The Ivy Java library guide
CENA NT02-819

Yannick Jestin

jestin@cena.fr

Copyright © 2004 CENA, Centre d’Etudes de la Navigation Aérienne

Copyright © 2004 Centre d’Etudes de la Navigation Aérienne

This document is a programmer’s guide that describes how to use the Ivy Java library to connect
applications to an Ivy bus. This guide describes version 1.2.6 of the library. This document itself
is part of the Java package, available on the Ivy web site (http://www.tls.cena.fr/products/ivy/).

1. Foreword

This document was written in SGML according to the DocBook DtD, so as to be able to generate PDF
and html output. However, the authors have not yet mastered the intricacies of SGML, the DocBook
DtD, the DocBook Stylesheets and the related tools, which have achieved the glorious feat of being far
more complex than LaTeX and Microsoft Word combined together. This explains why this document, in
addition to being incomplete, is quite ugly. We'll try and improve it.

2. What is lvy?

Ivy is a software bus designed at CENA (http://www.cena.fr/). A software bus is a system that allows
software applications to exchange information with the illusion of broadcasting that information,

selection being performed by the receiving applications. Using a software bus is very similar to dealing
with events in a graphical toolkit: on one side, messages are emitted without caring about who will

handle them, and on the other side, one decide to handle the messages that have a certain type or follow a
certain pattern. Software buses are mainly aimed at facilitating the rapid development of new agents, and
at managing a dynamic collection of agents on the bus: agents show up, emit messages and receive some,
then leave the bus without blocking the others.

NTO02-819 © CENA

Ivy is implemented as a collection of libraries for several languages and platforms. If you want to read
more about the principles Ivy before reading this guide of the Java library, please r&fer toy

software bus: a white papelf you want more details about the internals of Ivy, have a lookhat lvy
architecture and protocolAnd finally, if you are more interested in other languages, refer to other guides
such asThe Ivy Perl library guidgnot yet written), ofThe Ivy C library guideAll those documents

should be available from the Ivy Web site (http://www.tls.cena.fr/products/ivy/).

3. The lvy Java library

3.1. What is it?

The lvy Java library (aka libivy-java or fr.dgac.ivy) is a Java package that allows you to connect
applications to an Ivy bus. You can use it to write applications in Java. You can also use it to integrate
any thread-safe Java application on an Ivy bus. So far, this library has been tested and used on a variety
of Java virtual machines (from 1.1.7 to 1.4.2), and on a variety of architectures (GNU/Linux, Solaris,
Windows NT,XP,2000, MacOSX).

The vy Java library was originally developed by Frangois-Régis Colin and is now maintained by
Yannick Jestin at CENA within a group at CENA (Toulouse, France).

3.2. Getting and installing the lvy Java library

You can get the latest versions of the Ivy C library from the vy web site
(http://lwww.tls.cena.fr/products/ivy/). It is packaged either as a jar file or as a debian package. We plan
to package it according to different distribution formats, such as .msi (Windows) or .rpm (Redhat and
Mandrake linux). Contributors are welcome for package management.

The package is mainly distributed as a jar file. In order to use it, either add it in your CLASSPATH
environment variable, put the it in your $JAVA_HOME/jre/lib/ext/ directory, or C:\Program
Files\JavaSoft\... for Windows. The best way to avoid mistakes is to put it in the command line each time
you want to use ivy$ java -classpath .:/path/to/ivy.jar:/path/to/regexp.jar:/path/to/getopt.jar

className

The package contains the documentation, the sources and the class files for the fr.dgac.ivy package,
alongside with examples and a couple of useful tools, IvyDaemon and Probe. You will need the Apache
Jakarta project regexp library (http://jakarta.apache.org/regexp/) and the gnu getopt library
(http://lwww.urbanophile.com/arenn/coding/download.html). Those could be included in the jar file, but
not in the debian package.

In order to test the presence of lvy on your system once installed, run the following command:

NT02-819 © CENA
$ java fr.dgac.ivy.Probe

If should display a line about broadcasting on a strange address, this is OK and means it is ready and
working. If it complains about a missing class (java.lang.NoClassDefFoundError), then you have not
pointed your virtual machine to the jar file or your installation is incomplete.

4. Your first lvy application

We are going to write a "Hello world translater” for an vy bus. The application will subscribe to all
messages starting with the "Hello" string, and re-emit them on the bus having translated "Hello" into
"Bonjour" (Hello in french). In addition, the application will quit as soon as it receives a "Bye" message.

4.1. The code

Here is the code of "ivyTranslater.java:

import fr.dgac.ivy.* ;

class ivyTranslater implements IvyMessageListener {
private Ivy bus;

ivyTranslater() throws IvyException {

/I initialization, name and ready message

bus = new Ivy("lvyTranslater","lvyTranslater Ready",null);

/I classical subscription

bus.bindMsg("*Hello(.*)",this);

/I inner class subscription (think awt)

bus.bindMsg("*Bye$",new IvyMessageListener() {
public void receive(lvyClient client, String[] args) {

/I leaves the bus, and as it is the only thread, quits
bus.stop();

}

i

bus.start(null); // starts the bus on the default domain

}

/I callback associated to the "Hello" messages"”
public void receive(lvyClient client, String[] args) {
try {
bus.sendMsg("Bonjour"+((args.length >0)?args[0]:""));
} catch (lvyException ie) {
System.out.printin("can’t send my message on the bus");
}
}

public static void main(String args[]) throws IvyException {

NTO02-819 © CENA

new ivyTranslater();

}
}

4.2. Compiling it

You should be able to compile the application with the following command (if the ivy-java jar is in your
development classpath):

$ javac ivyTranslater.java

$

4.3. Testing

We are going to test our application wittdgac.ivy.Probe. In a shell, launch ivyTranslater:

$ java ivyTranslater

In another shell, launcjava fr.dgac.ivy.Probe ’(.*)". You can see that the lvyTranslater has joined the
bus, published its subscriptions, and sent the mandatory ready message. As your probe has subscribed to
the eager regexp .* and reports the matched string within the brackets (.*), the ready message is printed.

$ java fr.dgac.ivy.Probe '(.*)

you want to subscribe to (.*)
broadcasting on 127.255.255.255:2010
IvyTranslater connected

IvyTranslater subscribes to “Bye$
IvyTranslater subscribes to ~Hello(.*)
IvyTranslater sent 'lvyTranslater Ready’

Probe is an interactive program. Type "Hello Paul", and you should receive "Bonjour Paul". Type "Bye",
and the ivyTranslater application should quit to the shell. Just quit Probe, issuing a Control-D (or .quit)
on a line, and Probe exists to the shell.

Hello Paul

-> Sent to 1 peers
IvyTranslater sent 'Bonjour Paul’
Bye

-> Sent to 1 peers
IvyTranslater disconnected
<Ctr-D >

$

NTO02-819 © CENA

5. Basic functions

The javadoc generated files are available on line on the ivy web site, and should be included in your ivy
java package (or in /usr/share/doc/libivy-java, alongside with this very manual). Here are more details on
those functions.

5.1. Initialisation an Ivy object and joining the bus

Initialising a Java vy agent is a two step process. First of all, you must credtegat.ivy.lvy

object. It will be the repository of your agent name, network state, subscriptions, etc. Once this object is
created, you can subscribe to the various lvy events: text messages through Perl compatible regular
expressions, other agents’ arrival, departure, subscription or unsubscription to regexps, direct messages
or die command issued by other agents. At this point, your ivy application is still not connected. In order
to join the bus, call thetart(string domain) method on your Ivy object. This will spawn two

threads that will remain active until you call tewp() method on your Ivy object or until some other

agent sends you a die message. Oncesthif) method has been called, the network machinery is set

up according to the ivy protocol, and your agent is ready to handle messages on the bus !

fr.dgac.ivy.lvy(String name,String message, IvyApplicationListener appchb)

This constructor readies the structures for the software bus connexion. It is possible to have more than
one bus at the same time in an application, be it on the same ivy broadcast address or one different ones.
Thename is the name of the application on the bus, and will by transmitted to other application, and
possibly be used by them (throughing IvyClient.getApplicationName()). Themessage is

the first message that will be sent to other applications, with a slightly different broadcasting scheme than
the normal one (se€he Ivy architecture and protocdlocument for more information. thessage is

null, nothing will be sent. Usually, other application subscribe to this ready message to trigger actions
depending on the presence of your agent on the busafpgm is an object implementing the
IvyApplicationListener interface. Its different methods are called upon arrival or departure of other

agents on the bus, or when your application itself leaves the bus, or when a direct message is sent to your
application. It is also possible to add or remove other application listeners using the
Ivy.AddApplicationListener() andlvy.RemoveApplicationListener() functions.

public void start(String domainbus) throws IvyException

This method connects the Ivy bus to a domain or list of domains. This spawns network managing threads
that will be stropped withvy.stop() or when a die message is received. The rendezvous point is the
String parametedomainbus , an UDP broadcast address like "10.0.0:1234" (255 are added at the end to
become an IPv4 UDP broadcast address). This will determine the meeting point of the different
applications. For the gory details, this is done with an UDP broadcast or an IP Multicast, so beware of
routing problems ! You can also use a comma separated list of domains, for instance
"10.0.0.1234,192.168:3456". If the domaimisgl , the API will check for the propertywY_BUS (set at

the invocation of the JVM, e.g $ java -DIVY_BUS=10:4567 myApp, or via an environment variable on
older JVMs); if not present, it will use the default bus, which is 127.255.255.255:2010. The default
address requires a broadcast enabled loopback interface to be active on your system (CAUTION, on
MacOSX and some releases of SunOS, the default bus doesn't work ...). If an IvyException is thrown,
your application is not able to send or receive data on the specified domain.

NTO02-819 © CENA

public void stop()

This methods stops the threads, closes the sockets and performs some clean-up. If there is no other
thread running, the program quits. This is the preferred way to quit a program within a callback (please
don’t useSystem.exit() before having stopped the bus, even if it works ...). Note that it is still
possible to reconnect to the bus by callswgrt() once again (the bug has been corrected since 1.2.8).

5.2. Emitting messages

Emitting a message is much like echoing a string on a output channel. Portion of the message will be
sent to the connected agent if the message matches their subscriptions.

public int sendMsg(String message)

Will send each remote agent the substrings in case there is a regexp matching. The default behaviour is
not to send the message to oneself ! The result is the number of messages actually sent. The main issue
here is that the sender ivy agent is the one who takes care of the regexp matching, so that only useful
information are conveyed on the network. Be sure that the message sent doesn’t contains protocol
characters: 0x01 to 0x08 and unfortunately 0x0D, the newline character. If you want to send newlines,
see protectNewline, in advanced functions.

5.3. Subscription to messages

Subscribing to messages consists in binding a callback function to a message pattern. Patterns are
described by regular expressions with captures. Since ivy-java 1.2.4, Perl Compatible Regular
Expressions are used, with the Apache Jakarta Project regexp library (see the jakarta regexp web site
(http://jakarta.apache.org/regexp/)). When a message matching the regular expression is detected on the
bus (the matching is done at the sender’s side), the recipient’s callback function is called. The captures

(ie the bits of the message that match the parts of regular expression delimited by brackets) are passed to
the callback function much like options are passed to main. Usiginti®lsg() method to bind a

callback to a pattern, and tlhebindMsg method to delete the binding.

public int bindMsg(String regexp, lvyMessageListener callback);
public void unBindMsg(int id);

Theregexp follows the PCRE syntax (see man pcrepattern(3)), grouping is done with brackets. The
callback is an object implementing the IvyMessageListener interface, withetteve method. The
thread listening on the connexion with the sending agent will execute the callback.

There are two ways of defining the callback: the first one is to make an object an implementation of the
IvyMessagelListener interface, and to implementghigic void receive(lvyclient ic,

String[] args) method. But this is limited to one method per class, so the second method used is the
one of inner classes, introduced since Java 1.1 and widely used in swing programs, for instance:

bindMsg("*a*(.*)c*$", new IvyMessageListener() {
public void receive(lvyClient ic,String[] args) {

NTO02-819 © CENA

... Il do some stuff

}
h

The processing of the ivy protocol and the execution of the callback are performed within an unique
thread per remote client. Thus, the callback will be performed sequentially. If you want an asynchronous
handling of callbacks, see in the advanced functions.

5.4. Subscribing to application events

TODO

6. Advanced functions

6.1. Sending to self

By default, an application doesn’t send the messages to itself. Usually, there are more efficient and
convenient ways to communicate withing a program. However, if you want to take benefit of the ease of
ivy or to be as transparent as possible, you can set the lvy object so that the pattern matching and
message sending will be done for the sender too. This method exists since 1.2.4.

public void sendToSelf(boolean b);
public boolean isSendToSelf();

6.2. Initializing a domain

The default behaviour of an Ivy agent is to accept a command line switch (-b 10:2010, e.g.), and if not
present, to use the IVYBUS property, (given by the -DIVYBUS=10:34567 parameter to the jvm), and,
if not present, to default to Ivy.DEFAULT _DOMAIN. This domain is given as a string ardument to the
Ivy.start() function. To make this logic easier to follow, the Ivy class provides the programmer with two
useful function:

public static String getDomain(String arg);
public static String getDomainArgs(String progname,String[] args);

The getDomain() function, if arg is non null, will return arg, otherwise it will return the IVYBUS
property, otherwise the DEFAULT DOMAIN. A very simple way to start an vy agent is with
ivy.start(getDomain(null)). The getDomainArgs(name,args) will add very simple processing of the args
given to the main() function, and give higher priority to the command line argument.

NTO02-819 © CENA

6.3. Newline within messages

As we have seen ilvy.sendMsg() , you can not have newline characters within the string you send on
the bus. If you still want to send messages with newline, you can encode and decode them at the emitter
and receiver’s side. Witlvy.protectNewLine(boolean b) you can set your Ivy object to ensure

encoding and decoding of newlines characters. This is tested and working between Java ivy applications,
but not yet implemented in other ivy libraries. The newlines are replaced by ESC characters (hex Ox1A

). As the encoding and decoding cost a little more CPU and is not yet standardised in the Ivy protocol,
use it at your own risk. We should of course protect the other protocol special characters.

6.4. Sending direct messages

Direct messages is an ivy feature allowing the exchange of information between two ivy clients. It
overrides the subscription mechanism, making the exchange faster (there is no regexp matching, etc).
However, this features breaks the software bus metaphor, and should be replaced with the relevant
bounded regexps, at the cost of a small CPU overhead. The full direct message mechanism in Java has
been made available since the ivy-java-1.2.3, but i won't document it to make it harder to use.

6.5. Asynchronous Subscription to messages

For each and every remote agent on the bus, a thread is in charge of handling the encoding and decoding
of the messages and of the execution of the callbacks. Thus, if a callback consumes much time, the rest
of the communication is put on hold and the processing is serialised, eventually leading to a stacking in
the socket buffer and to the blocking of the message sender. To alleviate this, we have set up since
ivy-java 1.2.4 an asynchronous subscription, where each and every time a callback is performed, it is
done in a newly created separate thread. As creating a thread is quite expensive, one should use this
method for lengthy callbacks only. Furthermore, to avoid concurrent access to the callback data, the
String[] argument passed on to the callbacks are cloned. This causes an extra overhead.

public int bindMsg(String regexp, lvyMessageListener callback,boolean async);
public int bindAsyncMsg(String regexp, IvyMessagelListener callback);

If the async boolean parameter is set to true, a new thread will be created for each callback. The same
unBindMsg() can be called to cancel a subscription.

6.6. Waiting for someone: waitForClient and waitForMsg

Very often, while developing an Ivy agent, you will be facing the need of the arrival of another agent on
the bus to perform your task correctly. For instance, for your spiffy application to run, a gesture
recognition engine will have to be on the bus, or another data sending application. The Ivy way to do this
is to subscribe to the known agentsdy message (be sure to subscribe before starting the bus), or to

NTO02-819 © CENA

implement an IvyApplicationListener and change of state irctimmect() method. However, it is
often useful to stop and wait, and it is awkward to wait for a variable change.

IvyClient waitForClient(String name, int timeout)
IvyClient waitForMsg(String regexp, int timeout)

These two methods allow you to stop the flow of your main (or other) thread by waiting for the arrival of
an agent, or for the arrival of a message. If the agent is alreadywegteorClient will return

immediately. Iftimeout is set to null, your thread can wait "forever", otherwise it will wititeout
milliseconds. WithwaitForMsg , be aware that your subscription can be propagated to the remote agents
after that their message was sent, so that you’d wait for nothing. You had better be sure that the
waitForMsg method is called early enough.

6.7. Subscribing to subscriptions

A very common practice when beginning to play with ivy is to develop an ivy agent monitor (the good
practice is to use the excellent ivymon written in perl by Daniel Etienne). If you want to notity the user

that a remote agent has subscribed or unsubscribed to a regular expression after the protocol handshake,
then your monitor agent has to subscribe to subscriptions. To do so, use the following functions:

public int addBindListener(lvyBindListener callback);
public void removeBindListener(int id)

A IvyBindListener object must implement the following interface:

public void bindPerformed(lvyClient client, int id, String regexp);
public void unbindPerformed(lvyClient client, int id, String regexp);

For a code sample, see the Probe utility source code.

7. Utilities

7.1. Probe

Probe is your swiss army knife as an lvy Java developer. Use it to try your regular expressions, to check
the installation of the system, to log the messages, etc. To use it, either run fr.dgac.ivy.Probe, or run the
jar file directly with$ java -jar ivy.jar

The command line options (available with the -h command line switch) are the following:

- -b allows you to specify the ivy bus. This overrides the -DIVY_BUS Java property. The default value
is 127.255.255.255:2010.

NTO02-819 © CENA

- -n NAME allows you to specify the name of this probe agent on the bus. It defaults to JPROBE, but it
might be difficult to differentiate which jprobe sent which message with a handful of agents with the
same name

« -q allows you to spawn a silent jprobe, with no terminal output
« -s sends to self (default off), allows subscription to its own messages

- -n NEWNAME changes JPROBE default lvy name to another one, which can prove to be useful when
running different probes

« -tadd timestamps to messages

- -d allows you to use JPROBE on debug mode. It is the same as setting the VY_DEBUG property (
java -DIVY_DEBUG fr.dgac.ivy.Probe is the same as java fr.dgac.ivy.Probe -d)

« -h dumps the command line options help.

The run time commands are preceded by a single dot (.) at the beginning of the line. Issue ".help" at the
prompt (without the double quotes) to have the list of available commands. If the lines does not begin
with a dot, jprobe tries to send the message to the other agents, if their subscriptions allows it. The dot
commands are the following

- .die CLIENTNAME issues an ivy die command, presumably forcing the first agent with this name to
leave the bus

« .bye (or .quit) forces the JPROBE application to exit. This is the same as inputting an end of file
character on a single input line ("D).

- .direct client id message sends the direct message to the remote client, using the numeric id
« .bind REGEXP and .unbind REGEXP will change Probe’s subscription

- .list gives the list of clients seen on the ivy bus

7.2. lvyDaemon

As the launching and quitting of an ivy bus is a bit slow, it is not convenient to spawn an Ivy client each
time we want to send a simple message. To do so, we can use the lvyDaemon, which is a TCP daemon
sitting and waiting on the port 3456, and also connected on the default bus. Each time a remote
application connects to this port, every line read until EOF will be forwarded on the bus. The standard
port and bus domain can be overridden by command line switchesHjasa fr.dgac.ivy.lvyDaemon

-h). First, spawn an ivy Damom$ java fr.dgac.ivy.lvyDaemonthen, within your shell scripts, use a

short TCP connexion (for instance netcas echo "hello world" | nc -q 0 localhost 3456The "hello

world" message will be sent on the default Ivy Bus to anyone having subscribe to a matching pattern

10

NTO02-819 © CENA

8. programmer’s style guide
TODO

To check the presence and readiness of another agent be sure to use its ready message. The test directory
witholds many interesting examples of source code showing how to wait for an agent to join a bus.

If you want your agent A to perform a query, first, you must compute a string, hopefully as unique as
possible, that will serve as a token. There is no cross platform/cross language way to implement it (
MAC adress, current time in millisecond, process ID) on a distributed system with different JVM, so
you'll have to rely on a good naming scheme. Once this ID is computed, subscribe to the answer you
want to have, and send your message:

String id = myld(serial++); /I returns Example.25432.19 e.g.
MyListener | = new MyListener(); // creates a listener

int tempBinding = bus.bindMsg("*response id="+id+" value=(.*)",l);
|.setValue(tempBinding); /I for unsubscription

bus.send("request id="+id+" sum a=2 b=2"); // requests

public void receive(lvyClient ic,String[] args) {
/I there is "4" in args[1]
bus.unBindMsg(bindingint);
}

9. Contacting the author

The Ivy Java library is now maintained by Yannick Jestin. For bug reports or comments on the library
itself or about this document, please send him an emajeatis@cena.fr ~ >. For comments and ideas
about lvy itself (protocol, applications, etc), please join and use the vy mailingiig®<ena.fr >.

If you want to report a bug, try to identify the causal path leading to the bug, and submit a trace of the
problem, if possible, using the -DIVY_DEBUG property to produce a trace of the ivy execution.

11

