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1 Introduction

This document constitutes the reference manual of the Atelier B interactive prover (PRI).
It contains all the available commands, for the 3.6 version of Atelier B. The aim of this
manual is not to give proof techniques, but to indicate to the user the syntax and the
fields covered by the interactive proof commands.

For each function a description is given of the syntax to be used and the way to use it.
An example will complete the description of the function.

This document also includes:

• the basic notions, necessary to carry out a proof (see chapter 3 page 7)

• the normalisation of proof obligations (PO), performed by the prover and the gen-
erator of proof obligations (GOP) (see chapter 4 page 17)

• the presentation of ways to enrich the prover’s rule base (PatchProver (see chapter 8
page 145), PMM (see chapter 7 page 143))

• the list of available commands, classified by type and in alphabetical order (see
chapter 12 page 155)
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2 Changes since version 3.5

2.1 Filters for User Pass

A filtering of the User Pass rules allows to try the User Pass commands on some proof
obligations only (refer to chapter 10, page 149).

2.2 Customizing the prover using resources

Some of the prover functions can be customized using resources.

• Time Out

– Represents the time-out in seconds for satellite provers (predicate prover and
mono-lemma prover) in User Pass or Prove Replay automatic mode.

– This resource enables to try in automatic mode (User Pass) some proof tactics
that use satellite provers massively.

– This possibility of modulation enables to start proofs with small time-out (max-
imum calculus time allowed before the proof process stops) in order to quickly
test the efficiency of such a tactic.

– See also page 139.

• Keep Non Simplified Hypothesis

– This resource enables to choose keeping or not non-simplified predicates to-
gether with their simplified version.

– In some cases, the simultaneous presence of the simplified and non-simplified
forms of a predicate can prevent the application of some prover mechanisms. For
example, the prover can’t perform a Modus ponens on the following hypotheses:
P , P ′ and (P and P’) ⇒ Q though it performs it on P and P’ ⇒ Q. It is in
such cases that it is interesting to set the resource to FALSE (that means do
not keep the non-simplified predicates).

– See also page 140.

• Use Rule Package

– Setting the resource to the p1 value enables to use additional proof rules along
with the automatic prover regular ones.
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– These rules enable to handle B language symbols that weren’t fully handled
by the rules of the prover native base. Thus, a B model in which the proof
obligations contain the mod or / symbols are more likely to be automatically
demonstrated using the p1 rules (referring to these symbols) than using only
the prover regular rules.

– See also page 141.

• Max Number Of Universal Hypothesis Instanciation

– The GenAny mechanism of the prover enables to particularize hypotheses of
the form ∀X · (P (X)⇒ Q), where P (X) is a predicate verified by X, according
to hypotheses P (Xi), that is to say, to generate hypotheses [X := Xi] Q for all
Xi verifying P .

– By giving a quadruplet of integers, the resource enables to set the maximum
number of applications of the GenAny mechanism for each of the four prover
forces (respectively 0, 1, 2 and 3).

– It may be interesting to limit the number of instantiations of universally quan-
tified formulas to avoid a combinative (combinatorial?) explosion, especially in
cases where there are a lot of universally quantified hypotheses.

– See also page 142.

2.3 New commands have been added

• AbstractExpression

– The command ae(EX, ID) enables to generate the goal ID = EX ⇒ G where
G represents the current goal in which the occurrences of the EX expression
have been substituted by the ID identifier.

– A complex goal is simplified using this command and then becomes more read-
able.

– The predicate prover becomes more efficient as it works on a simpler goal.

– See also page 19.

• CurrentGoal

– This command displays the current goal.

– Enables a better readability of the goal when several interactive commands
were tried.

– See also page 42.

• ModelChecking

– This command enables to perform demonstration by cases of a goal that involves
variables whose values are taken from enumerated sets.

– It is interesting to use this command on goals containing boolean variables: it
is, indeed, generally easier to demonstrate some goals when values of some of
their variables are known.
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– See also page 78.

• MonoLemma prover

– The Mono-Lemma prover works almost the same as the automatic prover but
with a little different processing of hypotheses. This command enables to start
the Mono-Lemma prover on the current goal.

– It has the significant advantage to be able to be started with a time-out and a
proof force level: it is possible to locally change the proof force.

– See also page 84.

• PreViousPo

– Enables to move to the previous unproved PO (if there are some).

– It allows another browsing mode among PO, in addition to NExtPO.

– See also page 105.

• ShowProof

– This command displays the saved interactive proof commands of a given proof
obligation.

– When two proof obligations are quite similar, it may be wise to use or to be
inspired by the proof commands of one of the two proof obligations to prove the
other one. One need only to display these commands using the ShowProof.

– See also page 116.

• UserSimplification

– Application of user-provided rewrite rules while limiting memory consumption.

– Whereas the classical rewriting is very memory consuming, this command en-
ables to perform the same work but in an optimized manner.

– See also page 134 and page 147.

2.4 The predicate prover has been enhanced

The predicate prover is now available in version 6.1. It contains:

• the arithmetic solver (normaliser) of the prover,

• the arithmetic prover, for predicates and arithmetic expressions processing,

• the taking into account of sequences and of the symbols succ, pred, max, card.

The hypotheses selection for the predicate prover has been enhanced.
See also page 96.



6 Interactive Prover—Reference Manual

2.5 Miscellaneous

• Dynamic display of the proof tree during interactive proof enables to get one’s bear-
ing in the current proof (Graphical Trace page 71).

• A formula logical analyser enables to improve the understanding of a complex for-
mula by the user (Logical Analysis page 74, Display Term page 55).

• A textual on-line help allows to quickly get the syntax and effects of the various
interactive commands (Help page 73).

• The GlobalSituation (page 68), SearchRule (page 118) and TryEverywhere (page 128)
commands have new options.
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3 Basic Notions

3.1 What is a proof obligation?

A proof obligation (PO) consists of a goal G and a set of hypotheses H. Demonstrating a
PO means demonstrating this goal G, under the assumption that all the hypotheses of H
are verified.

The hypotheses H are said to be contextual hypotheses.

If the current goal is in the form P ⇒ Q, by application of the deduction principle, P will
become a hypothesis and the new goal becomes Q. P is then called a derived hypothesis.

The current hypotheses are composed of the contextual hypotheses and the derived hy-
potheses.

The hypotheses stack contains all the contextual hypotheses and the derived hypotheses,
in the order they appeared.

3.2 What is a well-typed predicate?

When expressions are entered into the interactive prover (as command parameters), take
care to not introduce typing mistakes.

For example:

• introduction of the predicate i = E where i and E are typed as follows: i ∈ Z and
E ∈ P(Z)

The following typing is correct: i ∈ Z et E ∈ Z.

• introduction of the predicate E ≤ F where E and F are typed as follows: E ∈ P(Z)
and F ∈ P(Z)

The following typing is correct: E,F ∈ Z× Z.

• introduction of the predicate b = e1 + e2 where b, e1 and e2 are typed as follows:
b ∈ BOOL, e1 and e2 belong to an enumerated set.

The following typing is correct: b, e1, e2 ∈ Z× Z× Z.

In general, a typing error will produce a ill-typed goal which will not be provable.



8 Interactive Prover—Reference Manual

3.3 What is a well-defined expression?

3.3.1 Presentation

A mathematical expression is well-defined when it can be assigned a meaning (refer to
Mdelta User Manual, version 1.0). On the opposite case, the expression would be said as
meaningless. Any expression requiring conditions to avoid being meaningless is defined as
potentially meaningless.

For example, given the expression:

y =
x
x+8
c

(3.1)

This expression can be true or false, provided that it is well-defined. If this expression
is not well-defined, it is then impossible to associate it a true or false value. This ill-
definedness means that at least one operator of the expression has at least one operand
that does not belong to its domain. Expression (3.1) is obviously arithmetic by nature.
We consider that this expression is has been type-checked (operation performed by the
type checker) so that y, x, and c are integers.

The operators appearing in the expression (3.1) are:

• equality

An equality a=b is well-defined on the condition that a and b are well-defined

• addition

An addition a+b is well-defined on the condition that a and b are well-defined

• integer division

An integer division a/b is well-defined on the condition that a and b are well-defined
and b is non-zero.

We will then have to check that:

• the denominator of x/(x+ 8/c) is non-zero

• the denominator of 8/c is non-zero

To establish that expression (3.1) is well-defined, the user has to prove the following
predicates:

(x+ 8)/c 6= 0 (3.2)

c 6= 0 (3.3)

The expression context has to contain these predicates in the form of hypotheses or to
enable to deduce them.

If it is not the case, the expression (3.1) is potentially ill-defined. Refer to table (1) to see
the list of the expressions that can be ill-defined.
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3.3.2 Conditions of well-definedness

The well-definedness conditions are listed in the table below.
Expression Condition of well-definedness
ab a ∈ N ∧ b ∈ N
a mod b b ∈ N1 ∧ a ∈ N
a/b b ∈ Z1

Π(x).(P |E) {x|P} ∈ FIN({x|P})
Σ(x).(P |E) {x|P} ∈ FIN({x|P})
max(S) S ∩ N ∈ FIN(N) ∧ S 6= ∅
min(S) S ∩ (Z− N) ∈ FIN(Z) ∧ S 6= ∅
card(S) S ∈ FIN(S)
inter(U) U 6= ∅⋂

(x).(P |E) {x|P} 6= ∅
rn n ∈ N
f(x) x ∈ dom(f) ∧ f ∈ dom(f) 7→ ran(f)
perm(S) S ∈ FIN(S)
conc(s) s ∈ seq(ran(s)) ∧ ∀x.(x ∈ dom(s) ⇒ s(x) ∈ seq(ran(s(x))))
sa t s ∈ seq(ran(s)) ∧ t ∈ seq(ran(t))
size(s) s ∈ seq(ran(s))
rev(s) s ∈ seq(ran(s))
s← e s ∈ seq(ran(s))
e→ s s ∈ seq(ran(s))
tail(s) size(s) ≥ 1 ∧ s ∈ seq(ran(s))
first(s) size(s) ≥ 1 ∧ s ∈ seq(ran(s))
front(s) size(s) ≥ 1 ∧ s ∈ seq(ran(s))
last(s) size(s) ≥ 1 ∧ s ∈ seq(ran(s))
s ↑ n n ∈ 0 . . size(s) ∧ s ∈ seq(ran(s))
s ↓ n n ∈ 0 . . size(s) ∧ s ∈ seq(ran(s))

Table (1): Potentially meaningless expressions

3.4 What is a rule?

A rule is a formula of the following form: A ⇒ B.
A is called the antecedent of the rule.
B is called the consequent of the rule.
A and B can be predicate conjunctions.
A can be omitted. In this case, the rule is said to be atomic.
A rule can be:

• inductive (backward)
If the current goal is B, then to prove B, it is sufficient to prove A.
A is supposed to be more simple than B or, at least, more easily provable than B.

• deductive (forward)
If hypotheses A appear in the hypotheses stack, then hypotheses B are generated
and loaded in the stack, if they do not already exist.
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• for rewriting
In this case, B has the form C == D.
If A is verified then C is rewritten as D.
This type of rule only applies to sub formulas of the current goal or to the current
goal itself.

For example, the rule SimplifyIntMaxXY.3:

btest(p<=q)
=>
max{{p}\/{q}} == q

can be applied to goal
0 ≤ max({3} ∪ {5})−min(1..4)

transforming it into
0 ≤ 5−min(1..4)

Rules, contrary to hypotheses and goals, contain wildcards. A wildcard is a variable,
which can take any value (literal, expression, ...) If it is assigned a value, it is said to be
instantiated. A wildcard is represented by a letter of the alphabet: thus no more than 52
wildcards can appear inside a rule (lower case and upper case letters).
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3.5 What is a theory?

A theory consists in a container of rules, written in theory language 1.

Rules are named t.n, with

• t: name of the theory,

• n: index of the rule in the theory 2.

Example:

THEORY th1 IS

binhyp(a: B) &
binhyp(B<: C)
=>
a: C;

btest(0<=-t)
=>
0<=t**2 - 4*t + 1

END

The prover always tries to apply higher index rules before lower index rules (from the “
bottom” of the theory to the “top”).

3.6 What is a tactic?

A tactic is an ordered list of theories, that determines the traversal of a rule base 3 to
determine if one or several rules will be applied.

Theories are classified in two categories:

• Backward The goal to be handled is divided into sub-goals or discharged.

• Forward New hypotheses are generated.

1see Reference Manual of the Logic Solver
2the rule put at the beginning of the theory corresponds to index 1
3A rule base is composed of a set of theories.
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A full tactic is presented as a combination of a backward tactic and a forward tactic:

<tactic> ::= <backward tactic> , <forward tactic>
<backward tactic> ::= <backward tactic> ; <backward tactic>

<backward tactic> ~
theory name

<forward tactic> ::= <forward tactic> ; <forward tactic>
<forward tactic> ~
theory name

The forward tactic is optional.

The traversal of a tactic thus consists in searching in each backward theory a rule that
can be applied. The search order corresponds to the order of the listed theories.

If a rule can be applied, it is then applied and the search continues with the next theory.
This process is repeated until no more backward theories remain.

If, during the search through the backward theories, at least one hypothesis has been
generated, the process described for the backward theories will apply for the list of forward
theories (if there are any), and this is repeated each time a hypothesis is produced.

A theory or a group of theories can be “tilded”. In this case, there will be an attempt to
apply a rule of this theory as long as the rules of this theory are applied. When no more
rules are applied, the next theory will be examined.

Example:

((t1,t2)~,t3,t4~)

Implicitly, the most external list of theories is “tilded”, which means that:

(t1; t2; t3;...;tn)

is equivalent to

(t1; t2; t3;...;tn)~

3.7 What is a proof?

The Atelier B prover is composed of an automatic prover and an interactive prover. The
automatic prover enables to attempt to demonstrate automatically a set of proof obli-
gations, by applying a given set of general mechanisms. The prover is parameterizable
according to its force (Fast, force 0 to force 3). The higher the force is, the longer the
proof takes.

The interactive prover enables the user to assist the automatic prover in its demonstration
task, by carrying out the proof (addition of hypotheses, proof by contradiction, proof
by cases, ...). The prover is carried out using interactive commands . These commands
are applied for a given proof obligation and are saved for this PO. They constitute the
command line.
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In spite of all our efforts, the prover may sometimes loop (see chapter 3.9 page 14), i.e,
it has a highly diverging, uninterrupted, iterative behaviour . The probabilities of such a
phenomenon occurring increase with the force used.

3.8 The prover

The Atelier B automatic prover is composed of:

• mechanisms

These mechanisms orientate the proof, in order to demonstrate the goals of the proof
obligations. They enable triggering off the rules of the rule base.

• rules

These rules are those of the prover rule base (see chapter 3.4 page 9). They may
also have been added by the user (manual rules) using:

– a pmm file for a given component (see chapter 7 page 143)

– a PatchProver file for a full project (see chapter 8 page 145).

Beware!! The use of manual rules calls the proof validity into question (false rules
may lead to prove false proof obligations). Thus, when rules are added, they must
be rigorously demonstrated and inspected by a third party.

• Resources

The prover can be customized by setting the following resources in a resource file:

– Keep Non Simplified Hypothesis if set to TRUE, it enables to keep in
hypotheses, the simplified predicates (by the prover) along with their non sim-
plified version. If set at FALSE, it tells the prover to keep only the simplified
version of the hypotheses. Default is TRUE.

– Time Out whose value is an integer expressing the time-out of satellite provers
(predicate prover and mono-lemma prover) in User Pass and Replay mode, i.e.
the time after which we decide to stop the action of satellites provers. Default
is 300 seconds.

– Use Rule Package when set at the p1 value enables to use additional math-
ematical rules.

– Max Number Of Universal Hypothesis Instanciation can be set to a
nuplet of four natural integers whose values correspond to the maximum number
of instantiations of universally quantified hypotheses for respectively the 0, 1,
2 and 3 proof force.
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3.9 What is a prover loop?

For example, if we use the rule:

a*a == a*a*a/a

on the goal to be proved

cc(vv) = vv*vv

We will obtain successively

cc(vv) = vv*vv*vv/vv
cc(vv) = (vv*vv*vv/vv)*vv/vv
...

The proof kernel produces the following messages:

krt: sequence memory short
krt: asking for 1500000 int, waiting for system reply...
krt: OK, memory obtained, we continue.

krt: sequence memory short
krt: asking for 2249997 int, waiting for system reply...
krt: OK, memory obtained, we continue.

krt: sequence memory short
krt: asking for 3374992 int, waiting for system reply...
krt: OK, memory obtained, we continue.

...

The messages krt: sequence memory short are generated by the kernel which dynam-
ically allocates the lacking memory.

This example is simple. Loops may occur for groups of rules and may be a priori more
difficult to detect.

3.10 What is a command?

A command can be:

• simple

It is composed of a single Interactive command. The simple commands are listed at
the end of the document (see chapter 12 page 155).

• mixed

A mixed command is a list of simple commands separated by &. The various com-
mands from the list will be applied successively. when we use the rr command (see
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chapter 5.39 page 110) and we have just entered a mixed command, this mixed
command will be entirely replayed.

Example of a mixed command:

ah(aa+bb<=100) & pr & dd & pr
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4 Normalisation of proof
obligations

Hypotheses and goals are normalised by the Proof Obligation Generator and the prover.
This normalisation enables the transformation of expressions into expressions in normal
form, which will afterwards be used by all the rules related to this expression.

This limits polymorphism of the rules of the prover rule base, and thus their number.

The normal forms selected are:
Expression Normal Form
n > m m+ 1 <= n

m < n m+ 1 <= n

a <=> b (a => b)&(b => a)
a <: b a : POW (b)
a <<: b a : POW (b)&not(a = b)
a / : b not(a : b)
a / = b not(a = b)
a / <: b not(a : POW (b))
a / <<: b a : POW (b) => a = b

a : NATURAL a : INTEGER&0 <= a

NATURAL1 NATURAL− {0}
NAT1 NAT − {0}
FIN1(A) FIN(A)− {{}}
POW1(A) POW (A)− {{}}
seq1(A) seq(A)− {{}}
iseq1(A) iseq(A)− {{}}
perm(E) iseq(E)/\(NATURAL− {0}+− >> E)
<> {}
{x, y} {x}\/{y}
{x|P} SET (x).P
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It is advised during a rule writing, to check that this rule is normalised. If not, the rule
will be normalised when loading and may not be applied anymore.

For example, the following rule:

btest(0<x)
=>
0<=x**2-1

is normalised into

btest(0+1<=x)
=>
0<=x**2-1

But the btest only accepts parameters with the form a op b, where a and b are literal
integers. This rule will never be applied. It should have rather been written:

btest(1<=x)
=>
0<=x**2-1
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5 Interactive commands

5.1 Abstract Expression

Abstracting an expression

Syntax

ae(EX,ID)
with:

• EX is a mathematical expression with at least one occurrence appearing in the
current goal,

• ID is an identifier (in the B language sense) which is neither free in the goal nor in
the hypotheses.

Use

This command enables to generate the goal ∆e(EX) ∧ (EX = ID => [EX := ID]G)
where ∆e(EX) represents the well-definedness lemma of the expression EX (see chap-
ter 3.3 page 8) and [EX := ID]G the current goal in which every occurrence of expression
EX (appearing in the goal) has been replaced by identifier ID.

It is required to check the well-definedness of expression EX as it might be ill-defined, once
taken out of context (i.e., out of the current goal). Let’s assume that under the hypothesis
xx + 1 <= 1 we have the goal xx + 1 <= 1 ∨max(1..xx) = xx. This goal is well-defined
because xx + 1 <= 1 is well-defined and not(xx + 1 <= 1) ⇒ ∆p(max(1..xx) = xx)
i.e., not(xx + 1 <= 1) => ∆e(max(1..xx)), from the well-definedness of ∨ and max this
yields not(xx + 1 <= 1) => 1..x ∩ NAT ∈ FIN(NAT) ∧ not(1..xx) = ∅. If we perform
ae(max(1..xx),MAX) without caring about well-definedness, we get the goal max(1..xx) =
MAX => xx + 1 <= 1 ∨MAX = xx. Then a deduction (by dd) raises in hypotheses
the formula max(1..xx) = MAX which is now meaningless as we have the hypothesis
xx+ 1 <= 1 (and thus 1..xx = ∅).
Let us finally remark that the prover attempts an automatic proof of the lemma of well-
definedness of the expression EX, and if the proof fails, the lemma of well-definedness will
have to be interactively demonstrated.
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Example 1

Consider the following goal to be demonstrated:

1+wr<=p2 => p2+1<=p1 or p1<=wr &
1+p2<=wr => p2+1<=p1 & p1<=wr
=>
p2+1<=p1 or p1<=p3

The user wants to replace the expression p2 + 1 with pp2:

PRI> ae(p2+1,pp2)

The following goal is obtained (the well-definedness lemma of p2 + 1, reduced to btrue,
is automatically discharged by the prover):

p2+1=pp2
=>

(1+wr<=p2 => pp2<=p1 or p1<=wr &
1+p2<=wr => pp2<=p1 & p1<=wr
=>
pp2<=p1 or p1<=p3)

We can then raise in hypothesis the equality pp2 = p2 + 1 (using the deduction dd
command) and this is checked with the Search Hypothesis command:

PRI> sh(p2)

Searching all Hypothesis that
contain p2
match with a

Starting search...
Found hypothesis List is

pp2=p2+1 &
3<=p2 &
p2<=2147483647 &
0<=p2 &
p2: INTEGER

End of found hypothesis
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Example 2

Given the following goal to be demonstrated:

Hypothesis
...
0<=aa &
aa <= bb &
...

Goal
max(aa..bb) = {bb}

The user wants to replace expression max(aa..bb) by MAXI:

ae(max(aa..bb),MAXI)

The well-definedness lemma associated to expression max(aa..bb) is not(aa..bb = ∅) ∧
aa..bb ∩NATURAL : FIN(NATURAL). The automatic prover fails to demonstrate it,
it then generates the first following sub-goal:

not(aa..bb = {})

Once this goal has been demonstrated (for example by ah(aa<=bb) & pp(rp.0)), the
prover generates the following sub-goal:

aa..bb /\ NATURAL: FIN(NATURAL)

The pr command is sufficient to demonstrate this goal. Then, the well-definedness of
expression max(aa..bb) is proved. The prover can perform the substitution of max(aa..bb)
by MAXI in the starting goal and generate the new goal:

max(aa..bb) = MAXI => MAXI = {bb}
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5.2 Add hypothesis

Addition of a hypothesis

Syntax

ah(P )

with:

• P is a predicate

Use

This command enables to add the P predicate in the hypotheses stack.

In the current hypotheses, the P predicate must:

• be well-typed (refer to chapter 3.2 page 7),

• be well-defined (see chapter 3.3 page 8),

• be deducable from current hypotheses.

If the current proof was
prove G under the hypotheses h1, . . ., hn

the prover will try successively
to prove P under the hypotheses h1, . . ., hn

then
to prove G under the hypotheses h1, . . ., hn, P

These proofs are carried out with the current proof force.

Once the command ah(P) is executed, the current goal becomes P. If after the command
pr (see chapter 5.34 page 99), the current goal is still P, the hypothesis P has not been
proved.

When the hypothesis P has been proved, the goal becomes P ⇒ G. The user can then,
either add the hypothesis P directly (command dd (see chapter 5.13 page 53)), or activate
the automatic prover which will add the hypothesis P’, obtained after operations on P.

If P cannot be proved with the current force, we can try a higher force. The whole
command line will then be executed again with the new force.

As this command is not protected against ill-typing and ill-definedness, the user has to
check that the added hypothesis is well-typed and well-defined.

This can be checked, with hindsight, using tool mdelta (refer to its User manual version
1.0).
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Example

Given the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..100

Goal
xx+yy-1: 1..100

The user wishes to add the hypothesis xx+ yy : 2..20. He executes the command ah:

PRI> ah(xx+yy: 2..20)
Starting Add Hypothesis

The new goal becomes:

Goal
xx+yy: 2..20

This hypothesis must be proved in order to be able to continue. The user starts the
automatic prover:

PRI> pr
Starting Prover Call

The hypothesis xx + yy : 2..20 has been proved: the goal becomes xx + yy : 2..20 =>
current goal.

Goal
xx+yy: 2..20 => xx+yy-1: 1..100

By using the command pr (see chapter 5.34 page 99) or dd (see chapter 5.13 page 53),
the proof can then go on with the new hypothesis.
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5.3 Arithmetical proof

Calling the Arithmetical Prover

Syntax

ap
ap(n)

with:

• n is a numeric value which permits to limit the functioning of the mechanism. If
this value is not specified, the value of 400 is taken.

Use

The arithmetical prover is a mechanism whose aim is to search for a contradiction in
a set of inequations. This contradiction is sought by creating new inequations by linear
combination. The number of inequations is limited so as to avoid a loop in the mechanism.

The ap command permits the calling of the mechanism on the current proof obligation.
The mechanism will work on the inequations contained in the hypotheses stack. If the
current goal is an inequation of the form a ≤ b, then the inequation a > b is added to the
list of inequations on which the mechanism is going to work.

Example 1

Given the following proof obligation:

Hypothesis
xx: INTEGER &
0<=xx &
xx<=10 &
yy: INTEGER &
0 = 1+yy-xx &
xx-1 = yy &
btrue &
0<=9 &
9: INTEGER

Goal
xx-1<=9

Given the form of the goal and the number of inequations in hypotheses, the use of the
ap command is advised.

PRI> ap
Begin Arithmetic Proof

The current proof is therefore discharged.
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Example 2

This example shows the behaviour of the command when the mechanism fails in its work.
Given the following proof obligation:

Hypothesis
xx: INTEGER &
0<=xx &
xx<=10 &
btrue &
0<=9 &
9: INTEGER

Goal
xx<=9

The proof obligation being false, the command doesn’t discharge the goal.

PRI> ap
Begin Arithmetic Proof
This Command gives nothing new

The ap command is not saved, the current goal is not modified.



26 Interactive Prover—Reference Manual

5.4 Apply rule

Application of a rule or of a user theory

Syntax

ar(T)
ar(r, M)

with

• T is a theory or tactic identifier (see chapter 3.5 page 11),

• r is a rule identifier (Theory.number),

• M is a mode which depends on the type of rule:

– Rules performing no rewriting:

∗ M=Once: a single application of the rule
∗ M=Multi: application of the rule, as long as applicable
∗ M=Fwd: application of the rule forward. The rule should then take the

form h1 ∧ . . . ∧ hn ⇒ g
For all the sets of the n valid hypotheses which matches h1, . . . , hn, the
corresponding hypothesis g is generated.
∗ M=Fwd(P): Idem previous case, but we impose in addition that one of

the hypotheses h1, . . . , hn matches 1 P.

– Rewrite rules:
M must be in the form A or A.B, with:

∗ A = AllHyp: rewriting of all the hypotheses.
∗ A = Goal: rewriting of the goal.
∗ A = Hyp(f): rewriting of the hypotheses that coincide with f.
∗ B can be Part(g). In this case, the rewriting is restricted to the sub

formulas of the selected formulas which match g.

Use

ar is a command enabling the application of a rule or a theory on different parts of the
lemma to prove.

For rewrite rules, the argument M enables controlled action on any part of the proof
obligation, goal or hypothesis .

1We say that H matches P if H and P have the same form (i.e., that it is possible to instantiate the
wildcards of P to obtain exactly H).

For instance, xx = yy + 3−min(4 . . 7) is matched by:

· a = b
taking xx for a and yy + 3−min(4 . . 7) for b

· c = d− e
taking xx for c, yy + 3 for d and min(4 . . 7) for e
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The rules used are those of the prover rule base, any rules contained in the pmm file (see
chapter 7 page 143) associated with the component, and also the rules contained in the
PatchProver file (see chapter 8 page 145).

To access the rules base, click on the “Display/print” menu and then, on the “Display
Rules Database” button, of the window INTERACTIVE PROOFof the interactive
prover.

Application in backward mode (M=Once or M=Multi):

• if the rule is in the form
a1 ∧ . . . ∧ an ⇒ c

and the current goal is in the form c, the proof is divided into n sub-goals
a1, . . . , an

• If the rule is in the form
a1 ∧ . . . ∧ an ⇒ c == d

and c is a sub-formula 2 of the current goal, the proof is divided into n sub-goals
a1, . . . , an

If the n sub-goals are proved, then c is rewritten in d.

Application in forward mode(M=Fwd):

• if the rule is in the form
a1 ∧ . . . ∧ an ⇒ c

the antecedents a1, . . . , an are sought in the hypotheses to generate the new
hypothesis c.
The procedure can easily loop (for example: the rule loops because it is re-applied
on its consequent), this is why, the option Fwd(P) enables us to impose that one of
the hypotheses ai found coincides with P.

Application of a tactic:

• if we use only Backward theories The command will be:

ar(tb1;tb2;...;tbn)

• if we use Backward theories Forward The command will be:

ar((tb1;tb2;...;tbn;DED),(tf1;tf2;...;tfp))

2For example, xx + yy is a sub-formula of 0 ≤ min(1..xx+ yy)
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The DED theory (native theory of the kernel raising the hypotheses in the stack) is oblig-
atory. The Forward theories are only called when a hypothesis is raised. The Backward
theories generate derived goals P => Q but do not raise the hypotheses P . It is thus
necessary to associate a theory to them enabling a direct deduction (DED). When the
Command ar has finished, the hypotheses will be associated to the current goal, which
will then be:

Hypotheses generated ⇒ current goal

Of course, the theories can be “tilded”. For example:

ar(((tb1;tb2~;)~;tbn;DED),(tf1;tf2~;...;tfp~))

Implicitly

ar((tb1;...;tbn),(tf1;...;tfp))

is equivalent to

ar((tb1;...;tbn)~,(tf1;...;tfp)~)

After the application of the ar command, if new hypotheses are generated, the goal is
in the form H ⇒ G (the user can see the new hypotheses generated). It is necessary to
perform the pr command (see chapter 5.34 page 99) to reactivate the proof and raise these
hypotheses.

Warning! If the user-provided rules (pmm, PatchProver) are used, the validity of the proof
can be questioned. We must then perform a mathematical demonstration for each of these
rules.

Example 1

Let us consider the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..100

Goal
xx+yy-1: 1..100



INTERACTIVE COMMANDS 29

The user uses the pmm file as follows:

THEORY test IS

a: 1..d &
b: 1..d
=>
a+b: 2..2*d;

d <= a-c &
a-c <= e
=>
a-c: d..e

END

The test theory is read and compiled, using the pc command (see chapter 5.31 page 89).

PRI> pc
Loading theory test

The rule test.1 is then applied in forward mode(generation of hypotheses).

PRI> ar(test.1,Fwd)
Starting Apply Rule

5 new hypotheses have been generated. The goal becomes:

Goal
xx+xx: 2..20 &
xx+yy: 2..20 &
yy+xx: 2..20 &
yy+yy: 2..20 &
zz+zz: 2..200
=>
xx+yy-1: 1..100

Using the dd command (see chapter 5.13 page 53).

PRI> dd
Starting Deduction
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the hypotheses are then raised in the hypotheses stack.

New Hypothesis since last command
xx+xx: 2..20 &
xx+yy: 2..20 &
yy+xx: 2..20 &
yy+yy: 2..20 &
zz+zz: 2..200

Goal
xx+yy-1: 1..100

The rule test.2 is then used in the backward mode.

PRI> ar(test.2, Once)
Starting Apply Rule

The rule is applied (we must check that the command line contains ar(test.2, Once)) and
the two sub-goals 1 ≤ xx + yy − 1 and xx + yy − 1 ≤ 100 will be processed. The first
sub-goal is to be proved:

Goal
1<=xx+yy-1

The automatic prover is called for the first time:

PRI> pr
Starting Prover Call

The first sub-goal is discharged. The second sub-goal becomes the current goal.

Goal
xx+yy-1<=100

By calling the automatic prover

PRI> pr
Starting Prover Call

the second sub-goal is discharged and the proof obligation is proved, provided that the
rules contained in the pmm file are accurate.
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Finally, the command line is:

Force(0) &
ar(test.1,Fwd) &
dd &
dd &

ar(test.2,Once) &
pr &
pr &

Next

Example 2

Given the following situation:

Hypothesis
tt: {e1,e2,e3,e4,e5} => zz = e5 &
zz = e5 => tt: {e1,e2,e3,e4} &
tt = e5 => zz = e1 &
zz = e1 => tt = e5

Goal
tt = e5 or zz = e2

associated to the following pmm file:

THEORY test IS

bguard(WRITE: bwritef("Application of test.1\n")) &
(B=>not(A))
=>
(A or B)

END
&
THEORY testbis IS

a = b &
b: E
=>
a: E

END
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The user attempts to apply the backward theory test to the current goal. The hypotheses
will be raised by the DED theory. If hypotheses are generated, the forward theory testbis
will then be tried.

PRI> ar((test;DED),testbis)
Application of test.1
Starting Apply Rule

The rule test.1 contains a guard enabling to print a message indicating its activation
(Application of test.1). The rule testbis.1 was activated when hypothesis e2 = zz was
raised and enabled the generation of hypothesis zz ∈ {e1, e2, e3, e4, e5}. All the hypotheses
generated are finally put as antecedents of the current goal.

Goal
btrue & zz=e2 & zz: {e1,e2,e3,e4,e5} => not(tt = e5)
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5.5 Back

Backstep on a proof

Syntax

ba
ba(n)

with:

• n equals Node to go back to the previous node in the proof tree .

• n takes a numerical value when we know how many commands we want to backstep.

Use

This command induces a backstep in the proof: the effect of the last command is canceled.
The current goal, the hypotheses and the command line go back to their previous state.
The ba command may not produce a change, if we are at the beginning of a command
line (no command performed).
This command has an effect on the proof obligation status: if this has just been proved
and we apply the ba command, we will find ourselves just before the last command which
finishes the demonstration and the proof obligation becomes unproved.

The Back command can make the number of backsteps specified when the command was
called.

The Node parameter backsteps the state of the proof obligation to the previous level
of indentation in the command line. This parameter gives a very fast Back because no
command is added.

ba does not apply to a ff command(see chapter 5.16 page 61).

Example 1

Given the proof obligation whose command line is as follows:

Force(0) &
ar(test.1,Fwd) &
dd &
dd &

ar(test.2,Once) &
pr &
pr &

Next
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If we apply the command line ba, we check that the last (pr) command has been sup-
pressed:

Force(0) &
ar(test.1,Fwd) &
dd &
dd &

ar(test.2,Once) &
pr &
Next

By beginning the same operation again, we check that the last (pr) command has been
suppressed:

Force(0) &
ar(test.1,Fwd) &
dd &
dd &

ar(test.2,Once) &
Next

We can thus take several backsteps through a single command:

PRI> ba(3)

In this case, the command line becomes:

Force(0) &
ar(test.1,Fwd) &
Next
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Example 2

If the command line is:

ah(not(xx = e1)) &
dc(zz,ENUM) &

pr &
pr &
ah(ww = 5) &

pr &
pr &

Next

After application of the ba(Node) command, the command line becomes:

ah(not(xx = e1)) &
Next
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5.6 Loop

Application of interactive commands during a proof division

Syntax

bb(f)

with:

• f is a sequence of commands of form:
c1 & c2 & .. & cn & ll((d1 & d2 & ... & dm),...,(z1 & z2 & ... & zp))

Use

This command enables the application of a sequence of commands on all the branches
of a part of the proof tree, when there is division of the proof. Thus the user does not
need to enter and execute the same sequence of commands several times. If the command
sequence does not succeed in proving one of the branches, the loop stops.

The bb command also applies when there is no proof division but the advantage of bb is
in this case much reduced.

The presence of ll inside of the loop enables the application of interactive commands, when
a proof branch cannot be automatically proved. In this case, the commands (d1 & d2 &
... & dm) will be tried. If the proof of the branch succeeds, we change branches and
re-apply c1 & c2 & .. & cn. If the proof does not succeed, the following commands will
be tried. This process is iterated until the proof of the branch succeeds or the commands
z1 & z2 & ... & zp have been tried unsuccessfully.

Example 1

Given the following proof obligation:

ENS = {e1, e2 e3, e4, e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not (ENS={}) &
xx: ENS &
not(xx = e5)
=>
xx = e1 or xx = e2 or xx = e3 or xx = e4

We can perform one proof by cases:

dc(xx, ENS)
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To avoid entering 5 times the pr command, we can enter:

bb(pr)

We then obtain the messages:

Starting Prover Call
Starting Prover Call
Starting Prover Call
Starting Prover Call
Starting Prover Call

and the proof obligation is demonstrated.

The Commands window (Executed / Next) now contains:

dc(xx,ENS) &
fc(1) &
pr &

fc(1) &
pr &

fc(1) &
pr &

fc(1) &
pr &

fc(1) &
pr &

Next

Each fc(1) 3 indicates the start of the execution of the pr command (parameter of the
loop command). The number (here 1) indicates the number of nested loops.

We find the 5 cases of the proof by cases (fc(1)).

3Flag Command
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Example 2

Given the following proof obligation:

ENS = {e1, e2 e3, e4, e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not(ENS = {}) &
xx: ENS &
not(xx = e5)
=>
xx = e1 or xx = e2 or xx = e3 or xx = e4

we can perform a proof by cases:

dc(xx, ENS)

If we execute the command:

bb(ch & bb(dd & bb(pr)))

we obtain:

Starting creating hyp
Starting Deduction
Starting Prover Call
Starting creating hyp
Starting Deduction
Starting Prover Call
Starting creating hyp
Starting Deduction
Starting Prover Call
Starting creating hyp
Starting Deduction
Starting Prover Call
Starting creating hyp
Starting Deduction
Starting Prover Call

and the proof obligation is demonstrated.
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The Commands window (Executed / Next) now contains:

dc(xx,ENS) &
fc(3) &
ch &

fc(2) &
dd &
fc(1) &

pr &
fc(3) &

ch &
fc(2) &

dd &
fc(1) &

pr &
fc(3) &
ch &

fc(2) &
dd &

fc(1) &
pr &

fc(3) &
ch &

fc(2) &
dd &
fc(1) &

pr &
fc(3) &
ch &

fc(2) &
dd &
fc(1) &

pr &
Next

Each fc() 4 indicates the start of the execution of a sequence of commands (parameter of
the loop command). The number (1, 2 ou 3) indicates the number of nested loops.

We find the 5 cases of the proof by case (fc(3)).

After saving, the command line saved is:

dc(xx,ENS) &
bb(ch & bb(dd & bb(pr & ll(?)) & ll(?)) & ll(?))

The command ll() has been added to the entries saved and contains any interactive com-
mands added by the user, during the proof and inside the loops. In this case, no commands
have been added and we thus obtain ll(?).

This command line can in fact be entered directly by the user: this leads to the same
4Flag Command
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result. However, the command ll() must be at the end of the command line contained in
bb().

For example, the following command is incorrect:

bb(ch & ll(dd) & pr)

and gives when executed:

Starting creating hyp
Unknown command ll(dd)
Starting Prover Call
Starting creating hyp
Unknown command ll(dd)
Starting Prover Call
Starting creating hyp
Unknown command ll(dd)
Starting Prover Call
Starting creating hyp
Unknown command ll(dd)
Starting Prover Call
Starting creating hyp
Unknown command ll(dd)
Starting Prover Call

However, the following command line is correct:

bb(ch & pr & ll(dd))
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and gives when executed:

Starting creating hyp
Starting Prover Call
Starting creating hyp
Starting Prover Call
Starting creating hyp
Starting Prover Call
Starting creating hyp
Starting Prover Call
Starting creating hyp
Starting Prover Call

We are aware that the dd command contained in ll has not been executed.
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5.7 CurrentGoal

Display the current goal

Syntax

cg

Use

This command displays the current proof goal. It thus corresponds to the “Current Goal”
window of the Motif interface.

Example

Given the following goal to demonstrate:

foo = plus(nn)

The user then searches the hypotheses refering to foo, using sh(foo):

...
foo: INTEGER &
foo: dom(ff) &
...

To display the current goal, the user has two possibilities: use the GUI or use the Cur-
rentGoal. It makes the following information be displayed:

Goal
foo = plus(nn)
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5.8 CreateHyp

Creation of hypotheses

Syntax

ch

Use

This mechanism initiates the creation of hypotheses in relation to the form of the goal.
After its application, the goal is presented in the form of an implication, the generated
hypotheses are added as antecedents of the implication.

Example

Let us consider a proof obligation whose current goal is:

foo = plus(nn)

The application of the command ch

PRI> ch

gives the following goal:

btrue &
plus(nn): ran(plus) &
plus(nn): INTEGER +-> INTEGER
=>
foo = plus(nn)

The antecedent of this implication contains the hypotheses generated by the command.

The user can then process these hypotheses as he wants to.



44 Interactive Prover—Reference Manual

5.9 Contradiction

Proof attempt by contradiction

Syntax

ct

Use

This command enables to attempt a proof by contradiction.
If the current goal is G, it is then transformed into:
¬G⇒ bfalse

It is then necessary that the hypotheses, completed by ¬G, enable the generation of
bfalse. In this case, we obtain:
bfalse⇒ bfalse

which is true.

Proof by contradiction can be used especially:

• if the goal is in the form ¬P

• if there are several contradictory hypotheses

Example

Let us consider the following proof obligation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
tt: ENS &
uu: ENS &
not(uu = tt) &
uu: {e1,e2,e3,e4} => tt = e5 &
uu = e5 => tt = e1

Goal
not(e2 = e5)

We attempt a proof by contradiction, given the form of the goal.

PRI> ct
Starting Contradiction
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¬¬(e2 = e5) is simplified in e2 = e5 then becomes a hypothesis. The goal becomes bfalse.

New Hypothesis since last command
e2 = e5

Goal
bfalse

The automatic prover is then called.

PRI> pr
Starting Prover Call

the command line then becomes:

Force(0) &
dd &
ct &
pr &

Next
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5.10 Special Contradiction

Attempt to prove by contradiction without automatic raising of hypothe-

ses

Syntax

cts

Use

This command enables to attempt a proof by contradiction, without automatic raising of
hypotheses.
If the current goal is G, it is then transformed into:
¬G⇒ bfalse

The hypotheses, completed by ¬G, must be able to generate bfalse.
This command is identical to ct, except that the generated hypotheses are not automati-
cally raised.

Example

Let us consider the following proof obligation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
tt: ENS &
uu: ENS &
not(uu = tt) &
uu: {e1,e2,e3,e4} => tt = e5 &
uu = e5 => tt = e1

Goal
not(e2 = e5)

We attempt a proof by contradiction, given the form of the goal.

PRI> cts
Starting Contradiction
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¬¬e2 = e5 is simplified in e2 = e5. The goal becomes:

Goal
e2=e5 => bfalse
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5.11 Do cases

proof attempt by case

Syntax

dc(f)
dc(v,E)

with:

• f is a predicate well-typed according to the context of the present hypotheses,

• v is a variable and E is the name of a set in extension (maximum 50 elements)

Use

This command enables the starting up of a proof by cases.
If the goal to be proved is G and the parameter supplied to dc is X:

• if X is a predicate
the proof is decomposed into 2 sub-goals:
X ⇒ G

and
¬X ⇒ G

• if X is in the form v,E
the goal becomes a conjunction of n goals corresponding to all the possible values
of v in E. If the hypothesis v ∈ E does not exist as such, (v ∈ E) is added, by the
prover, to this conjunction so that the proof can begin on this preliminary goal It
is stressed that the user has to check that the predicate v ∈ E is well-typed (see
chapter 3.2 page 7) and well-defined (see chapter 3.3 page 8).

The proof performed depends on the form of the expression v,E:

– E is in the form {e1} ∪ . . . ∪ {en}
the proof of G is then replaced by:

(v = e1 ⇒ G) ∧ . . . ∧ (v = en ⇒ G)

– E is in the form ({e1} ∪ . . . ∪ {en})× {f}
the proof of G is then replaced by:

(v = (e1 7→ f)⇒ G) ∧ . . . ∧ (v = (en 7→ f)⇒ G)

– E is in the form ({e1} ∪ . . . ∪ {en})× F
where F is not in the form {f}
The proof of G is then replaced by:

(v = ({e1} × F )⇒ G) ∧ . . . ∧ (v = ({en} × F )⇒ G)
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Example 1

Let us consider the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..100 &
xx: 1..5 => yy = 10 &
xx: 6..10 => yy = 1 &
yy*xx<=100 & xx*yy<=100 or (yy*yy<=100 & yy*yy<=100)

Goal
xx+yy-1: 1..100

Due to the presence of the two hypotheses xx : 1..5 => yy = 10 and xx : 6..10 => yy = 1,
the user decides to start a proof by case , for the predicate xx : 1..5.

PRI> dc(xx: 1..5)

The first goal processed is thus:

Goal
xx: 1..5 => xx+yy-1: 1..100

The prover will therefore attempt to prove the current goal, first under the hypothesis
xx : 1..5. To do this, the user applies the command pr (see chapter 5.34 page 99).

PRI> pr

The goal is proved by the automatic prover. The other case to be processed is thus
not(xx : 1..5).

Goal
not(xx: 1..5) => xx+yy-1: 1..100

The user starts the automatic prover again.

PRI> pr

The PO is proved and its command line is:

Force(0) &
dd &
dc(xx: 1..5) &
pr &
pr &

Next
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Example 2

We will now consider proof by case, for an enumerated set.

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not(ENS = {}) &
xx: ENS &
xx: {e1,e2,e3,e4}

Goal
not(xx = e5)

The user starts a proof by cases for every value of xx, which belongs to enumerated set
ENS.

PRI> dc(xx,ENS)
Do Cases on Enumerated: {5}\/{4}\/{3}\/{2}\/{1}

the interactive prover will thus launch 5 successive proofs:

Goal
xx = e5 => not(xx = e5)

Goal
xx = e4 => not(xx = e5)

Goal
xx = e3 => not(xx = e5)

Goal
xx = e2 => not(xx = e5)

Goal
xx = e1 => not(xx = e5)
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5.12 Special do cases

Proof by cases attempt on a disjunctive formula

Syntaxe

dcs(A or B)

with:

• (A or B) is a disjunctive predicate

Use

This command enables the proof by cases starting up.

If the goal to prove is B and the parameter supplied to dcs is X:

• If X is a disjunctive predicate of n disjunctions, the goal becomes a conjunction of
n goals. Each of these goals is the implication of B by the conjunction of one of
the disjunctive term of the X predicate and of the other terms negation. If the X
predicate is not in hypothesis, the first goal to demonstrate is this predicate.

For example if X is A ∨ not(B) ∨ C and the goal is Goal, the new goals become:

– A ∧B ∧ not(C)⇒ Goal

– not(A) ∧ not(B) ∧ not(C)⇒ Goal

– not(A) ∧B ∧ C ⇒ Goal

• if X is not a disjunctive predicate, the dcs command acts as the dc command.
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Example

Let us consider the proof by cases, in the case of a disjunctive predicate.

Given the following situation:

Hypothesis
xx: INTEGER &
0<=xx &
xx = 1 or xx = 10 or xx = 4 &
btrue &
0<=20 &
20: INTEGER

Goal
xx<=20

The user launches a proof by cases to fully use the hypothesis
xx = 1 or xx = 10 or xx = 4.

PRI> dcs(xx = 1 or xx = 10 or xx = 4)
Starting Do Cases

As the disjunctive predicate comes from the hypothesis, it is not necessary to check it.
The prover starts three successives proofs:

Goal
xx = 4 &
not(xx = 10) &
not(xx = 1)
=>
xx<=20

Goal
xx = 10 &
not(xx = 4) &
not(xx = 1)
=>
xx<=20

Goal
xx = 1 &
not(xx = 4) &
not(xx = 10)
=>
xx<=20

Each of these goals is easily discharged by the pr command (see chapter 5.34 page 99).
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5.13 Deduction

Direct Deduction

Syntax

dd
dd(i)

with:

• i equals 0, 1, 2 ou 3

Use

This command enables to perform a direct deduction: if the current goal is in the form
P ⇒ Q, the prover then attempts the Q proof under the P hypothesis.

The P hypothesis is raised in the hypotheses stack, without using the automatic prover
(especially, the simplifications are not performed) and the current goal becomes Q.

It can be interesting, in certain cases, to use dd since the automatic prover may normalise,
and not according to the user’s wishes, a hypothesis added by the ah command (see
chapter 5.2 page 22). dd is thus sometimes used after ah to raise a new hypothesis as it
is.

The argument dd(i) enables fine parameterisation of the processing of the raising hy-
potheses. The i parameter represents the proof force that will be used temporarily when
the hypotheses are raised.

For example, dd(1) corresponds to hypotheses raised in force 1.

Example

Given the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..100 &

Goal
xx+yy-1: 1..100

The user wishes to add the hypothesis xx+ yy : 2..20.

PRI> ah(xx+yy: 2..20)
Starting Add Hypothesis
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the hypothesis to be added must first be proved.

Goal
xx+yy: 2..20

the user starts the automatic proof:

PRI> pr
Starting Prover Call

the hypothesis is proved. the current goal thus becomes:

Goal
xx+yy: 2..20 => xx+yy-1: 1..100

The command dd then enables the hypothesis xx+yy : 2..20 to be raised in the hypotheses
stack.

PRI> dd
Starting Deduction

The hypothesis has indeed been raised and the current goal is again xx+ yy − 1 : 1..100.

New Hypothesis since last command
xx+yy: 2..20

Goal
xx+yy-1: 1..100
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5.14 Display Term

Display formula terms

Syntax

dt
dt(f)

with:

• f is a list, that may possibly be just of one element, of terms with t.i form and
separated by a comma.

Use

This command can be used after a logical analysis of formula la (see chapter 5.24 page 74)
and enables to display the value of the various terms of the analysed formula.

Example

Given the following goal:

"‘REVERSE_RGE preconditions in this component’" &
rng: minrge..maxrge &
jj: 0..maxidx &
ii: 0..maxidx &
"‘Local hypotheses’" &
kk$0: INTEGER &
0<=kk$0 &
ll$0: INTEGER &
0<=ll$0 &
ii<=kk$0 &
ii<=jj => kk$0<=ll$0+1 &
ll$0<=jj &
kk$0+ll$0 = ii+jj &
arr_rge$2 = arr_rge$1<+{rng|->(arr_rge$1(rng)<+%xx.(xx: ii..jj

& (xx+1<=kk$0 or ll$0+1<=xx) | arr_rge$1(rng)(ii+jj-xx)))} &
kk$0+1<=ll$0 &

"‘Check preconditions of called operation, or While loop
construction, or Assert predicates’"
=>
ii<=kk$0+1
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The formula logical analyser, performed by la command (see chapter 5.24 page 74), breaks
down the goal formula in:
PRI > la(2)
Parsing formula
"‘REVERSE_RGE preconditions in this component’" &
t.1: t.2 &
t.3: t.4 &
t.5: t.4 &
"‘Local hypotheses’" &
t.6: t.7 &
t.8 <= t.6 &
t.9: t.7 &
t.8 <= t.9 &
t.5 <= t.6 &
(t.10=>t.11) &
t.9 <= t.3 &
t.12 = t.13 &
t.14 = t.15 &
t.16 <= t.9 &
"‘Check preconditions of called operation, or While loop construction,
or Assert predicates’"
=>
t.5 <= t.16
End of analysis

Terms t.1 to t.16 can then be displayed by the dt command:
PRI > dt
t.1 is put for rng
t.2 is put for minrge..maxrge
t.3 is put for jj
t.4 is put for 0..maxidx
t.5 is put for ii
t.6 is put for kk$0
t.7 is put for INTEGER
t.8 is put for 0
t.9 is put for ll$0
t.10 is put for ii<=jj
t.11 is put for kk$0<=ll$0+1
t.12 is put for kk$0+ll$0
t.13 is put for ii+jj
t.14 is put for arr_rge$2
t.15 is put for arr_rge$1<+{rng|->(arr_rge$1(rng)<+%xx.(xx: ii..jj &
(xx+1<=kk$0 or ll$0+1<=xx) | arr_rge$1(rng)(ii+jj-xx)))}
t.16 is put for kk$0+1
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5.15 Use equality in hypothesis

Rewriting according to the equality in hypothesis

Syntax

eh(a, A, f)

with:

• the hypothesis a=A or the hypothesis A=a must be in the stack,

• we can also use the keyword h either for a, either for A

• f can be

– either the Goal keyword

– either the AllHyp keyword

– either the Hyp(h) keyword with h corresponding to the selected hypothesis

Use

This command enables us to replace a by A, either in the current goal , or in all the
hypotheses, or in the h hypothesis.

Keyword h enables us to use an equality of which we only know one member (right or
left). In this case, the last satisfactory equality in hypothesis, is used.

If f = Hyp(h), the goal becomes:
H ⇒ G

where H is obtained by replacing a by A in the hypothesis h, if it exists.

If f = AllHyp, the goal becomes:
H ⇒ G

where H is obtained by replacing a by A in all the hypotheses.

If f = Goal, the goal becomes:
G
′

where G
′

is obtained by replacing a by A in all the hypotheses.

A proof often fails because an equality has not been used. The automatic provers have
to take precautions with rewriting using equalities; indeed, this can generate loops (see
chapter 3.9 page 14). However, the interactive prover can perform such rewritings, which
are applied from time to time and under user control.

When a goal is rewritten, the interactive command may contradict a normalisation per-
formed by the automatic prover; if we restart in automatic mode, this will immediately
redo the inverse transform.

Nonetheless, the command can be useful if the user uses other interactive commands on
the rewritten goal, before calling the automatic prover.
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Example 1

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not(ENS = {}) &
tt: ENS &
zz: ENS &
not(zz = tt) &
#kk.(kk: ENS & not(kk = zz) & not(kk = tt)) &
zz: {e1,e2,e3,e4} => tt = e5 &
zz = e5 => tt = e1 &
zz = e5 or zz = e1 &
uu = zz &
!vv.(vv: ENS & (not(zz = vv) or not(tt = vv)) => zz = vv)

Goal
uu = e5 => zz = e1

It is possible to substitute uu by zz in the goal.

PRI> eh(uu,zz,Goal)
Starting use Equality in Hypothesis

the goal becomes:

Goal
zz = e5 => zz = e1

It is possible to perform the substitution for a hypothesis

PRI> eh(zz,uu,Hyp(zz = e5 or zz = e1))
Starting use Equality in Hypothesis

The goal becomes:

Goal
uu = e5 or uu = e1 => (zz = e5 => zz = e1)

It is possible to perform the substitution for all the hypotheses.

PRI> eh(zz,uu,AllHyp)
Starting use Equality in Hypothesis

All the new hypotheses appear as antecedent of the current goal:
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Goal
uu: ENS & not(uu = tt) &
#kk.(kk: ENS & not(kk = uu) & not(kk = tt)) &
(uu: {e1,e2,e3,e4} => tt = e5) &
(uu = e5 => tt = e1) &
(uu = e5 or uu = e1) &
!vv.(vv: ENS & (not(uu = vv) or not(tt = vv)) => uu = vv)
=>
(uu = e5 or uu = e1 => ( zz = e5 => zz = e1))

Example 2

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not(ENS = {}) &
zz: ENS &
uu = tt or uu = zz &
tt: {e1,e2,e3,e4} => zz = e5 &
zz = e5 => tt: {e1,e2,e3,e4} &
tt = e5 => zz = e1 &
zz = e1 => tt = e5 &
zz = e5

Goal
e2 = e5 or e2 = zz

If the user wants to use an equality with e5 as right member, without taking care of the
left member:

PRI> eh(_h,e5,Goal)
Starting use Equality in Hypothesis

using the equality zz = e5, the goal becomes:

Goal
e2 = e5 or e2 = e5

If the user wishes to use the last equality whose left member is zz:

PRI> eh(zz,_h,Goal)
Starting use Equality in Hypothesis
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the goal becomes:

Goal
e2 = e5 or e2 = e5

The goal is indeed transformed, using the hypothesis zz = e5.
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5.16 Force

Change of the prover current force

Syntax

ff(n)

with:

• n = Fast, 0, 1, 2 ou 3

Use

This command enables the user to change the current prover force and to replay the whole
existing command line (see chapter 3.7 page 12) with a new force. If the force requested
is equal to the current force, there is no change.

Force Fast gives maximum enhancement to processing speed. A proof in force 0 requires
an average of 10 seconds per proof obligation. For certain complex PO, the proof can
take several minutes. Higher forces use mechanisms consuming more CPU and memory
resources. The processing time for a PO can become very long.

Given that around 90 % of PO proved are in force 0, it is advised to attempt the proof of
a PO firstly in force 0.

for more details on proof forces, see “the choice of higher force” chapter in Interactive
prover User Manual .

the ba command (see chapter 5.5 page 33), which backsteps the proof does not apply on
the ff command.

Example

Given the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..100 &
xx+yy: 2..20

Goal
xx+yy-1: 1..100
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for which an interactive proof task exists in force(0):

Force(0) &
ah(xx+yy: 2..20) &
pr &
dd &
Next

the user changes the current prover force:

PRI> ff(1)
Switching to Force 1

The command line already executed will be replayed with the new (ah(xx+ yy ∈ 2..20)
& pr & dd) force .

Starting Add Hypothesis
Starting Prover Call
dd not applicable: Goal is not p => q

Replay using different force is difficult since the proof path is a priori different. We
particularly notice that the command dd does not apply.

The new command line is:

Force(0) &
ah(xx+yy: 2..20) &
pr &
Next
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5.17 False hypothesis

Attempt to prove using contradictory hypotheses

Syntax

fh(h)

with:

• h is a hypothesis

Use

this command enables to perform a demonstration, by proving that a hypothesis is con-
tradictory to the others.

If the lemma to be demonstrated is
G under the hypotheses h1 , . . . , hn

and the user suspects that one of the hypotheses hi is contradictory to the others, we can
demonstrate the lemma by demonstrating:
¬hi under the hypotheses h1, . . . ,hn

Example

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
e2 = e5

Goal
e5 = e1

It is clear that the hypothesis e2 = e5 is contradictory. By applying the command:

PRI> fh(e2=e5)
Starting False Hypothesis

the current goal becomes:

Goal
not(e2 = e5)
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by calling the automatic prover the goal can then be discharged.

PRI> pr
Starting Prover Call
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5.18 Goto

Positioning on a PO

Syntax

go(f.n)

with:

• f is the name of an operation (or clause) of the current component

• n is the number of an existing PO for the operation (or clause) concerned

Use

This command enables the user to go to the beginning of the proof of the PO number n,
for the f operation (or clause).

A confirmation to save will be requested from the user if:

• The previous command line and the new command line enable to prove the proof
obligation,

• The previous command line and the new command line do not enable to prove the
proof obligation.

Example

The user wishes to go to the PO Initialisation.1. A proof task has been performed and
not saved.

PRI> go(Initialisation.1)

As the previous and new command line do not enable to prove the proof obligation, a
confirmation to save is requested:

Last PO does not have a saved demo. Your new demo does not prove.
Do you want to save the new demo (will replace the old one)?

Answer No to continue without saving (any other word to save):
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The user does not wish to save his proof work:

No

The command line is not saved and the current proof obligation becomes Initialisation.1.

No saving
Current PO : Initialisation.1
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5.19 Goto with reset

Positioning on a PO in force 0

Syntax

gr(f.n)

with:

• f is the name of an operation (or clause) of the current component

• n is the number of an existing PO, for the operation concerned

Use

This command enables to move to PO f.n while it reduces the proof force to 0 and keeps
the saved proof commands unchanged.

From force 1, hypotheses of a proof obligation are all simplified during loading. This
command will be useful if a proof obligation is such that raising its hypotheses makes the
prover loop for a particular force (1,2, or 3).

Example

Given the proof obligation whose command line is:

Force(3) &
Next

If the gr command is carried out

PRI> gr(Calculus.1)

the command line will be put back in force 0:

Force(0) &
Next
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5.20 Global situation

Proof status for the current component PO

Syntax

gs
gs (k)
gs (o,e)
gs (o,e,f)

with

• k is either an operation (or clause) name of the current component or the keyword
all indicating all the component operations and clauses, or one of the following

expressions: Unproved, Proved and Patt(g) with g a formula.

• o is a component clause name, or the keyword all.

• e is a proof obligations status: Proved, Unproved or all (if not specified).

• f is a formula -in parenthesis- or the keyword all. f enables to filter the proof
obligations according to the goal form that must match f. If f is the keyword all,
there is no filtering.

Use

This command enables to select and display the proof status (proved, unproved) and the
goal (without hypotheses) of proof obligations.

The o argument enables to select the proof obligations corresponding to the specified clause
(if it is given), e identifies the proof obligations status, and at last, f their goal form.

The k argument enables to select all the proof obligations of the current component that
are in the specified proof status, if k equals Proved or Unproved. If k has the Patt(g) form,
all the proof obligations of the current component whose goal matches g are selected and
if k is a clause name of the current component, all the proof obligations corresponding to
that clause are selected.

By default, gs, gs(o,e) respectively represents gs( all, all, all) and gs(o,e, all).

If k equals Proved or Unproved, gs(k) means gs( all,k, all), if k has the Patt(g) form,
gs(k) points out gs( all, all,(g)) and in all other cases, gs(k) means gs(k, all, all).

Example 1

For the following component, we can remark the presence of the (Initialisation clause and
of the op0) operation. The goal form of each proof obligation is given at the end of the
line.
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PRI> gs
State of all PO

Initialisation
PO1 Unproved xx = 3
PO2 Unproved {0|->TRUE}: NAT +-> BOOL
PO3 Unproved xx+1: INTEGER
PO4 Proved 0<=xx+1
PO5 Unproved xx+1<=2147483647

op0
PO1 Unproved zz+2: INTEGER
PO2 Unproved 0<=zz+2
PO3 Proved zz+2<=2147483647
PO4 Unproved zz+2 = 3

End

Example 2

Now let us select the proof obligations of operation op0:

PRI> gs(op0)
State of All PO of operation op0

PO1 Unproved zz+2: INTEGER
PO2 Unproved 0<=zz+2
PO3 Proved zz+2<=2147483647
PO4 Unproved zz+2 = 3

End

Example 3

We choose to display only the unproved proof obligations of operation op0:

PRI> gs(op0,Unproved)
Unproved PO of operation op0

PO1 Unproved zz+2: INTEGER
PO2 Unproved 0<=zz+2
PO4 Unproved zz+2 = 3

End



70 Interactive Prover—Reference Manual

Example 4

We are looking for the unproved proof obligations of the Initialisation clause whose goal
matches {x} : y 7→ BOOL:

PRI> gs(Initialisation,Unproved,({x}: y +-> BOOL))

Unproved PO of operation Initialisation
Matching with {x}: y +-> BOOL

PO2 Unproved {0|->TRUE}: NAT +-> BOOL
End

Example 5

We are looking for proved proof obligations among all the proof obligations of current
component:

PRI> gs(Proved)

All Proved PO
Initialisation

PO4 Proved 0<=xx+1
op0

PO3 Proved zz+2<=2147483647
End

Example 6

We are looking for all the proof obligations of the current component whose goal matches
the x = y formula:

PRI> gs(Patt(x = y))

State of all PO
Matching with x = y

Initialisation
PO1 Unproved xx = 3

op0
PO4 Unproved zz+2 = 3

End
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5.21 Graphical Trace

Selection of graphical trace mode

Syntax

gt(f)

with:

• f equals on or off

Use

This commande enables to switch on and off the graphical trace mode of the interactive
prover. Selecting graphical trace mode is only possible when the current proof obligation
demonstration has not been started yet. If it is not the case, a reset (re command) of the
demonstration has to be done and command gt(on) to be typed again. After a moment,
the graphical visualization tool DaVinci appears. The trace of the carried out commands
will then be displayed in this window:

• typed commands appear in red

• intermediate goals in white

• proved goals in green

Example

The user started a proof and wants to switch into graphical trace mode.

PRI> gt(on)
Rewind your demo to start displaying the graphical trace

The user resets his demonstration, after saving it, using command sw. He can then switch
to graphical trace mode:

PRI> gt(on)
Graphical Trace mode is on

When he ends the demonstration, he can disable the graphical trace mode:

PRI > gt(off)
Graphical Trace mode is off
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5.22 Goto without save

Positioning on another proof obligation without saving the current proof

Syntax

gw(f.n)

with:

• f is the name of an operation (or clause)

• n is the number of a proof obligation of the operation (or clause) concerned

Use

This command allows the user to access the f.n proof obligation, discarding the work
already made on the current proof obligation.

If f is not an operation or a clause or if n is not a correct number, the command will fail.

Example

The PO Initialisation test.1 has been proved. The user may not want to save the interactive
proof that has been made.

The user goes to the PO test.Initialisation.2, without saving previous work.

PRI> gw(Initialisation.2)
Skipping without saving to Initialisation.2
Current PO : Initialisation.2
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5.23 Help

On-line help about command syntax and function

Syntax

help
help(c)

with:
c name of an interactive command

Use

This command displays a description of command c.

If the argument is omitted, it displays the list of all available interactive commands.

Example

The user wants to know how the command mini prover mp works:

help(mp)
Help
mp - Mini Prover
Syntax
mp
Description
Call the automatic prover with the current force (see ff), so that no
proof by cases will be performed. This command is equivalent to pr(Red).
See Also
ff, pr.
End help
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5.24 Logical Analysis

Logical analysis of a formula

Syntax

la
la(n)
la(f)
la(f | n)

with:

• f is a formula (B expression or predicate)

• n is a positive integer

Use

This command enables to analyse a B formula according to various modes:

• la: current goal is analysed with an analysis depth of 1,

• la(n): current goal is analysed with an analysis depth of n,

• la(f): formula f is analysed with a depth of 1,

• la(f | n): formula f is analysed with a depth of n.

When the formula to analyse has a depth greater than the analysis depth, expressions and
predicates that cannot be detailed are replaced by terms of form t.i. This notation gives
a global display of the formula. The term value is not automatically displayed so that
display is not overloaded with complex terms. Command dt(see chapter 5.14 page 55)
enables to display some or all of theses terms.

Example

Let us consider the following situation:

"‘SEARCH_MAX_EQL_RGE preconditions in this component’" &
rng: minrge..maxrge &
jj: 0..maxidx &
ii: 0..maxidx &
ii<=jj &
vv: VALUE &
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"‘Local hypotheses’" &
nrr: INTEGER &
0<=nrr &
nrr<=2147483647 &
nbb: BOOL &
sol = (ii..jj<|arr_rge$1(rng))~[{vv}] &
not(sol = {}) => nrr = max(sol) &
nbb = bool(not(sol = {})) &
not((ii..jj<|arr_rge$1(rng))~[{vv}] = {}) &
"‘Check operation refinement - ref 4.4, 5.5’" &
=>
nrr = max((ii..jj<|arr_rge$1(rng))~[{vv}])

Applying the la(3) command breaks down the formula as follows:

Parsing formula
"‘SEARCH_MAX_EQL_RGE preconditions in this component’" &
rng: t.1..t.2 &
jj: t.3..t.4 &
ii: t.3..t.4 &
ii <= jj &
vv: VALUE &
"‘Local hypotheses’" &
nrr: INTEGER &
0 <= nrr &
nrr <= 2147483647 &
nbb: BOOL &
sol = t.5[t.6] &
(not(t.7)=>t.8 = t.9) &
nbb = bool(t.10) &
not(t.11 = t.12) &
"‘Check operation refinement - ref 4.4, 5.5’"
=>
nrr = max(t.11)
End of analysis
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5.25 Show literal PO

Display of a proof obligation in its literal form

Syntax

lp(f.n)

with:

• f must be the name of an operation or clause of the current component

• n must be a valid proof obligation number for the f operation (or clause) that has
been selected

Use

This command displays the proof obligation which has been selected, in its literal form,
that is to say, as it was generated by the proof obligation generator.

In fact, the prover performs operations on the hypotheses and the goal (simplifications,
...). The displayed data therefore do not reflect exactly the proof obligation.

Example

When we move to proof obligation Initialisation.1, expressions within (hypotheses, goal)
are normalised.

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not(ENS = {})

Goal
e1 = e3
=>
e1 = e2 or e1 = e3 or e1 = e5

The user would like to see proof obligation Initialisation.1 in its literal form:

PRI> lp(Initialisation.1)
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Display of the proof obligation in its literal form shows us how this proof oblligations
looked like before normalisation, as generated by the Proof Obligations Generator.

Show PO : Initialisation.1
(1..5)*{ENS}: FIN(NATURAL*{ENS}) &
not((1..5)*{ENS} = {}) &
1|->ENS = 3|->ENS
=>
1|->ENS = 2|->ENS or 1|->ENS = 3|->ENS or 1|->ENS = 5|->ENS

End PO
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5.26 ModelChecking

Verification of predicate validity using the comprehensive list of its free

variable values

Syntax

mc
mc(l)

with:

• l is a list of no more than four items separated by | and all distinct (order in the list
does not affect the command behaviour). These items are of four different functional
categories and allow to specify the way the mc command works :

– Proof management: Auto or Step. Keyword Auto means that proof is han-
dled automatically, that is to say, the automatic prover performs all demonstra-
tions using the different values of variables. Keyword Step means that the user
will use the interactive prover to demonstrate the different cases generated by
the prover. If no value is given, then proof is handled automatically by default.

– User Tactic: Tac(None) or Tac(T). Tac(None) means there is no user-provided
tactic. Tac(T), with T being a tactic, means conversely that the prover must
try tactic T before possibly proceeding with an automatic demonstration. Note
that the combination of Step and Tac(T) (with T 6= None) is not valid. Default
is Tac(None).

– Resolution Variable List: Variables or L. Keyword Variables tells that all the
goal free variables will be used to perform the model checking. L is a list of
variables names separated by commas. Thus L specifies the variable subset to
be used to perform the model checking. By default, the Variables setting is
used.

– Maximum Number of values: n. n is a positive integer representing the maxi-
mum number of values a variable can take. 20 by default.

Use

this command allows to perform demonstration by cases of the current goal: it divides the
proof according to every value of the resolution variables of list L (the variable domains
should be bounded, they are, if it is possible, inferred from the hypotheses).
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If the initial goal is H ⇒ G, then it is transformed by mc(x1,x2,...,xn) into:

x1 = a1 & x2 = b1 & ... & xn = v1
=>
([x1, x2, ..., xn := a1, b1, ..., v1]H

=>
[x1, x2, ..., xn := a1, b1, ..., v1]G)
&
...
&
x1 = ai & x2 = bj & ... & xn = vk
=>
([x1, x2, ..., xn := ai, bj, ..., vk]H

=>
[x1, x2, ..., xn := ai, bj, ..., vk]G)
&
...
&
x1 = ap & x2 = bq & ... & xn = vr
=>
([x1, x2, ..., xn := ap, bq, ..., vr]H

=>
[x1, x2, ..., xn := ap, bq, ..., vr]G)

With (ai,bj,...,vk) taking all possible values of the cartesian product of the domains of
variation of the variables x1, x2, ..., xn which are respectively {a1, ..., ap}, {b1, ..., bq},
..., {v1, ..., vr}.
Domains of variables have been inferred from the available hypotheses involving the res-
olution variables and have been represented by sets in extension. It should be noted that
the domain inferer does not perform constraint resolution between variables and it is lim-
ited by the variables domain size: for instance, ModelChecking will fail if it is applied
to a variable of the INT type whose domain cannot be further constrained by any other
available hypothesis.

Hypotheses used by the domain inferer are typically predicates of membership to pre-
defined enumerated sets like BOOL or to enumerated sets defined in the SET clause,
predicates of membership to interval or set of integers given in extension, equalities or
inequalities between variables and values, etc.

Two options are availables:

• The user can intent to prove interactively each case, by specifying the Step param-
eter.

• The automatic prover, possibly assisted by a proof tactic (by Tac(T)), is applied
on every case whithout the user interfering, by specifying Auto. Note that if the
prover fails in an attempt to prove one of the sub-goals, the command will fail and
the user will get back to the current goal : he is not enabled to prove interactively
the unproved subgoals.
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Examples

Let us consider the proof obligation: bool(xx = 1) = yy, with xx: {0,2} and yy = FALSE
among the hypotheses.

The command mc( Step|xx,yy) makes the goal transform into:

Hypothesis
...
xx: {0,2}
yy = FALSE

Goal
xx = 2 & yy = FALSE
=>
bool(2=1) = FALSE

The user proves it using pr and the prover generates the second case:

Hypothesis
...
xx: {0,2}
yy = FALSE

Goal
xx = 0 & yy = FALSE
=>
bool(0=1) = FALSE

The command mc( Auto) proves the two cases in a totally automatic way:

Starting Model Checking in Automatic mode
Case xx=2 & yy=FALSE proved
Case xx=0 & yy=FALSE proved
Proved by Model Checking

Finally, the command mc(xx| Step|Tac(None)|3) would have generated the following goal
in the first place:

Hypothesis
...
xx: {0,2}
yy = FALSE

Goal
xx = 2
=>
bool(2=1) = yy

then, after using the command pr:
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Hypothesis
...
xx: {0,2}
yy = FALSE

Goal
xx = 0
=>
bool(0=1) = yy

To finish with, the user may wish to apply the command ModelChecking on a variable
whose domain is too large. Consider the following goal:

Hypothesis
...
xx: -15..25

Goal
toto(xx) = MTP

Using mc( Step | 22 | xx), where we specified 22 as the maximum variable values, produces
the display of the following message:

Failure in Model Checking

The domain of the variable contains more than 22 elements indeed.
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5.27 Modus ponens in hypothesis

Application of modus ponens

Syntax

mh(H)

with:

• H must be a hypothesis of the form P ⇒ Q

Use

This command allows the direct use of a hypothesis of the form P ⇒ Q. If P ⇒ Q and P
are hypotheses and G is the current goal, then the goal becomes Q ⇒ G. The command
mh allows to use hypothesis P ⇒ Q without involving the prover, that is to say without
simplifying the generated hypothesis Q. In fact, the automatic prover applies the modus
ponens systematically on each P ⇒ Q and P hypothesis couple that are present in the
hypothesis stack.

If P ⇒ Q or P are not hypotheses, the command isn’t applied.

Example

The following situation has been obtained directly:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
zz = e5 => tt = e1 &
zz = e5

Goal
not(e2 = e5)

The user wants to use the hypothesis zz = e5 => tt = e1 in order to generate the
hypothesis tt = e1. He knows that hypothesis zz = e5 exists. The mh command is
applied normally

PRI> mh(zz = e5 => tt = e1)
Starting Modus Ponens on Hypothesis
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and the goal becomes:

Goal
tt = e1 => not(e2 = e5)

The pr or dd command allow to raise this hypothesis in the stack.
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5.28 Mono Lemma Prover

Call of mono lemma prover

Syntax

ml
ml(t)
ml(rp.n)
ml(rp.n|t)
ml(rp(f))
ml(rp(f)|t)
ml(ff(l))
ml(ff(l)|t)

ml(ff(l)|rp.n)
ml(ff(l)|rp.n|t)
ml(ff(l)|rp(f))
ml(ff(l)|rp(f)|t)

with:

• l : list of proof forces separated by semicolons. A force equals to one of the following
values: Fast, 0, 1, 2 or 3. If ff(l) is not specified, the current force is used.

• t : mono lemma prover time-out (in seconds). If not provided, the mono lemma
prover will stop after 60 seconds in interactive mode.

• rp.n indicates that the mono lemma prover is used on reduced hypotheses.

– rp is a keyword.

– n is an integer greater or equal to zero that gives the level of hypotheses taken
in account. If n equals zero, only the goal (without the hypotheses) is processed
by the mono lemma prover.

• rp(f) indicates that the mono lemma prover is applied on the hypotheses selected by
formula f (whose form must be a or f+a, a being a keyword). Available keywords
for a are:

– inv: component invariant

– sees: assertions and invariants of used and seen machines

– loc: local hypotheses

– typ: type predicates of concrete variables

– abs: assertions and invariants of previous components

– used: constraints of used machines

– inc: properties of included, imported and extended machines

– prp: properties and valuations of the component
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Use

This command enables to use the mono lemma prover on the current goal. The mono
lemma prover works just like the automatic prover except that it processes hypotheses
differently.

This function can be used in the three following modes:

1. First mode applies the mono lemma prover to the goal and all the current hypotheses.

2. Second mode applies the mono lemma prover to the goal and the hypotheses of the
reduced proof obligation. The selected hypotheses are the same as those returned
by rp(see chapter 5.38 page 108).

3. Third mode applies the mono lemma prover to the goal and to the hypotheses
that meet the criteria given by parameter f. For instance, ml(rp(sees+loc+inv))
enables to proceed the goal proof under the assertions and invariants of seen and
used machines, the local hypotheses and the component invariant.

In the three modes, the mono lemma prover is invoked with a time-out. If this time-out
is not specified by the user, it is set to 60 seconds.

When proof is replayed in automatic mode, calls to the mono lemma prover are done with
a time-out specified by the Time Out resource given in the resource file of Atelier B (300
seconds by default).

To finish with, we can configure the proof force with the ff(l) argument. Proof will be
attempted with successively each of the listed forces until proof succeeds or the list is
exhausted.

Example

The mono lemma prover can be applied to the whole proof obligation (we suppose that
the current force is 0):

PRI> ml
Starting Mono Lemma Prover Call
Proved by the Mono Lemma Prover
with force 0

or to the reduced proof obligation. This option is used when the proof obligation has
many hypotheses:

PRI> ml(rp.1 | 5)
Starting Mono Lemma Prover Call
Proved by the Mono Lemma Prover
with force 0

Proof may be attempted with more selected hypotheses, but it may not succeed anymore.

PRI> ml(rp.5 | 10)
Starting Mono Lemma Prover Call
The Mono Lemma Prover failed to prove the current goal
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The mono lemma prover can be used to prove a given proof obligation or a sub-goal. So
it can be involved in a proof strategy by using it in the te (see chapter 5.48 page 128)
command body.

Below it is used on reduced proof oblligations (1 iteration) with a time-out of 10 seconds.

PRI> te(ml(rp.1 | 10), Replace.Gen.All)

The prover may be used also with a list of forces to attempt. We go through the list of
forces until one of them enables to achieve the proof. Here goal is discharged by force 1,
we thus do not try force 3.

PRI> ml(ff(0;1;3) | rp.0 | 50)
Starting Mono Lemma Prover Call
Proved by the Mono Lemma Prover
with force 1
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5.29 MiniProof

Mini Proof

Syntax

mp

Use

In 0 or 1 force, the mp command allows to use the prover without using proof by case.
This command is similar to pr(Red)(see chapter 5.34 page 99).

Example

See command pr(Red).
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5.30 Next

Positioning on the next unproved proof obligation

Syntax

ne

Use

This command allows the user to go on to the next unproved proof obligation, if there is
one. If there are no more unproved proof obligations, the ne command is ineffective.

This command can be used to go quickly to the first proof to be checked when the inter-
active proof of a component is opened.

Example

The component is made up of clause Initialisation and operation Calculus, two proof
obligations which have been proved, and two unproved proof obligations. By using the gs
(see chapter 5.20 page 68) command, the following situation can be obtained:

PRI> gs
State of all PO

Initialisation
PO1 Proved not(e5 = e1)
PO2 Proved e1 = e5

Calculus
PO1 Unproved not(e2 = e5)
PO2 Unproved e5 = e1

End

Let us suppose that the current proof obligation is Calculus.1. The user moves on to the
next unproved proof obligation.

PRI> ne
Current PO : Calculus.2

By repeating this command, the user finds himself back to the proof obligation Calculus.1.

PRI> ne
Current PO : Calculus.1
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5.31 Pmm compile

Loading user rules (Pmm)

Syntax

pc

Use

This command allows the loading and compilation of manual rules.

So as to be able to treat the most difficult proof cases, manual rules can be written in the
.pmm file (proof methods manual) (see chapter 7 page 143), which is created by the user
and has the name of the current component as a prefix.

This file should contain a group of valid theories, separated by &, written in the logic
solver language. The use of these rules should remain marginal. In fact, these rules can
be erroneous and cause the prover to prove false proof obligations.

When the interactive prover is launched, the pmm component file, if it exists, is automat-
ically loaded into memory.

If the pmm file is modified by the user during the interactive proof, and if the latter wishes
to use the latest pmm file rules, the pc command will allow the user to load the pmm file
rules into memory.

While the pmm file is being loaded, the prover displays an acceptation or file error message.

Beware!
Whereas all the other functions of the interactive prover have been totally protected, this
possibility of using manually written rules is not.

It is possible to key in a false rule, leading to false demonstrations. If no manual rule of
this type has been used, the proof, whichever interactive commands have been used, is
valid because the prover mechanisms themselves (automatic + interactive) are all valid.

However if manual rules have been added, then it will be necessary to check the validity
of these rules. The use of a rules demonstrator can be recommended for this task; but it
is clear that the interactive prover has been constructed so as to avoid the use of these
manual rules.
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Example

Given the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..109

Goal
(xx+1)*yy-1: 1..109

The user launches the prover

PRI> pr
Starting Prover Call

The goal (xx+ 1) ∗ yy− 1 : 1..109 is broken down into two sub-goals 1 ≤ (xx+ 1) ∗ yy− 1
and (xx+ 1) ∗ yy − 1 ≤ 109. The first sub-goal is treated first.

The automatic prover stops because it can’t solve the inequality 0 <= −2 + yy + xx ∗ yy.

New Hypothesis since last command
2: 1..109 &
2: 1..10 &
0<=2 &
2: NATURAL &
2: INTEGER &
0<=0 &
0: NATURAL &
0: INTEGER

Goal
0<= -2+yy+xx*yy

So the user decides to introduce a new rule, via the pmm file, and to use it in its proof.

So the test.pmm test file contains:

THEORY test IS

binhyp(a: 1..10) &
binhyp(b: 1..10)
=>
0<= -2+a+b*a

END

The rule is first loaded, then compiled.

PRI> pc
Loading theory test

In order to discharge the sub-goal 0 <= −2 + yy + xx ∗ yy, the rule of the test theory is
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applied.

PRI> ar(test.1,Once)
Starting Apply Rule

The first sub-goal is discharged and the automatic prover now tries to prove the second
sub-goal:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..109

Goal
(xx+1)*yy-1<=109

The second sub-goal is now to be proved, but is not proved by the means of the pr
command. So the user adds the rule allowing to discharge this goal. Eventually, the pmm
test. file contains:

THEORY test IS

binhyp(a: 1..10) &
binhyp(b: 1..10)
=>
0<= -2+a+b*a;

binhyp(a: 1..10) &
binhyp(b: 1..10)
=>
(a+1)*b-1<=109

END

Since the pmm file has been modified, it has to be reloaded into memory. The previously
loaded rules are replaced by the new ones.

PRI> pc
Loading theory test
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So as to discharge the sub-goal (a+ 1) ∗ b− 1 <= 109, rule number two of the test theory
is applied.

PRI> ar(test.2,Once)
Starting Apply Rule

The proof obligation is therefore proved.
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5.32 Particularize hypothesis

Instantiation of a universally quantified hypothesis

Syntax

ph(v1, . . . , vn, h)

with:

• h is a universal hypothesis of the form
∀(w1, . . . , wn).(P (w1, . . . , wn)⇒ Q(w1, . . . , wn))

Use

This command allows the assignment of a value to variables which appear, in hypotheses,
under the scope of a universal quantifier. The values v1, . . . , vn are affected to the variables
w1, . . . , wn. If the value of one or several variables is unknown, the keyword h can be
used to signify that the variable(s) will not be instantiated. For example:

ph(e1,ENS1,_h,(MAXINT-ff(3)), !(aa,bb,cc,dd).PP(aa,bb,cc,dd))

will generate the hypothesis corresponding to

!cc.PP(e1,ENS1,cc,(MAXINT-ff(3)))

G being the initial goal, the goal becomes:

P (v1, . . . , vn) ∧Q(v1, . . . , vn)⇒ G

• so the automatic prover will seek to demonstrate P (v1, . . . , vn)

• if it succeeds, the proof will continue with Q(v1, . . . , vn) in hypothesis.

The predicates P (w1, . . . , wn) contain the typing of v1, . . . , vn.

The user must be aware, though, that the particularization of universally quantified hy-
potheses is not protected against ill-typing (see chapter 3.2 page 7) nor ill-definedness (see
chapter 3.3 page 8). A bounded variable may be instantiated by an ill-typed or ill-defined
value. Thus the user must verify the well-typing and well-definedness before using this
command.

This can be checked with hindsight thanks to the mdelta tool (cf. User Manual Version
1.0.).

Example

Given the following:
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Hypothesis
ENS = {e1,e2,e3,e4,e5} &
tt: ENS &
uu: ENS &
zz: ENS &
!vv.(vv: ENS & (not(uu = vv) or not(tt = vv)) => zz = vv)

Goal
not(tt = uu)
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The user wishes to use the hypothesis ∀vv.(vv ∈ ENS ∧ (¬(uu = vv) ∨ ¬(tt = vv))⇒
zz = vv), by instantiating vv with the value e1.

The proof of vv ∈ ENS ∧ (¬(uu = vv) ∨ ¬(tt = vv))⇒ zz = vv will, after instanciation,
split itself into two parts:

• vv ∈ ENS

• then ¬(uu = vv) ∨ ¬(tt = vv)

If these two sub-goals are proved then the sub-goal becomes zz = e1 ⇒ ¬(tt = uu).

PRI> ph(e1,!vv.(vv: ENS & (not(uu = vv) or not(tt = vv)) => zz = vv))
Starting Particularize Hypothesis

The predicate of instanciated typing must be proved first:

Goal
e1: ENS

The pr command allows the discharging of this sub-goal.

PRI> pr

The following sub-goal is therefore:

Goal
not(uu = e1) or not(tt = e1)

Then the user launches the proof kernel:

PRI> pr
Starting Prover Call

The goal is proved. The next goal is generated in this way:

Goal
zz = e1 => not(tt = uu))

The predicate zz = e1 can be placed under hypothesis by one of the two pr or dd (see
chapter 5.13 page 53) commands.
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5.33 Predicate prover

Calling the predicate prover

Syntax

pp
pp(t)
pp(rp.n)
pp(rp.n|t)
pp(rp(f))

with:

• t : predicate prover time-out, in seconds. If this value is not indicated, the predicate
prover stops after 60 seconds.

• rp.n indicates that the predicate prover is used on reduced hypotheses.

– rp is a keyword.

– n is a positive integer which indicates the level of hypotheses considered. If n
equals zero, only the goal (without the hypotheses) is processed by the predicate
prover.

• rp(f) indicates that the predicate prover is applied on the hypotheses selected by
formula f (of form a or f+a, a being a keyword). Available keywords for a are:

– inv: component invariant

– sees: assertions and invariants of used and seen machines

– loc: local hypotheses

– typ: type predicates of concrete variables

– abs: assertions and invariants of previous components

– used: constraints of used machines

– inc: properties of included, imported and extended machines

– prp: properties and valuations of the component

Use

This command allows the predicate prover to be used on the current goal.

This has three modes of functioning:

1. The first mode calls the predicate prover to the goal and to all the current hypotheses.
This mode is not suitable for a large number of hypotheses.

2. The second mode calls the predicate prover to the goal and the hypotheses of reduced
proof obligation. The hypotheses selected are the same as for the rp(see chapter 5.38
page 108) function.
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3. Third mode applies the predicate prover to the goal and to the hypotheses that meet
the criteria given by parameter f. For instance, ml(rp(sees+loc+inv)) enables to
proceed the goal proof under the assertions and invariants of seen and used machines,
the local hypotheses and the component invariant.

In the three modes, the predicate prover is launched with a time-out. If the user does not
define it, the time-out is of 60 seconds.

When the proof is replayed automatically, the calls to the predicate prover are made with
a time-out specified by the Time Out resource given in the resource file of Atelier B (300
seconds by default). This margin allows a successful recall of the predicate prover, on a
less powerful machine.

Example

The predicate prover can be used on the complete proof obligation:

PRI> pp
Starting Prover Predicate Call
Proved by the Predicate Prover
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or on the reduced proof obligation. This option is used when the proof obligation has
many hypotheses:

PRI> pp(rp.1 | 5)
Starting Prover Predicate Call
Proved by the Predicate Prover

The proof can be tried with more selected hypotheses, but success is no longer guaranteed.

PRI> pp(rp.5 | 10)
Starting Prover Predicate Call
The Predicate Prover don’t prove the current goal

The predicate prover can be used to prove a specific proof obligation, or to prove a sub-
goal. It can thus be part of a proof strategy, being used in the command body te (see
chapter 5.48 page 128).

Here it is used on reduced proof obligations (1 iteration) with a time-out of 10 seconds.

PRI> te(pp(rp.1 | 10), Replace.Gen.All)
Begin TryEveryWhere

The work done by the predicate prover is then displayed:

+--+
Summary
Initialisation.1 transformed Unproved --> Proved, pp(rp.1)
Initialisation.4 transformed Unproved --> Proved, pp(rp.1)
End TryEveryWhere

Two proof obligations (Initialisation.1 and Initialisation.4) have been discharged.
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5.34 Prove

Calling the automatic prover

Syntax

pr
pr(r.b.h,f,s)
pr(Tac(t),r.b.h,f,s)
pr(Tac(t))
pr(Red)
pr(Red,r.b.h,f,s)

with:

• r = None (display the name of the rules applied) or Ru (display the name and body
of the rules applied)

• b = Goal (display of the goals) or Stop (display and stop on each goal)

• h = None (No displaying about hypotheses), Gen (display generated hypotheses)
or Full (display generated hypotheses and hypotheses that are raised into the stack)

• f = File (generation of a trace file, visible with the command Show Proof Tree)
or NoFile (no generation, default value)

• s = Simpl (Display the simplifications realized on every expression) or NoSimpl
(The simplifications are not displayed - default value)

• t is a tactic (see chapter 3.6 page 11)

Use

This command allows the use of the automatic prover, to prove the current proof obliga-
tion.

The pr command is also useful to start off again a proof which almost succeeded, but
which stopped because the maximum number of tries has been reached. Effectively, the
automatic prover has a certain number of counters which limit the number of applications
of certain mechanisms in one call, so as to avoid loops. Launching pr several times in a
row can therefore have an effect.

If a pr call has really not been effective, this is signalled by the message

Prover call did nothing

In this case, it isn’t worthwhile re-launching it.

The commands pr(r.b.h,f,s) and pr(Tac(t),r.b.h,f,s) allow the launching of the prover
in trace mode (see chapter 11 page 151). The parameters f, s and Tac(t) are optional,
but if one wishes to give s, then one needs to give f (the order of the parameters must be
respected).

The following information are available:
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• simplification of the goal, by application of a rule or a mechanism

• unloading a goal

• launching a case proof

• launching and ending proofs by attempt (internal sub-proofs)

• application of simplification rules

The presence of the Tac(t) parameter allows the use of user rules(pmm (see chapter 7
page 143), patchprover (see chapter 8 page 145)) within the automatic prover. The user’s
backward tactics can be applied once the local hypotheses have been raised in the stack,
and before calling on the rules base. The forward tactics behave like the rules of a single
theory. These rules are used with the prover’s forward rules. The user cannot use complex
tactics with Forward rules.

For example, the following forward tactic is not valid:

Fwd1~;(Fwd2;Fwd3)

If we use command pr(Tac(backward,forward)), the interactive prover will attempt
to apply the rules of the backward tactic. If these rules generate hypotheses, the DED
predefined theory must appear in the backward tactic. In that case, the rules of tactic
forward will process the raising hypotheses.

In force 0 or 1, the pr(Red) command allows the use of the prover without starting proof
by case. This use of the automatic prover is limited to:

• traversal of the rules base,

• processing of existential goals,

• over-typing (generating further typing hypotheses).

As far as forces Fast, 2 and 3 are concerned, command pr(Red) behaves the same as pr
and can probably attempt proofs by cases.
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Example 1

Given the following situation:

New Hypothesis since last command
e1: ENS &
1: 1..5 &
1: 1..100 &
1: 1..10 &
0<=1 &
1: NATURAL &
1: INTEGER &
0<=zz &
0<=yy &
0<=xx &
not(uu = e5) &
not(1: NATURAL) => -1: NATURAL

Goal
not(uu = e1)

A first call to the automatic prover has not allowed the current goal to be discharged.
The pr command is tried a second time, to see if the automatic prover has not failed in
the proof, because of the limited number of applications of rules (internal prover counters,
limiting the risk of loops (see chapter 3.9 page 14)).

PRI> pr
Starting Prover Call

The message Prover call did nothing indicates that the prover has not succeeded in a
definite way, in proving the current goal, and that it has not produced another hypothesis.

Prover call did nothing

Goal
not(uu = e1)
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Example 2

Let us now observe the functioning of the Prover in Trace mode.

Let us consider the following situation:

Hypothesis
xx: 1..10 &
yy: 1..10 &
zz: 1..100

Goal
xx+yy-1: 1..100

The prover is started in trace mode; the rule bodies along with information relative to the
hypotheses are not displayed, all the goals are listed.

PRI> pr(None.Goal.None)

Starting Trace in mode None.Goal.None , NoFile

Starting Prover Call

After deduction, goal is now
xx+yy-1: 1..100

The initial goal is decomposed into two sub-goals.

By applying atomic rule InSetXY.13,
the goal xx+yy-1: 1..100 is now

1<=xx+yy-1
and xx+yy-1<=100

Goal
1<=xx+yy-1

is simplified in
0<= -2+xx+yy

Because 0 is a lower bound of -2+xx+yy - 0
Goal 0<= -2+xx+yy is discharged.

The first sub-goal has been simplified then discharged. The second sub-goal can then be
processed
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As (xx, yy) ∈ (1..10)× (1..10), 101− xx− yy is bounded by 81:

Goal
xx+yy-1<=100

is simplified in
0<=101-xx-yy

Because 81 is a lower bound of 101-xx-yy - 0
Goal 0<=101-xx-yy is discharged.

End of trace

If the pr(Ru.Goal.None) command had been applied, the part of the trace concerning
the InSetXY.13 rule, that is to say:

By applying atomic rule InSetXY.13,

would have been:

By applying atomic rule InSetXY.13,
n<=a &
a<=p
=>
a: n..p
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Example 3

The following example shows the use of the Tac parameter, to use backward and forward
tactics.

Let us consider the following proof obligation:

integers <: INTEGER &
xx: INTEGER &
xx-1: integers &
=>
xx: integers

The associated file PMM contains the backward and forward theories:

THEORY backward IS
xx-1: integers => xx: integers => p
=>
p

END
&
THEORY forward IS

xx-1: integers
=>
xx: integers

END

The pr(Tac((backward;DED),forward)) command enables to discharge the current
goal.
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5.35 PreviousPO

Syntax

pv

Use

This command enables to go to the first previous unproved proof obligations, if there is
one. If there is no more unproved proof obligation left, command pv is ineffective.

Example

The component have 2 operations, 1 proved proof obligation and 3 unproved proof obli-
gations. By launching the gs command, we get the following situation:

PRI> gs
State of all PO

Initialisation
PO1 Proved not(e5 = e1)
PO2 Unproved e1 = e5

Calculus
PO1 Unproved not(e2 = e5)
PO2 Unproved e5 = e1

End

Let suppose that the current proof operation is Calculus.1. The user goes to the first
previous unproved obligation.

PRI> pv
Current PO : Initialisation.2

By repeating the command, we go to proof obligation Calculus.2.

PRI> pv
Current PO : Calculus.2
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5.36 Quit

Syntax

qu

Use

This command allows to leave the interactive prover.

If the current proof state has changed since its loading or if the command line has been
modified, the prover will ask the user if he wants to save the new command line before
quitting.

Example

A proof task has been performed on a current proof obligation. The user wishes to quit
the current interactive proof session. The prover asks the user if he wishes to save the
proof work of the last proof obligation used.

PRI> qu
Last PO does not have a saved demo. Your new demo does not Prove.
Do you want to save the new demo (will replace the old one)?

Answer No to continue without saving (any other word to save):
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5.37 Reset PO

Resetting all the commands of the command line

Syntax

re

Use

This command allows the resetting of all the commands on the command line, for the
current proof obligation.

Example

Given the proof obligation which has the following command line:

Force(0) &
ah(uu: ENS => (uu = e5 => tt = e1)) &
pr &
dd &
dd &

Next

The command re

PRI> re
Resetting PO

allows the re-initialisation of the command line. The command line is taken back to its
starting point.

Force(0) &
Next
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5.38 Show reduced PO

Displaying the proof obligation with reduced hypotheses

Syntax

rp or rp(n)

with:

• n is a positive integer

Use

This command allows the display of the current proof obligation in the form of reduced
hypotheses.

If n = 1, only the hypotheses which have a common symbol with the goal are selected.

If n = 2, the process is reiterated, by selecting the hypotheses which have a common
symbol with the goal, or with the previously selected hypotheses.

Command rp is equivalent to rp(1).

rp allows the user to find quickly the hypotheses likely to help demonstrating the goal. In
particular, this applies to the proof obligations coming from machines doing a lot of SEES
or INCLUDES, which may have a lot of hypotheses characterising variables which do not
appear in the goal.

Example

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
xx: 1..10 &
yy: 1..10 &
zz: 1..100 &
tt: ENS &
uu: ENS &
not(uu = tt) &
uu: {e1,e2,e3,e4} => tt = e5 &
uu = e5 => tt = e1

Goal
not(uu = e1)

With one iteration,

PRI> rp
Reducing hypothesis of lemma, 1 inclusion iteration(s)...



INTERACTIVE COMMANDS 109

The proof obligation in its reduced form is therefore:

Goal
not(uu = e1)

Hypothesis (1 pass(es) of inclusion by common symbols from goal)
uu: ENS &
not(uu = tt) &
uu: {e1,e2,e3,e4} => tt = e5 &
uu = e5 => tt = e1

End of reduced PO

With 2 iterations

PRI> rp(2)
Reducing hypothesis of lemma, 2 inclusion iteration(s)...

we get:

Goal
not(uu = e1)

Hypothesis (2 pass(es) of inclusion by common symbols from goal)
ENS: FIN(NATURAL*{ENS.enum}) &
tt: ENS &
uu: ENS &
not(uu = tt) &
uu: {e1,e2,e3,e4} => tt = e5 &
uu = e5 => tt = e1

End of reduced PO
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5.39 Repeat

Repetition of the last command

Syntax

rr

Use

This command allows to repeat the last command keyed in by the user.

Example

Given the dd command keyed in by the user:

PRI> dd
Starting Deduction

The rr command

PRI> rr

allows to repeat the last command keyed in.

Repeat: dd
Starting Deduction

If the keyed in command is a simultaneous command (see chapter 3.10 page 14),the rr
command allows to replay these commands one after the other.

The user performs the command:

PRI> dd & dd & pr
Starting Deduction
Starting Deduction
Starting Prover Call

The rr command

PRI> rr

allows to repeat these 3 commands

Repeat: dd & dd & pr
dd not applicable: Goal is not p => q
dd not applicable: Goal is not p => q
Starting Prover Call
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5.40 Suggest for exist

Instantiation of the existentially qualified goal

Syntax

se(v1, . . . , vn)

with:

• v1, . . . , vn are valid expressions or the keyword h.

Use

This command allows to chose the instantiation of variables, under the scope of an exis-
tential quantifier which appears in the current goal. If the goal is as follows:

∃(w1, . . . , wn).P (w1, . . . , wn)

then the goal becomes:

P (v1, . . . , vn)

This command is not protected against ill-typing (see chapter 3.2 page 7) nor ill-definedness
(see chapter 3.3 page 8) of the values with which we instantiate variables. Thus one must
be careful to not introduce ill-typed or ill-defined expressions.

This can be checked with hindsight thanks to the mdelta tool (cf. User Manual Version
1.0.).

If the value of one or several variables is unknown or must remain undetermined, it is
possible to use the keyword h, so as not to instantiate the chosen variables. For example,
if the goal is:

#(aa,bb,cc,dd).P(aa,bb,cc,dd)

then

se(e1,ENS1,_h,(MAXINT-ff(3)))

will transform the goal into

#cc.P(e1,ENS1,cc,(MAXINT-ff(3)))

Example

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
uu: ENS &
zz: ENS &

Goal
#kk.(kk: ENS & not(kk = uu) & not(kk = zz))
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The user may replace the kk variable by a judiciously chosen value.

PRI> se(e1)
Starting Suggest for Exist

In this case, the current goal is replaced by the goal containing the instantiated kk variable.

Goal
e1: ENS & not(e1 = uu) & not(e1 = zz)
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5.41 Search hypothesis

Search hypothesis

Syntax

sh(P ,A)
sh(P )

with:

• P is a group of formulae separated by the operators and, or, not

• A is a group of formulae separated by the operators and, or, not.

Use

This command allows to search among the hypotheses, for the ones which satisfy certain
criteria.

Argument P represents what the parts of a hypothesis must verify so that it is selected.
Argument P must be a group of sub-formulae separated by the 3 special operators and,
or, not.

For example: if P is (var1 and var2) or var3, the hypotheses containing either both
var1 and var2, or var3 are selected

Formulae with wildcards are accepted.

A represents what the entire hypothesis is to verify, in the same language as before.

For example, (a = b) or (a ⇒ b) selects the hypotheses which are either equalities or
implications.

Beware!! Inside a not, the use of and and or is not recognised. In the same way,
A must not be the equivalent of a term such as ((a = b) and (a ⇒ b)), otherwise no
hypothesis would be selected.

The argument A may be omitted.

If one of the elements of P is a variable, then the hypotheses that are found must contain
the variable in question.

For example sh(var) selects the hypotheses containing var, but not var$i or my var (here
var is considered as a formula, and not as a string of letters).

A classical use consists in searching all the hypotheses which refer to a given variable.
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Example

Given the following situation:

Hypothesis
ENS = {e1,e2,e3,e4,e5} &
ENS: FIN(NATURAL*{ENS.enum}) &
not(ENS = {}) &
xx: 1..10 &
yy: 1..10 &
zz: 1..100 &
tt: ENS &
uu: ENS &
not(uu = tt) &
uu: {e1,e2,e3,e4} => tt = e5 &
uu = e5 => tt = e1 &
1<=xx &
xx<=10 &
1<=yy &
yy<=10 &
1<=zz &
zz<=100

Goal
not(uu = e1)

We begin by searching all the hypotheses which contain the uu variable.

PRI> sh(uu)

The result obtained is:

Searching all Hypothesis that:
contain uu
match with a

Starting search...
Found hypothesis List is

uu = e5 => tt = e1 &
uu: {e1,e2,e3,e4} => tt = e5 &
not(uu = tt) &
uu: ENS

End of found hypothesis

The message match with a is displayed because, when parameter A is omitted, the
hypotheses must coincide with the wildcard a pattern.

We then search the hypotheses which refer simultaneously to uu and tt.

PRI> sh(uu _and tt)

The result obtained is the following:
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Searching all Hypothesis that:
contain uu _and tt
match with a

Starting search...
Found hypothesis List is

uu = e5 => tt = e1 &
uu: {e1,e2,e3,e4} => tt = e5 &
not(uu = tt)

End of found hypothesis

We now search all the hypotheses which refer to the variable uu or which contain the
expression not(a) (a is a wildcard).

PRI> sh(uu _or not(a))

The selected hypotheses are:

Searching all Hypothesis that:
contain uu _or not(a)
match with a

Starting search...
Found hypothesis List is

uu = e5 => tt = e1 &
uu: {e1,e2,e3,e4} => tt = e5 &
not(uu = tt) &
uu: ENS

End of found hypothesis

Finally, we search the hypotheses which refer to the variable uu and whose form is a : b
or a = b.

PRI> sh(uu, (a:b _or a=b))

The selected hypotheses are:

Searching all Hypothesis that:
contain uu
match with a: b

Starting search...
Found hypothesis List is

uu: ENS
End of found hypothesis
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5.42 Show Proof

Display of saved proof commands

Syntax

sp(o.i)

with:

• o.i a proof obligation of the component currently processed.

Use

This command enables to display the force level and the saved proof commands of the o.i
obligation proof.

Example

The current proof obligation is Initialisation.5. The user is attempting to prove it and
wants to use the proof of the Calculus.7 proof obligation that was previously proved.

PRI> sp(Calculus.7)

The following message is then displayed:

Saved Proof Commands of Calculus.7: Force(0) & ar(PatchProverH0)
& ah(foo >= SRAM) & pp(rp.0)
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5.43 Save with question

Save with question

Syntax

sq

Use

This command allows to save a proof task (command line) made upon current proof
obligations, if necessary.

If there is a risk of loss or regression, the user is asked to confirm. The user who has been
working for a long time on the same proof obligation should use the sq command so as
not to lose his work in case of a power cut.

Example

The current proof obligation is Initialisation.1. The user has completed a proof task and
wishes to save it, if it is necessary.

PRI> sq

The previous line and the new command line do not allow to prove the current obligation.
A confirmation of saving is asked:

Last PO does not have a saved demo. Your new demo does not Prove.
Do you want to save the new demo (will replace the old one)?

Answer No to continue without saving (any other word to save):

The user wishes to save his work.

Yes

The proof obligation is saved:

PO Initialisation.1 saved
Current PO : Initialisation.1
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5.44 Search rule

Search rule

Syntax

sr(T,CO,AN)
sr(T,CO)
sr

with:

• T is a list of theories separated by dots (for example: t1.t2.t3)
ti is either the name of a theory, taken from the theories making up the rule base,
or a keyword covering several names of theories from the rule base.

The keywords are the following:

– All : all the theories of the rule base

– Rewr : the theories containing rewrite rules

– Back : the theories containing deduction rules to be used in backward tactics

– Fwd : the theories containing deduction rules to be used in forward tactics

• CO allows to define the selection criteria of the consequents of rules. It can have one
of the following forms:

– Goal: The selected rules must be appliable to the current goal within the
current hypothesis context

– Goal2: Consequent of selected rules matches the current goal (this constraint
is weaker than that of the Goal keyword)

– abs(C),D: The selected rules must have a consequent of the same form as C
and contain at least one sub-formula of the same form as D.

• AN allows to define the selection criteria for the antecedents of the rules.

– abs(A),B : The selected rules must have an antecedent of the same form as A
and contain at least one sub-formula of the same form as B.

Use

This command allows to search one or several rules in the group of rules used by the
prover.

CO and AN are lists of formulae and translate the criteria that the selected rules have
to verify.

CO identifies the constraints related to the consequent of the rules and AN those related
to the antecedent.

The search criteria which may concern the antecedent and/or the consequent of a rule,
are of two types:
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• The absolute type, identified by the prefix abs, operates a selection according to
the global form of the consequent or antecedent of the rule.

• The relative type operates according to the form of one or more sub-formulae of
the consequent or antecedent

If the selection only concerns the consequent of the rule, AN can be omitted.

If the user is only searching for the rules applying to the current proof obligation, he just
keys in sr, and the choice will be made among the rules selected by the keywords Back
and Rewr (sr is equivalent to sr(Back.Rewr, Goal)).

The criteria C, D, A and B can be omitted. If the criteria A or B are present, the criteria
C et D must also be present (the order of parameters is important). In this case, the user
will use abs(No),No for C, D so as to show that no criteria applies to the consequent.
The command will be sr(T, abs(No), No, abs(A), B).

Generally, the formulae keyed in are made of expressions separated by special operators
and, or and not. The parameter of not should not be put between brackets.

So as to be selected, a rule must contain the expressions which are concerned according
to the indications given by these operators. For example, the following formula allows to
select the rules whose consequent is of the form a=b (absolute constraint), which contains
overloadings, unions but not sets in comprehension:

abs(a = b), ((a < +b) and (a ∪ b) and ( not({x|Q})))
Keywords and and or are forbidden inside a not where their use would be superfluous.
In fact, not(X and Y) is equivalent to not(X) or not(Y).

Example

By default, sr is equivalent to sr(Rewr.Back,Goal).

PRI> sr
Searching rules matching with goal in : Rewr.Back

Let us search in the theories SimplifyX and DifferenceX the rules whose consequent
matches with the current goal.

PRI> sr(SimplifyX.DifferenceXY, Goal)
Searching rules matching with goal in : SimplifyX.DifferenceXY

Finally, it is possible to select the rules according to the general form and the expressions
appearing in the consequents and antecedents.

We are searching for all the rules whose consequent is of the form a = b and which contain
at least one of the formula of the form ¬(c):

PRI> sr(All, abs(a=b), not(c))
Searching in All rules with filter

consequent should contain not(c)
consequent should match with a = b

We are looking for rules whose consequent is a = b and which contain at least one formula
of the form ¬(c), and whose antecedent is a ≥ b:
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PRI> sr(All, abs(a =b), not(c), abs(a>=b))
Searching in All rules with filter

consequent should contain not(c)
consequent should match with a = b
antecedent should match with a >= b

We are looking for the rules which have an antecedent of the form a ≥ b:

PRI> sr(All, abs(No), No, abs(a>=b))
Searching in All rules with filter

antecedent should match with a >= b

We are looking for rules which have the form a ≥ b as a consequent:

PRI> sr(All, No, abs(a>=b))

Searching in All rules with filter
consequent should match with a >= b

We are looking for rules that have one of their antecedents including at least one formula
¬(a− b):

PRI> sr(Goal.Rewr, abs(No), No, abs(No), not(a-b))
Searching in Goal.Rewr rules with filter

antecedent should contain not(a-b)
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5.45 Simplify Set

Simplification of set expressions in the current goal

Syntax

ss

Use

This command launches some simplifications on the set expressions appearing in the goal.
Involved mechanisms are much more powerful than the rules from the rule base. This
command must therefore make the simplification of the goal better.

Set simplification mainly uses three tools.

• The first tool makes the simplifications on expressions composed of literal values.

• The second tool works on any term.

• The third tool tries to use information from the hypotheses stack.

The first tool works on the following set and functional operators:

• union (A ∪B)

• intersection (A ∩B)

• set difference (A−B)

• generalised union (union(E))

• generalised intersection (inter(E))

• inverse of a relation (r−1)

• domain (dom(r))

• range (ran(r))

• identity relation (id(r))

• domain restriction (u C r)

• range restriction (uC− r)

• domain subtraction (r B v)

• range subtraction (r B− v)

• image of a set (r[w])

• application of a function (f(x))
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• overriding (r C−−q)

• direct product (p⊗ q)

• composition (p; q)

• parallel product (p||q)

• first and second projection (prj1(E,F ), prj2(E,F ))

• cartesian product(A×B)

• cardinal (card(E))

• transformation of an interval (a..b) into an enumeration

Moreover, it can manage the BOOL set, and some set operations such as set membership.
Because of the algorithm complexity, only the set operators are recognised by the second
tool:

• union (A ∪B)

• intersection (A ∩B)

• set difference (A−B)

• generalised union (union(E))

• generalised intersection(inter(E))

The third tool recognises the following operators:

• union (A ∪B)

• intersection (A ∩B)

• set difference (A−B)

• inverse of a relation (r−1)

• domain (dom(r))

• range (ran(r))

• identity relation (id(r))

• domain restriction (u C r)

• range restriction (r B v)

• image of a set (r[w])

• overriding (r C−−q)

• composition (p; q)

It is worthy noting an important limitation of this command : The maximum number
of elements of an enumerated set that can be handled by ss is set to ten because of the
processing complexity.
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Example

Given a proof obligation transformed by command mp into:

Hypothesis
ff: INTEGER +-> INTEGER &
xx: INTEGER &
yy: INTEGER &
ff: INTEGER <-> INTEGER &
dom(ff) <: INTEGER &
ran(ff) <: INTEGER

Goal
({2|->3,3|->4}/\{2|->xx})-{yy|->3} = ff

ss is applied to simplify the goal.

PRI> ss
Begin SimplifySet

and the new goal is:

Goal
({2|->3}/\{2|->xx})-{yy|->3} = ff

This goal is indeed simpler. Without any hypothesis involving xx and yy, the simplification
process cannot go further.
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5.46 Step

Execution of the next saved command

Syntax

st
st(n)

with:
n is worth

• a numerical value, indicating the number of steps to take

• End to replay the whole saved proof

Use

This command allows to execute the next command of the saved command line. It allows
to replay step by step interactive commands of a previous proof session.

The saved command line is made up of interactive commands which have been entered
during a previous interactive proof (otherwise the command line only contains the com-
mand pr (see chapter 5.34 page 99)). When one goes to a proof obligation, no commands
are processed beforehand. So, the user can replay the previous proof work which has been
saved, thanks to the st command, and /or use other interactive commands.

The n parameter allows to apply several saved commands at the same time. Its numerical
value allows to apply a specific number of commands. If the number is greater than the
number of saved commands, the Step command sends back an error message.

End allows the replay of all the saved interactive commands, from the current position of
the saved command.
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Example

Given the proof obligation whose saved line is:

Command line :
Force(0) &

Next
Saved line pos 1

Force(0) &
ar(test.1,Fwd) &
dd &
dd &
ar(test.2,Once) &
pr &
pr

There are 6 interactive saved commands (ar(test.1, Fwd) ∧ dd ∧ dd ∧ ar(test.2, Once) ∧
pr ∧ pr). We are going to replay them, one after the other.

The indicator Saved line pos 1 shows that the next st command will be command #1,
that is to say ar(test.1, Fwd) because Force(0) is only a force indicator.

PRI> st
Next step: ar(test.1,Fwd)

The first saved command will be applied:

Starting Apply Rule
Command line :

Force(0) &
ar(test.1,Fwd) &

Next
Saved line pos 2

The first command ar(test.1, Fwd) has been replayed. The indicator Saved line pos shows
that the next command to be made by the stwill be command #2.

PRI> st
Next step: dd
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The second saved command is applied:

Starting Deduction
Command line :

Force(0) &
ar(test.1,Fwd) &

dd &
Next

Saved line pos 3

It is possible to replay all the commands, up to the last one.

PRI> st(End)

The last four saved commands are then executed:

Starting Deduction
Starting Apply Rule
Starting Prover Call
Starting Prover Call

The command line obtained is therefore:

Command line :
Force(0) &

ar(test.1,Fwd) &
dd &
dd &

ar(test.2,Once) &
pr &
pr &

Next
Saved line pos 7

There are no more commands to be replayed because the position indicator is at number
7, that is to say, it is pointing towards the end of the saved commands.

PRI> st
Nothing to step
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5.47 Save without question

Forced saving of the current command syntax

Syntax

sw

Use

This command allows to save without question the proof work done on the current proof
obligation.

Example

Given the following proof obligation Calculus.2 whose command line is

Force(0) &
pr &
Next

The current proof obligation is then saved (status, command line), thanks to the command
sw.

PRI> sw
PO Calculus.2 saved
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5.48 Try everywhere

Application of a series of commands to a group of proof obligations

Syntax

te(f, m.n.p)
te(f,m.n’)
te(f,n”)
te(f)

with:

• f represents the command line to test for.

– Either f is a series of commands separated by & and in brackets

– Or f is the name of a proof obligation. In this case, the saved command line
of the t.n. proof obligation is used.

• m can be:

– Append : retry the proofs, placing the f commands after the saved commands

– Prepend : retry the proofs, placing the f commands before the saved com-
mands

– Replace : retry the proofs, using the f commands instead of the saved com-
mands

• n is worth:

– Loc : only the proof obligations of the operation (or clause) which is being
processed are concerned

– Gen : process all the component proof obligations

– List(L) : process all proof obligations of the L list (list of proof obligations
identifier, that is to say Operation Name . Obligation Number, separated by
&)

– Patt(P) : process all proof obligations whose goal matches the P formula

– Op(O) : process proof obligations of the operation (or clause) named O

– O[A..B] : process proof obligations of operation (or clause) named O bounded
by O.A and O.B with A positive and B greater or equal to A
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• n’ can be:

– List(L)

– Patt(P)

– Op(O)

– O[A..B]

• n” can be:

– List(L)

– Patt(P)

– Op(O)

– O[A..B]

– O.I : process proof obligation named O.I where O is an operation or clause
name and I a proof obligation number

• p can be:

– All : process all proof obligations ( even the proved ones)

– Unproved : only process the unproved proof obligations

Use

This command allows the user to try to apply a demonstration to all the proof obligations
of a component, while memorising only the demonstration which succeeded. The user
normally prepares this series of commands when he is demonstrating one of the proof
obligations. Different modes are proposed, so that the latest demonstration can fit well
into the already existing demonstrations of every proof obligations.

Messages sent to the user indicate which proof obligations have changed. The command
line of proof obligations which have been proved is also modified. Only the efficient
commands ( those which have had an effect on the state of the proof) will be saved.

A series of commands can only include one force command. This force command can be
placed anywhere, since the whole command line is carried out under constant force.

te(f) is equivalent to te(f, Replace.Loc.Unproved).

te(f,n”) is equivalent to te(f,Replace.n”.Unproved) with n” distinct from List(L) and
O.I.

te(f,List(L)) is equivalent to te(f, m.List(L).All). Moreover the Unproved option is
not available with List(L).

te(f,O.I) is equivalent to te(f,O[I..I]).

te(f,m.n’) is equivalent to te(f,m.n’.Unproved) with n’ distinct from List(L).

te(f,m.List(L)) is equivalent to te(f,m.List(L).All).
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Example 1

Given the component containing clause Initialisation, operation Calculus and seven proof
obligations, all unproved. The proof status is displayed with the gs command (see chap-
ter 5.20 page 68):

PRI> gs

The user obtains:

State of all PO
Initialisation

PO1 Unproved 1: 1..10
PO2 Unproved 1: 1..100
PO3 Unproved not(e5 = e1)
PO4 Unproved e1 = e5

Calculus
PO1 Unproved xx+yy-1: 1..100
PO2 Unproved not(uu = e1)
PO3 Unproved e1 = e5

End

The user tries to apply the command line dd & pr for all the component proof obligations,
by replacing the existing command line by dd & pr, if the proof succeeds. The existing
command line is ignored (argument Replace).

PRI> te((dd & pr), Replace.Gen.All)

the proof obligations Initialisation.1, Initialisation.2, Initialisation.3, Initialisation.4
and Calculus.1 are proved and saved.

Begin TryEveryWhere
++++---

Then, the result of the application of the command line is displayed.

Summary
Calculus.1 : Unproved --> Proved, dd & pr
Initialisation.4 : Unproved --> Proved, dd & pr
Initialisation.3 : Unproved --> Proved, dd & pr
Initialisation.2 : Unproved --> Proved, dd & pr
Initialisation.1 : Unproved --> Proved, dd & pr
End TryEveryWhere

Using command gs (see chapter 5.20 page 68), we can verify that 5 proof obligations have
really been proved.
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PRI> gs
State of all PO

Initialisation
PO1 Proved 1: 1..10
PO2 Proved 1: 1..100
PO3 Proved not(e5 = e1)
PO4 Proved e1 = e5

Calculus
PO1 Proved xx+yy-1: 1..100
PO2 Unproved not(uu = e1)
PO3 Unproved e1 = e5

End

Example 2

Given the component containing clause Initialisation, operation Analysis and six proof
obligations, all unproved. The proof status is displayed with command gs (see chapter 5.20
page 68):

PRI> gs

We obtain:

State of all PO
Initialisation

PO1 Unproved ff: INTEGER +-> BOOL
PO2 Unproved ff(1) = TRUE
PO3 Unproved xx: dom(ff)

Analysis
PO1 Unproved a1: 1..10
PO2 Unproved a1 = a2
PO3 Unproved a2 <= 11

End

The user tries to apply the dd & pr command line to the proof obligations number 1 of
Initialisation and number 2 and 3 of Analysis. He uses default options, that is to say
Replace and All:

PRI> te((dd & pr),List(Initialisation.1 & Analysis.2 & Analysis.3))

Begin TryEveryWhere
+++
Summary
Initialisation.1 transformed Unproved --> Proved, dd & pr
Analysis.2 transformed Unproved --> Proved, dd & pr
Analysis.3 transformed Unproved --> Proved, dd & pr
End TryEveryWhere
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Then the user uses the saved proof of proof obligation Analysis.2 to try it on Analysis.1:

PRI> te(Analysis.2,Analysis.1)

Begin TryEveryWhere
+
Summary
Analysis.1 transformed Unproved --> Proved, dd & pr
End TryEveryWhere

Afterwards, the user decides to try again the dd command followed by command pr on
the unproved proof obligations of clause Initialisation:

PRI> te((dd & pr),Replace.Op(Initialisation).Unproved)

Begin TryEveryWhere
++
Summary
Initialisation.2 transformed Unproved --> Proved, dd & pr
Initialisation.3 transformed Unproved --> Proved, dd & pr
End TryEveryWhere

We notice therefore that in our case, starting with proof obligations that were all unproved,
it would have been better, for instance, to apply commands dd and pr to all the proof
obligations of the Initialisation clause:
PRI> te((dd & pr),Replace.Initialisation[1..3].All)

Begin TryEveryWhere
+++
Summary
Initialisation.1 transformed Unproved --> Proved, dd & pr
Initialisation.2 transformed Unproved --> Proved, dd & pr
Initialisation.3 transformed Unproved --> Proved, dd & pr
End TryEveryWhere

To finish with, we could have used the previous proof commands only on the proof obli-
gations whose goal matches the x : y formula, that is to say :
PRI> te((dd & pr),Replace.Patt(x : y).All)

Begin TryEveryWhere
+++
Summary
Initialisation.1 transformed Unproved --> Proved, dd & pr
Initialisation.3 transformed Unproved --> Proved, dd & pr
Analysis.1 transformed Unproved --> Proved, dd & pr
End TryEveryWhere
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5.49 Proof by attempts

Proof by attempts

Syntax

tp(m)
tp(m,n)

with:

• m is worth

– Goal for a proof by attempts based on the form of the goal

– Hyp for a proof by attempts based on hypotheses

• n is a numerical value indicating the maximum number of attempts to be made.

Use

This command can be used in two ways. The first method is based on the goal form,
and attempts to generate further hypotheses based on rules which could be applied. This
method uses automatically generated rules called alpha rules. The second method is based
on hypotheses. The used rules belong to the classical rules of proof by attempts of the
prover.

In both cases, a numerical value can indicate the maximum number of sub-proofs to be
tried. The default value of this parameter is 20.

Example

If the current goal is:

Goal
aa <: xx\/yy

The application of the tp(Goal,20) command gives the following result:

Goal
aa <: xx &
aa <: yy\/xx &
xx <: xx\/yy &
xx <: xx\/yy &
aa <: xx\/yy/\aa &
aa <: aa/\(xx\/yy) &
POW(xx) <: POW(xx\/yy)
=>
aa <: xx\/yy

The hypotheses generated are hypotheses which will be used to prove the goal.



134 Interactive Prover—Reference Manual

5.50 User Simplification

Use of user-provided rewrite rules

Syntax

us(T)
us(T | M)

with:

• T rewrite tactic:

– t name of a user-provided theory (from the PatchProver or the Pmm file) only
containing rewrite rules. These rules may be guarded but must not have any
other antecedent.

– t.n, name of a rewrite rule of theory t provided by the user,

– t;U, where t is the name of a user-provided theory and U a rewrite tactic,

– t.n;U, where t.n is the name of a user-provided rewrite rule and U a rewrite
tactic.

• M application mode for rewriting:

– either keyword Goal (default mode when no other M mode is specified)

– or keyword AllHyp

– or keyword Hyp(h) with h corresponding to the chosen hypothesis

Use

This command enables to use user-provided rewrite rules (from PatchProver and/or a
Pmm file), either on the h hypothesis, or on all hypotheses, or finally on the current goal
while minimizing memory consumption.

When a compound tactic (that is to say a list of tactics separated by semicolons) is used,
rules are applied successively by going through the tactic list from left to right.

If M = Hyp(h), the goal becomes H ⇒ G where H is obtained by applying the rewritings
on hypotheses h, if they exist.

If M = AllHyp, the goal becomes H ⇒ G where H is obtained by applying rewriting on
all the hypotheses.

If M = Goal, the goal becomes G
′

where G
′

is obtained by rewriting the current goal G
with the given rules.

The prover attempt to apply a given rewrite rule as long as it is likely to be applied.

Example

Given the following user-provided theories contained either in PatchProver or in a Pmm
file:
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THEORY My_Simplifications IS

x: f[{a}] == {x |-> a} <: f;

(x + y)*z == (x*z + y*z)
END

&

THEORY Enum_Simp IS

binhyp(A : INTEGER) &
binhyp(B : INTEGER)

=>
(x: {A}\/{B} == (x = A) or (x = B))

END

Let us consider then the following proof obligation:

Hypotheses
...
aa : INTEGER &
bb : INTEGER &
6 <= (xx+2)*3 &
yy: {aa,bb}
...

Goal
xx: ENS => not((xx+yy)*2 : gg[{5}])

We can rewrite the goal by using the rewritings from My Simplifications:

PRV> us(My_Simplifications|_Goal)

We get the new goal:

Goal
xx: ENS => not({(xx*2 + yy*2) |-> 5} <: gg)

We may want also, for instance, to apply only the first rewrite rule of My Simplifications.
We must thus provide the name of the rule we want to use. In our case, the name of the
first rule of the My Simplifications theory is My Simplifications.1.

PRI> us(My_Simplifications.1)

The goal becomes:

Goal
xx: ENS => not({(xx+yy)*2 |-> 5} <: gg)
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We have only applied the first rule.

It is also possible to apply the simplifications on all the hypotheses.

PRI> us(My_Simplifications;Enum_Simp|_AllHyp)

All the new hypotheses appear as antecedents of the current goal:

Goal
6<=(xx*3 + xx*3) &
yy = aa or yy = bb
=>
xx: ENS => not((xx+yy)*2 : gg[{5}])

To finish with, we may decide to simplify only one hypothese:

PRV> us(My_Simplifications|_Hyp(6<=(xx+2)*3))

We then get:

Goal
6<=(xx*3 + xx*3)
=>
xx: ENS => not((xx+yy)*2 : gg[{5}])
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5.51 Validation of a rule

Proof of a user-provided rule

Syntax

vr(t,r | i)

with:

• t indicates the rule type and can take the 2 values:

– Back for a Backward rule. This is the default value.

– Fwd for a Forward rule.

• r is actually the rule.

• i is the predicate prover time-out expressed in seconds. If omitted, the time-out is
60s in interactive proof.

Use

This command enables to prove a user-provided rule that the user wants to use for his
proof work. The predicate prover attempts to prove the rule.

The predicate prover is always used with a time-out. In fact, although it is built to not
loop, the predicate prover can indeed take a very long time to prove (or not) a goal. This
time-out is set by default to 60s but can be changed by the user.

The rules are translated in predicate language before their proof by the predicate prover.
It is done in the same way as in the OPR (see OPR Reference Manual version 1.0.)

For instance, rules of form binhyp(P ) ∧ G⇒ D are translated into P ∧ G⇒ D.

Likewise rules of the form binhyp(P ) ∧ Q ⇒ (G == D) are translated into P ∧ Q ⇒
(G == D).

Example

The user tries to prove the A <: B & B <: C => A <: C rule:

PRI> vr(Back, (binhyp(A<:B) & binhyp(B<:C) => A<:C))

The rule is proved by the predicate prover.

The rule was proved



138 Interactive Prover—Reference Manual



CUSTOMIZING THE PROVER 139

6 Customizing the prover

The prover uses a resource management system built in Atelier B. This system enables to
modify the prover behaviour through options that are taken into account when a B project
is opened (cf. paragraph 2.6. “Atelier B customization” of Atelier B User Manual).

6.1 User-definable time-out

Resource : ATB*PR*Time Out.
Value : positive integer.
Meaning : time-out in seconds.
Default value : 300 (seconds).
This option allows to modify the time-out value of the satellite provers PP (Predicate
Prover) and ML (Mono Lemma Prover) in user-definable mode “User Pass” (see chap-
ter 10 page 149) or replay mode “Replay”.

This option enables to test, when in User Pass, proof tactics that use massively the pred-
icate prover. This opportunity of customization therefore enables to launch proofs with
small time-outs (maximum time of computation allowed before the proof process stops)
so one can quickly test such a tactic efficiency.

Alternatively one can also increase PP and ML time-outs when one is replaying (prove
replay) a project on a slower machine: thus one can be confident that if some proofs
succeed on fast machines, they will also succeed on slower ones.

Example :

If we have the following User Pass theory at our disposal:

THEORY User_Pass IS
ff(0) & dd(0) & pp(rp.0)

END

and if we want to know whether this series of commands is efficient, we just have to set
resource Time Out to a small value, 10 seconds for instance, and start the automatic proof
in User Pass mode. Generally if a command run-time (for instance, the one of pp) lasts
more than 10 seconds, it suggests that this command will never succeed. So if the series
above succeeds in less than 10 seconds, it’s OK and the series is efficient, on the contrary,
if one of its commands is still running after 10 seconds, the proof is stopped and the user
may consider that the series is inefficient.
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6.2 Normalisation of formulae P ⇒ Q and ¬P

Resource : ATB*PR*Keep Non Simplified Hypothesis.
Value : TRUE or FALSE.
Meaning : Non simplified predicates are kept only if this resource equals to TRUE.
Default value : TRUE.
When the simplication mechanism is applied to predicates of form P ⇒ Q and ¬P , it
transforms these formulae into P ∧ P ′ ⇒ Q and ¬(P ∧ P ′) (where P ′ is the simplified
form of P ) if the resource is set to TRUE.

On the contrary, the FALSE value enables to keep only simplified predicates, that is to say
to transform the above formulae into P ′ ⇒ Q and ¬P ′.
In some cases, the presence of both the non-simplified predicate and its simplified form
prevents the prover from applying some of its mechanisms. The prover cannot, for instance,
perform a Modus Ponens on the P , P ′ and (P ∧P ′) ⇒ Q hypotheses though it performs
it on the P ′ and P ′ ⇒ Q hypotheses.

Example :

Let us consider the following proof obligation:

Goal
x1<=3-y1 => x1<=2+ii &
x1+y1<=3 &
=>
5+z1 = y1

The resource is set to TRUE. If we perform a dd(0) (to raise in the hypothesis stack the two
local hypotheses) followed by a sh(x1) (to display hypotheses containing the x1 term) we
get:

Found hypothesis List is
x1+y1<=3 &
0<=3-x1-y1 &
0<=3-x1-y1 & x1<=3-y1 => x1<=2+ii

End of found hypothesis

Let us notice that the 0 <= 3−x1−y1 hypothesis (respectively 0 <= 3−x1−y1∧x1 <=
3 − y1 ⇒ x1 <= 2 + ii) is the simplified version of formula x1 + y1 <= 3 (respectively
x1 <= 3− y1 => x1 <= 2 + ii), as expected the non-simplified versions have been kept.

Here, we can not do a modus ponens on hypothesis 0 <= 3− x1− y1 ∧ x1 <= 3− y1 ⇒
x1 <= 2 + ii as we do not have the non-simplified hypothesis x1 <= 3 − y1 at hand:

Invalid argument / Inexistent a=>b Hypothesis in
mh(0<=3-x1-y1 & x1<=3-y1 => x1<=2+ii)

Let us set the resource to FALSE. By performing the same interactive commands on the
same proof obligation, we get:
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Found hypothesis List is
x1<=2+ii &
0<=3-x1-y1 &
0<=3-x1-y1 => x1<=2+ii

End of found hypothesis

This time, only the simplified versions of the formulae have been kept. Note that we
have now at our disposal the hypothesis x1 <= 2 + ii that was added by a modus ponens
automatically applied to 0 <= 3 − x1 − y1 ⇒ x1 <= 2 + ii. The prover functionning
was not impeded by non-simplified hypotheses.

6.3 Additional rule packages

Resource : ATB*PR*Use Rule Package.
Value : list of packages (or theories) identifiers separated by commas.
Meaning : list of additional rule packages (simplification, backward and forward) to be
added to the prover native rule base.
Default value : symbol “?”.
This new functionnality enables the use of additional rule packages. These packages of
validated rules are made of three different rule categories: simplification, backward and
forward (see chapter 3.4 page 9). They are used by the automatic prover like rules of the
native rule base.

As for now, only the p1 package has been added. To enable the use of the simplification
(respectively, backward and/or forward) rules, it is enough to set this resource to s1
(respectively b1 and/or f1). If we want to use all the p1 rules, we just have to specify the
p1 value in the resource file.

Setting the resource to “?” means that no additional rule package is used.

In the future, we aim to add several rule packages to the automatic prover.

Rules of the p1 package enable to process B language operators that were not fully handled
by the native rule base of the prover: modulo mod, minimum min, maximum max, integer
division /, generalised sum

∑
and product

∏
.

Example :

Given the xx mod tt <= nn goal under the hypotheses:

tt<=nn &
1<=tt &
tt:INT1 &
xx<=nn &
xx:INT1 &
1<=nn &
nn:INT1

When the resource is not set to p1, the pr command fails. On the contrary, this command
succeeds when the resource equals p1.



142 Interactive Prover—Reference Manual

6.4 Maximum Number of Instantiations of Universally Quanti-
fied Hypotheses

Resource : ATB*PR*Max Number Of Universal Hypothesis Instantiation.
Value : quadruplet of positive integers separated by commas.
Meaning : Maximum number of applications of the GenAny mechanism for each of the
proof forces.
Default value : (100, 200, 1000, 10000).
This resource enables to limit, for each proof force used, the number of applications of the
forward rules GenAny to universally quantified hypotheses. Therefore, the first value of
the quadruplet stands for the maximum number of applications of the rules of GenAny to
one universally quantified hypothesis for force 0, the second one for force 1, the third one
for force 2 and the last one for force 3.

The GenAny mechanism of the prover enables to particularize hypotheses of the form
∀(X).(P (X) ⇒ Q) (where P (X) is a predicate verified by X) according to hypotheses
P (Xi), that is to say, to generate hypotheses [X := Xi]Q for all Xi verifying P .

This option thus enables the user to limit the number of applications of the GenAny rules
to universally quantified hypotheses, for each proof force separately.

When a B component contains several universally quantified hypotheses, it is generally
interesting to limit the number of applications of the GenAny rules to each of the hypothe-
ses: it allows to avoid the generation of too many hypotheses since most of them will not
be useful for the proof process and so to avoid a combinatorial explosion.
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7 Proof Manual Method: adding
user rules

The automatic prover contains general proof mechanisms, which stem from a basis of rules
which are not universal.

These mechanisms have been designed in order to solve a large range of proof obliga-
tions, principally simple proof obligations. Therefore, the prover has a limited power of
resolution.

So as to be able to handle the more difficult cases, it is possible either to orientate the
proof by interactive commands (ah,dd, ph, se, ...), or to use manual rules. These rules
can correspond to omissions in the rule base. They also allow the user to discharge a
proof obligation, during the first step of an interactive proof, by incorporating the proof
obligation (in its ”wildcardised” form) in the component pmm file.

This file is located in the “project database” directory (bdp) and its extension is pmm. It
is written in the logic solver language 1.

The rules contained in the .pmm file are loaded by the pc (see chapter 5.31 page 89)
command and applied by the ar command (see chapter 5.4 page 26).

When accessing the .pmm file, the prover displays a message of acceptation of files or an
error message.

The rules must be equipped with the trace system (see chapter 11 page 151) in order to
be used with the trace system or to appear in the proof tree. If pmm rules are applied and
aren’t traced, the behavior of the proof tree generation module is not guaranteed anymore.
Caution!

While the other functions of the interactive prover are fully protected, this possibility of
applying manually written rules is not.

It is possible to enter a false rule, which provokes false demonstration. If no manual rule
of this type has been used, then the validity of the demonstrator (automatic+interactive)
is sufficient to ensure the validity of the proof, whichever interactive commands have been
used.

However, if manual rules have been added, then the user will have to be sure of these
rules. The use of a rule demonstrator can be recommended for this task, but it is clear
that the interactive prover was designed in order to avoid the use of these manual rules.

1see the Logic Solver Reference Manual
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8 Patchprover: adding rules
directly to the prover

This system can be used in the following way:

• Create a file called PatchProver in the bdp of the project

• Program in this file with the Logic solver language, while keeping in mind that:

– The rules of the PatchProverBi theory, where i is the force, will be applied by
the force i BEFORE the prover rules and mechanisms.

– The rules of the PatchProverAi theory, where i is the force, will be applied by
the force i AFTER the prover rules and mechanisms (just before failure).

– The rules of the PatchProverHi theory will be applied on the conjunctive form
of each group of hypotheses that is loaded in force i.

– The Fast force is not equipped with the PatchProver mechanism.

In PatchProverBi, B stands for ”Before” and in PatchProverAi, A stands for
”After”.

• These theories are initially empty in the prover:

– PatchProverH0 PatchProverH1 PatchProverH2 PatchProverH3

– PatchProverB0 PatchProverB1 PatchProverB2 PatchProverB3

– PatchProverA0 PatchProverA1 PatchProverA2 PatchProverA3

• NO NORMALISATION IS MADE IN THIS FILE. So the user should not use the
formulae of the left row of the normalisation table. Particularly, as far as the inner
notation used by the prover is concerned, {e} must always be a singleton. Otherwise,
the subsequent behaviour is not guaranteed.

• All these theories are “backward”. The PatchProverHi theories must contain
rewrite rules. They are applied to each group of hypotheses by

bguard((PatchProveri~;RES): bresult(H), Q)

Other theories can be created, bcall and bguard, etc. can be used, In order to
display messages, use
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bcall(WRITE: bwritef(...))

• BEWARE : THE USE OF PATCHPROVER IS RESERVED TO THOSE WHO
KNOW THE LOGIC SOLVER LANGUAGE. THIS IS NOT A SECURE METHOD.
PatchProver is only read when the automatic or interactive prover starts. Once the
file has been modified, it is better to unprove all the proof obligations and replay
the proof commands.

• If PatchProver contains syntax errors, it isn’t taken into account, and has no influence
on the proof.

The rules and calls to the mechanisms must be equipped with the trace system (see
chapter 11 page 151) , if the trace system is to be used during demonstrations, and the
proof tree is to be obtained. If the PatchProver rules are applied, and aren’t traced, the
behaviour of the proof generation tree is no longer guaranteed.



USER SIMPLIFICATION: USER-PROVIDED SIMPLIFICATION THEORIES 147

9 User Simplification: user-
provided simplification theories

This function allows to use user-provided rewrite theories in an efficient way. This theories
are written in the PatchProver and/or in the associated Pmm file, they contain only rewrite
rules and can be used with the following guard of the Logic Solver language:

bguard(UserSimpX: UserSimpG(T | B), R)

where T is the proof tactic, B a formula we want to simplify and R a wildcard (syntaxi-
cally: a single letter) that receives the result of the tactic T rule application to formula
B.

The order of rule applications is given by the proof tactics.

Syntax is as follows:

Tactic ::= T | T.n | T ; Tactic | T.n ; Tactic

where T is a rewrite theory name and n a positive integer (therefore T.n is a name of
a rule from theory T). If the tactic is just a theory name, all the rewrite rules within it
will be tried. If the tactic is a rule name, only the rewrite rule of the same name will be
used. Finally, if the tactic is of form U ; V where U and V are tactics, Tactic U will be
executed at first and then V.
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EXAMPLE

Let us consider, for instance, the following rewrite rules that are contained in the Patch-
Prover file:

THEORY Maplet IS

x: f[{a}] == {x |-> a} <: f

END

&

THEORY Enum_Simp IS

binhyp(A : INTEGER) &
binhyp(B : INTEGER)

=>
(x: {A} \/ {B} == (x = A) or (x = B))

END

These rules can be used in other user-provided rules in an efficient way with the predefined
theory UserSimpX:

THEORY Assumed_Proof IS

bguard(UserSimpX: UserSimpG(Maplet|x:f[{a}]),R) &
bsubfrm({x|->a},btrue,R,r) &
bnum(a) &
binhyp(not(Eval({x|->a}) = {y,z}))
=>
not(x:{y,z} & x:f[{a}])

END
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10 User Pass: Using configurable
passes

10.1 Presentation

It is possible to define proof tactics and to use them in automatic proof. These proof
tactics are made up of interactive command lines. Each command line will be tested
on all the proof obligations that remain to be proved. Call to the interactive prover is
performed in the “Automatic User Pass” mode.

The proof tactics are defined:

• either in the PatchProver file (see chapter 8 page 145)

• or in the pmm file(see chapter 7 page 143) associated with each component to be
proved.

They must be contained in the User Pass theory. If the User Pass theory is defined
both in the PatchProver and in the pmm file, only the theory contained in the PatchProver
will be considered, and the following message will be displayed:

Theory User_Pass Not Loaded because name clashes with native Theories

An example of User Pass theory is given below:

THEORY User_Pass IS

ff(0) & dd(0) & pr(Red);
ff(0) & dd(1) & pr(Red) & ch & dd(1) & pr(Red);
ff(0) & dd(1) & tp(Goal,10)

END

The first command line used will be:

ff(0) & dd(0) & pr(Red)

After application of this first command line, the following command line will be applied
to the unproved proof obligations that remain:

ff(0) & dd(1) & pr(Red) & ch & dd(1) & pr(Red)
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Finally, for the remaining proof obligations, the last command line will be used:

ff(0) & dd(1) & tp(Goal,10)

10.2 User Pass filters

It is possible to filter proof tactics by doing what follows:

• Use of the Operation keyword: If the user wish to apply some of the proof commands
only to unproved proof obligations of an operation (or clause) o, he needs to add the
keyword Operation(o) in the User Pass theory command line,

• Use of the Pattern keyword: If the user wish to apply some of the proof commands
only to unproved proof obligations whose goal (without local hypotheses) matches
formula f, he just needs to add the keyword Pattern(f) in the User Pass theory
command line.

The filter position in the command list does not matter.

It is also possible to combine the two filters above to apply commands only to proof
obligations of a given operation (or clause) whose goal matches some formula.

Let us consider, for instance, the following User Pass theory:

THEORY User_Pass IS

Operation(op0) & ff(0) & dd(0) & pr(Red);
Pattern(x=y) & ff(0) & dd(1) & pr(Red) & dd(1) & pr(Red);
Operation(op1) & Pattern(x:X) & ff(0) & dd(1) & tp(Goal,10)

END

The first command line to be used on the unproved proof obligations of operation op0 will
be:

ff(0) & dd(0) & pr(Red)

To the proof obligations that remain unproved after applying this first command line and
whose goal matches pattern x = y, the following command line will be applied:

ff(0) & dd(1) & pr(Red) & dd(1) & pr(Red)

Finally, the last command line will be used on the remaining unproved proof obligations
of operation op1 and whose goal matches pattern x ∈ X:

ff(0) & dd(1) & tp(Goal,10)

The advantage of using filters is that it prevents from uselessly attempting to apply com-
mands to proof obligations, when it is known to be unsuccessful (particularly because of
the goal form).
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11 Trace system

11.1 Description

The trace system allows the user to follow the application of the prover rule base, the
goal simplifications done when they are performed, the proofs by case and by attempt,
the generation, simplification and rising of derived hypotheses.

The equipment of rules is done the following way:

• Backward atomic rule

The original rule has no antecedent and has the form:

Q

The equivalent rule equipped with the trace system is:

bcall1(AtomicRule(first_rule)) => Q

first rule is nickname of the rule, it is independent of the theory where the rule is
specified.

• Backward non-atomic rule

The original rule is of the form:

P => Q

The equivalent rule equipped with the trace system is:

bcall1(BackwardRule(second_rule)) & P => Q

• Forward Rule

The original rule is of the form:

P => Q

The equivalent rule equipped with the trace system is:
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P => Q & bcall1(ForwardRule(Third_rule))

For the (PatchProver) mechanism equipment, the entry in and exit from the mechanism
will be traced. If the MECH mechanism calling code is the following:

Some_processing
=>
MECH(I, O);

with I corresponding to the input data of the mechanism, and O corresponding to the
output data, the equivalent mechanism equipped with the trace system will be:

Some_processing &
bcall1(SimplifyNewH(I,O))
=>
MECH(I, O);

if it is a mechanism transforming or generating hypotheses and

Some_processing &
bcall1(SimplifyNewG(I,O))
=>
MECH(I, O);

if it is a mechanism transforming the goal.

11.2 Help tool

The source code of a program allowing to equip automatically rules of a file with the trace
mechanism is provided in appendix.

To use this program, do the following:

1. The program must be compiled (file equipe.src)

krt -c equipe.src equipe.kin

before this, copy the symbol table from AB/press/lib/Bsym/B ST to the directory
containing equipe.src.

2. A equipe.ex file must be created, containing the Equipe formula, parameterized by
the name of the file to be equipped, and, possibly, the list of Forward theories (By
default, it is considered that all theories contain Backward rules).

For example, if the equipe.ex file contains:

Equipe(‘‘test.src’’)

the rules contained in the file “test.src” will be equipped with the backward mode
trace system.

If the equipe.ex file contains:
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Equipe(‘‘test.src’’ | (foo , foobar, gnu))

The rules contained in the “test.src” file will be equipped with the trace system
in backward mode, except those of the foo, foobar and gnu theories, which will be
equipped with the system in forward mode.

3. The program is to be executed

krt -b equipe.kin equipe.ex

Example of Use

If the equipe.ex file contains:

Equipe(‘‘test.src’’ | ForwardDirection)

and the test.src file contains:

THEORY stuff IS

foo
=>
gnat;

foobar
=>
machin;

foo;

foobar

END

&

THEORY ForwardDirection IS

foobar
=>
foo;

gnu
=>
gnat

END
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the launching of the equipe program

krt -b equipe.kin equipe.ex

will result in:

THEORY stuff IS
bcall1(BackwardRule(stuff.1)) &
foo
=>
gnat

;
bcall1(BackwardRule(stuff.2)) &
foobar
=>
machin

;
bcall1(AtomicRule(stuff.3))
=>
foo

;
bcall1(AtomicRule(stuff.4))
=>
foobar

END

&

THEORY ForwardDirection IS
foobar
=>
foo &
bcall1(ForwardRule(ForwardDirection.1))

;
gnu
=>
gnat &
bcall1(ForwardRule(ForwardDirection.2))

END
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12 List of available commands

List of commands by theme

category sub-category command meaning page
Proof Change proof level ff Change force 61

construction Prover call pr Prove 99
ml Mono Lemma Prover 84
mp MiniProof 87
pp Predicate Prover 96
ap Arithmetic Prover 24
ss Simplify Set 121
mc ModelChecking 78
tp Proof by attempts 133

Rule Application ar Apply rule 26
us User Simplification 134

Rewrite ae Abstract Expression 19
eh Use equality in hypothesis 57

Special case of ct Contradiction 44
inference rule cts Special contradiction 46

fh False hypothesis 63
dc Do cases 48
dcs Special do cases 51
se Suggest for exist 111

Operations on dd Deduction 53
hypotheses ch Create Hypothesis 43

ph Particularize hypothesis 93
mh Modus ponens hypothesis 82
ah Add hypothesis 22
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category sub-category command meaning page
Search and Search in base sr Search rule 118
display of

information
Search in component gs Global situation 68

sp Show Proof 116
Search in PO sh Search hypothesis 113

la Logical Analysis 74
dt Display Term 55
gt Graphical Trace 71
lp Show literal PO 76
rp Show reduced PO 108
cg Current Goal 42

Search in commands help Help 73
Browsing PO ba Back 33

re Reset 107
ne Next 88
pv PreviousPO 105
go Goto 65
gr Goto with reset 67
gw Goto without save 72

Command rr Repeat 110
repetition bb Loop 36

te Try everywhere 128
st Step 124

Save the PO sw Save without question 127
sq Save with question 117

User-provided pc Pmm compile 89
theories vr Validation of rule 137

Quit qu Quit 106
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List of commands in alphabetical order

Command Meaning page
ae Abstract Expression 19
ah Add hypothesis 22
ap Arithmetic Prover 24
ar Apply rule 26
ba Back 33
bb Loop 36
cg Current Goal 42
ch Create Hypothesis 43
ct Contradiction 44
cts Special Contradiction 46
dc Do cases 48
dcs Special do cases 51
dd Deduction 53
dt Display Term 55
eh Use equality in hypothesis 57
ff Change force 61
fh False hypothesis 63
go Goto 65
gr Goto with reset 67
gs Global situation 68
gt Graphical Trace 71
gw Goto without save 72

help Help 73
la Logical Analysis 74
lp Show literal PO 76
mc ModelChecking 78
mh Modus ponens on hypothesis 82
ml Mono Lemma Prover 84
mp MiniProof 87
ne Next 88
pc Pmm compile 89
ph Particularize hypothesis 93
pp Predicate Prover 96
pr Prove 99
pv PreviousPO 105
qu Quit 106
re Reset 107
rp Show reduced PO 108
rr Repeat 110
se Suggest for exist 111
sh Search hypothesis 113
sp Show Proof 116
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Command Meaning page
sq Save with question 117
sr Search Rule 118
ss Simplify Set 121
st Step 124
sw Save without question 127
te Try everywhere 128
tp Proof by attempts 133
us User Simplification 134
vr Validation of rule 137
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13 Appendix

Program of equipment with the trace system

Here is a program, written in the logic solver language, which allows the automatic equip-
ment of a file with the trace system.

‘B_ST

THEORY Main IS

bget(F, R)

& EquipeTheories(R | __PasDeTheorie__)

=>

Equipe(F);

bget(F, R)

& EquipeTheories(R | L)

=>

Equipe(F | L);

bcall(WRITE: bwritef("\nTHEORY % END\n", T))

=>

EquipeTheories((THEORY T END) | L);

bcall(WRITE: bwritef("\nTHEORY % IS\n", T))

& bcall(MODR: bmodr(IndexRegle.1,0))

& EquipeReglesBackward(C | T)

& bcall(WRITE: bwritef("\nEND\n"))

=>

EquipeTheories((THEORY T IS C END) | L);

bsearch(T, (L , btrue), R)

& bcall(MODR: bmodr(IndexRegle.1,0))

& bcall(WRITE: bwritef("\nTHEORY % IS\n", T))

& EquipeReglesForward(C | T)

& bcall(WRITE: bwritef("\nEND\n"))

=>

EquipeTheories((THEORY T IS C END) | L);

EquipeTheories((A) | L)

& bcall(WRITE: bwritef("\n&\n"))

& EquipeTheories((B) | L)

=>

EquipeTheories((A & B) | L);
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brule(IndexRegle.1, N)

& bguard((ARI;MODR): bmodr(IndexRegle.1, (N+1)))

& brule(IndexRegle.1, M)

& bcall(WRITE: bwritef("%\n=>\n% &\n bcall1(ForwardRule(%.%))\n", A, B, T, M))

=>

EquipeReglesForward((A=>B) | T);

EquipeReglesForward(A | T)

& bcall(WRITE: bwritef("\n;\n"))

& EquipeReglesForward(B | T)

=>

EquipeReglesForward((A;B) | T);

brule(IndexRegle.1, N)

& bguard((ARI;MODR): bmodr(IndexRegle.1, (N+1)))

& brule(IndexRegle.1, M)

& bcall(WRITE: bwritef("bcall1(AtomicRule(%.%)) \n=>\n%\n", T, M, A))

=>

EquipeReglesBackward(A | T);

brule(IndexRegle.1, N)

& bguard((ARI;MODR): bmodr(IndexRegle.1, (N+1)))

& brule(IndexRegle.1, M)

& bcall(WRITE: bwritef("bcall1(BackwardRule(%.%)) &\n%\n=>\n%\n", T, M, A, B))

=>

EquipeReglesBackward((A=>B) | T);

EquipeReglesBackward(A | T)

& bcall(WRITE: bwritef("\n;\n"))

& EquipeReglesBackward(B | T)

=>

EquipeReglesBackward((A;B) | T)

END

&

THEORY IndexRegle IS

0

END
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