \left(\frac{e^{-\lambda_{i}} \lambda_{i}^{f_{i}, j}}{f_{i, j}!}\right)$

$$
\begin{aligned}
\approx & -f_{i, j} \log \lambda_{i}+\lambda_{i} \log e+\log \left(f_{i, j}!\right) \\
\approx & f_{i, j} \log \left(\frac{f_{i, j}}{\lambda_{i}}\right)+\left(\lambda_{i}+\frac{1}{12 f_{i, j}+1}-f_{i, j}\right) \log e \\
& +\frac{1}{2} \log \left(2 \pi f_{i, j}\right)
\end{aligned}
$$

$f_{i, j}!$ was approximated by the Stirling's formula

$$
f_{i, j}!\approx \sqrt{2 \pi} f_{i, j}^{\left(f_{i, j}+0.5\right)} e^{-f_{i, j}} e^{\left(12 f_{i, j}+1\right)^{-1}}
$$

Distribution of terms in the collection: Bose-Enstein distibution

- Randomness Model can be estimated as Bose-Einstein distribution and approximate it by a geometric distribution:

$$
P\left(t_{j} \mid C\right)=p(1-p)^{t f}
$$

$$
\text { where } \left.p=1 /\left(1+\lambda_{\mathrm{i}}\right) \text { (estimation of } \lambda_{\mathrm{i}}\right)
$$

- The amount of information associated with term t_{i} in the collection can then be computed as
$\left.-\log P\left(t_{j} \mid C\right)_{V}\right) \approx-\log \left(\frac{1}{1+\lambda_{i}}\right)-f_{i, j} \times \log \left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)$

Distribution over the Elite documents

- The amount of information associated with term distribution in elite docs can be computed by using
Laplace's law of succession

$$
1-P\left(t_{j} \mid d_{j}\right)=\frac{1}{t f_{i, j}+1}
$$

- Another possibility is to adopt the ratio of two Bernoulli processes, which yields

$$
1-P\left(t_{j} \mid d_{j}\right)=\frac{T F_{i}+1}{n_{i} \times\left(t f_{i, j}+1\right)}
$$

- n_{i} is the number of documents in which the term occurs

Normalization

- These formulations do not take into account the length of the document d_{j}. This can be done by normalizing the term frequency $t f_{i, j}$
- Distinct normalizations can be used, such as

$$
t f_{i, j}^{\prime}=t f_{i, j} \times \frac{a v g _d l}{d l\left(d_{j}\right)}
$$

or

$$
t f_{i, j}^{\prime}=t f_{i, j} \times \log \left(1+\frac{a v g _d l}{d l\left(d_{j}\right)}\right)
$$

where avg_dl is the average document length in the collection and $d l\left(d_{j}\right)$ is the length of document d_{j}

Normalization

- To compute $w_{i, j}$ weights using normalized term frequencies, just substitute the factor $\mathrm{t} f_{i, j}$ by $\mathrm{t} f^{\prime}{ }_{i, j}$
- we consider that a same normalization is applied for computing $P\left(t_{i} \mid C\right)$ and $P\left(t_{i} \mid d_{j}\right)$
- By combining different forms of computing $P\left(t_{i} \mid C\right)$ and $P\left(t_{i} \mid d_{j}\right)$ with different normalizations, various ranking formulas can be produced

