BDDs verified in a proof assistant
(Preliminary report)

Mathieu Giorgino
Martin Strecker
IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse

Abstract

This paper is a case study in mechanical verification of graph manipulating algorithms: We prove the correctness of a family of algorithms constructing Binary Decision Diagrams in a monadic style. It distinguishes itself from previous verification efforts in two respects: Firstly, building the BDD structure is guided by a primitive recursive descent which makes the proof of termination trivial. Secondly, the development is modular: it is parametrized by primitives manipulating high-level hash tables that can be realized by several implementations.

1 Introduction

Binary Decision Diagrams (BDDs) [3] are a compact way of representing Boolean formulas. They are widely used in applications such as model checking and digital circuit development. The main idea of BDDs is to represent a Boolean formula as a decision tree, to join common subtrees and eliminate certain redundancies, so as to arrive at a canonical representation of formulas. This makes it particularly easy to check for validity of a formula or equivalence of two formulas.

This paper describes, primarily, an extended case study, intended to illustrate a particular method of developing and verifying pointer algorithms. There have been previous efforts of verifying BDD algorithms, see Section 2 for a discussion. Surprisingly, they all work on a relatively low-level representation that does not exploit the tree structure inherent in BDDs. This enormously complicates some proofs, such as termination. We remain entirely on the level of trees, but in order to take sharing of subtrees into account, we adorn the nodes with references incorporating the “object identity” of the trees. Our main data structures are described in Section 3. In the course of building up a BDD, new references have to be generated, and subtrees have to be retrieved from or stored in a sort of hash table. This management of a program state is carried out “behind the scenes”, in a monadic framework, which is described further in
Section 4. Nevertheless, most of our function definitions are by structural recursion, which makes the termination argument trivial and furthermore permits simple proof methods such as structural induction to be applied.

Verified BDD algorithms are of interest in their own right, for example in the context of verified decision procedures for certain modal [4] or temporal logics [12, 13]. We do not pretend to present the ultimate implementation of BDDs in this paper, but we have attempted to keep the development modular, permitting further optimizations to be integrated with little effort. We thus give an abstract specification of the functions manipulating hash tables (Section 5) and provide two distinct implementations (Section 6).

The formalization described in this paper has been carried out in the Isabelle proof assistant [10]. It uses some specificities of Isabelle, most of which are not essential (the syntax definition facilities for writing monadic programs in a readable style) or can be replaced by related concepts available in other proof assistants (the structuring mechanism of locales). The development is available on the authors’ home pages [5].

2 Related Work

Most of the formalizations we are aware of follow standard expositions of BDD algorithms [3, 1] and thus do not differ substantially from an algorithmic viewpoint. The most essential differences concern the representation of the state space.

The present paper owes much to [7], which introduces the approach of verifying imperative programs in a proof assistant by representing them in a monadic style. The state space of the program is represented as a set of interconnected nodes that have to satisfy some well-formedness constraints. A major problem is the termination proof of the function app (see Section 5) that has to be carried out in parallel with the correctness argument: The function makes two consecutive recursive calls that, by transforming the global state space, could possibly invalidate the well-formedness conditions on which termination relies.

The formalization [14], carried out in the Coq proof assistant, is based on a similar BDD representation, but the algorithm directly accesses the program state, represented as a (nested) map. There is no attempt to hide manipulation of the state behind abstract state transformers. The above-cited termination problem is circumvented by recursing not over the structure of the BDD, but over a natural number representing an upper bound of the size of the BDD. Thus, the algorithm employs an artifact whose sole purpose it is to facilitate the representation in a proof assistant. This formalization is the most comprehensive one that we are aware of. It contains several essential optimizations (handling negation; garbage collection) that have not yet been addressed in our work.

A formalization in PVS [15] uses a tricky encoding of hash tables by injective pairing functions and can thus avoid having to handle a program state altogether – the BDD construction is entirely functional. It is not clear how this approach scales to hash tables containing a great number of elements.
The above formalizations adopt a functional representation (possibly hidden behind a monadic framework) of the BDD algorithms. A radical departure is the direct coding in an imperative language [11] in the style of C and the verification by means of a Hoare calculus. The algorithm uses an optimized representation of hash tables (“level lists”), but the full proof of correctness is complex and extends over several hundred pages.

Recognizing the huge effort to be spent on verifying imperative programs manipulating low-level data structures, we aim at providing reasoning support for an intermediate level that benefits from some performance gains of imperative wrt. functional programming (destructive updates, pointer manipulation) without abandoning high-level data structures. A companion paper [6] explores the applicability of our approach to the Schorr-Waite graph marking algorithm. Clearly, sophisticated optimizations based on bit-level manipulations are not immediately within the reach of our techniques, but could be achieved by successive data structure refinements.

3 Binary Decision Diagrams

BDDs are used to represent and manipulate efficiently Boolean expressions. We will use them as starting point of our algorithms, by defining a function constructing BDDs from them. The definition of expressions is standard:

\[
\text{datatype } \text{bbinop} = \text{OR} | \text{AND} | \text{IMP} | \text{IFF}
\]

\[
\text{datatype } \text{′v expr} = \text{Var } \text{′v} | \text{Const bool} | \text{BExpr bbinop (′v expr) (′v expr)}
\]

and their interpretation is done by `interp-expr` (where, obviously, `interp-bbinop` maps constructors of `bbinop` to Boolean functions):

\[
\text{primrec } \text{interp-expr} :: \text{′v expr } \Rightarrow (\text{′v } \Rightarrow \text{bool}) \Rightarrow \text{bool where}
\]

\[
\text{interp-expr} (\text{Var } \text{v}) \text{ tab } = \text{tab v}
\]

\[
\text{interp-expr} (\text{Const b}) \text{ tab } = b
\]

\[
\text{interp-expr} (\text{BExpr bop e1 e2}) \text{ tab } =
\]

\[
(\text{interp-bbinop bop}) (\text{interp-expr e1 tab}) (\text{interp-expr e2 tab})
\]

In this function and other functions of interpretation, variable values are represented by a function from variables indices to Booleans. We now define BDDs as binary trees in which references are added to nodes and leaves (`rtree`):

\[
\text{datatype } (\text{′a, ′b) tree } =
\]

\[
\text{Leaf } \text{′a}
\]

\[
\text{Node } \text{′b} ((\text{′a, ′b) tree) ((\text{′a, ′b) tree)}
\]

\[
\text{types } (\text{′r, ′a, ′b) rtree } = (\text{′a } \ast \text{′r, ′b } \ast \text{′r) tree}
\]

In this way, as long as subtrees having identic references are the same, we can represent sharing. To ensure this property giving meaning to references, we
use the predicate \textit{ref-unique} \(ts\):

\textbf{definition} \textit{ref-unique} :: \((r, a, v)\) rtree set \(\Rightarrow\) bool where
\[
\textit{ref-unique} \; ts \equiv \forall \; t1 \; t2. \; t1 \in ts \rightarrow t2 \in ts \rightarrow \textit{ref-equal} \; (t1, t2) = \textit{struct-equal} \; (t1, t2)
\]

in which \textit{ref-equal} means that two trees have the same reference attribute, and \textit{struct-equal} is structural equivalence neglecting references, thus corresponding to the typical notion of equality of data in functional languages.

While the left-to-right implication of this equivalence is the required property (two nodes having the same reference are the same), the other implication ensures the maximal sharing (same subtrees are shared, \textit{i.e.} have the same reference).

Let us illustrate the concept of subtree sharing by an example. A non-shared BDD (thus, in fact, just a decision tree) representing the formula \((x \land y) \lor z\) is given by the following tree (omitting references):

\begin{enumerate}
\item Node \(x\)
\begin{enumerate}
\item (Node \(z\) (Leaf false) (Leaf true)),
\item (Node \(y\) (Node \(z\) (Leaf false) (Leaf true)) (Leaf true))
\end{enumerate}
\end{enumerate}

There is a common subtree (Node \(z\) (Leaf false) (Leaf true)) which we would like to share. We therefore adorn the tree nodes with references, using the same reference for structurally equal trees, for example:

\begin{enumerate}
\item Node \((x, 1)\)
\begin{enumerate}
\item (Node \((z, 3)\) (Leaf \(\text{false, 4}\)) (Leaf \(\text{true, 5}\))),
\item (Node \((y, 2)\) (Node \((z, 3)\) (Leaf \(\text{false, 4}\)) (Leaf \(\text{true, 5}\))),
\end{enumerate}
\end{enumerate}

The process of sharing is illustrated in Figure 1.

Each node contains a variable index whose type is any type equipped with a linear order (as indicated by Isabelle’s type class annotation) and each leaf contains a value of any type instantiated later in the development (for interpretations) to Booleans. To allow writing simple and generic algorithms (\textit{i.e.} avoid

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{tree-sharing.png}
\caption{Sharing nodes in a tree}
\end{figure}
particular cases), leaves and nodes should be usable in the same way. For example, we define a linear order on levels of trees by having level of leaves always greater than levels of nodes and using variable indices to compare nodes.

BDDs can be interpreted by giving values to variables which is what the interp function does:

```hs
fun interp :: ("r", "a", "v") rtree ⇒ "a" where
  interp (Leaf (b, r)) = b
  interp (Node (v, r) l h) tab = (if tab v then interp h tab else interp l tab)
```

With this definition, and without any other property, BDDs would be rather hard to manipulate. On the one hand, same variable indices could appear several times on paths from root to leaves. On the other hand, variables would not be in the same order, making comparison of BDDs harder. Moreover, a lot of space would be wasted. To circumvent this problem, one often imposes a strict order on variables, the resulting BDDs being called ordered (OBDDs):

```hs
fun tree-vars :: ("a", "v" *) tree ⇒ "v" set where
  tree-vars (Node (v, r) l h) = insert v (tree-vars l ∪ tree-vars h)
  tree-vars (Leaf b) = {}

fun ordered where
  ordered (Leaf b) = True
  ordered (Node (i, r) l h) = (∀ j ∈ (tree-vars l ∪ tree-vars h). i < j) ∧ ordered l ∧ ordered h
```

An additional important property is to avoid redundant tests, which occurs when the two children of a node have the same interpretation. All the nodes satisfying this property can be removed. In this case, the OBDD is said to be reduced (ROBDD).

```hs
fun reduced :: ("r", "a", "v") rtree ⇒ bool where
  reduced (Node vr l h) = (interp l ≠ interp h) ∧ reduced l ∧ reduced h
  reduced (Leaf -) = True
```

This property uses a high-level definition (interp), but it can be deduced (c.f. lemma non-redundant-imp-reduced below) from the three low-level properties ref-unique, ordered (already seen) and non-redundant:

```hs
fun non-redundant :: ("r", "a", "v") rtree ⇒ bool where
  non-redundant (Node vr l h) =
    (∼ ref-equal(l, h) ∧ non-redundant l ∧ non-redundant h)
  non-redundant (Leaf -) = True
```

We then merge these properties in two definitions robdd (high-level) and robdd-refs (low-level):

```hs
definition robdd t ≡ (ordered t ∧ reduced t)
definition robdd-refs t ≡ (ordered t ∧ non-redundant t ∧ ref-unique (treeset t))
```

And we can then show that ROBDDs are a canonical representation of Boolean expressions, i.e. that two equivalent ROBDDs are structurally equal.
lemma canonic-robdd:
 fixes t1 :: (-, ::linorder × -) tree
 shows [robdd t1; robdd t2; interp t1 = interp t2] \implies struct-equal (t1, t2)
lemma non-redundant-imp-reduced:
 fixes t :: (-, ::linorder × -) tree
 shows [ordered t; ref-unique (treeset t); non-redundant t] \implies reduced t
lemma canonic-robdd-refs:
 fixes t1 :: (-, ::linorder × -) tree
 shows [robdd-refs t1; robdd-refs t2; interp t1 = interp t2] \implies struct-equal (t1, t2)
lemma non-redundant-reduced:
 fixes t :: (-, ::linorder × -) tree
 shows [ref-unique (treeset t); ordered t] \implies non-redundant t = reduced t
lemma robdd-refs-robdd:
 fixes t :: (-, ::linorder × -) tree
 shows ref-unique (treeset t) \implies robdd-refs t = robdd t

4 Imperative Programs : Monads

This section presents a way to manipulate low-level programs. We use a heap-transformer monad providing means to reason about monadic/imperative code along with a nice syntax, and that should allow to generate similar executable code.

We first define the state-reader and state-transformer monads and a syntax seamlessly mixing them. We encapsulate them in the SR – respectively ST – datatypes, as functions from a state to a return value – respectively a pair of return value and state.

We can escape from these datatypes with the $runSR$ – respectively $runST$ and $evalST$ – functions which are intended to be used only in logical parts (theorems and proofs) and that should not be extractible.

datatype (′a, ′s) SR = SR ′s ⇒ ′a
datatype (′a, ′s) ST = ST ′s ⇒ ′a × ′s
cconsts
 runSR :: (′a, ′s) SR ⇒ ′s ⇒ ′a
 runST :: (′a, ′s) ST ⇒ ′s ⇒ ′a × ′s
primrec runSR (SR m) = m
primrec runST (ST m) = m
abbreviation evalST :: (′a, ′s) ST ⇒ ′s ⇒ ′a
where evalST fm s ≡ fst (runST fm s)
abbreviation stateST :: (′a, ′s) ST ⇒ ′s ⇒ ′s
where stateST fm s ≡ snd (runST fm s)

The return (also called unit) and bind functions for manipulating the monads are then defined classically with the infix notations \triangleright_SR and \triangleright_ST for binds.
We add also the function \(SRtoST\) translating state-reader monads to state-transformer monads and the function \(thenST\) (with infix notation \(\triangleright st\)) abbreviating binding without value transfer.

consts

\[
\begin{align*}
\text{returnSR} &:: 'a \Rightarrow ('a, 's) SR \\
\text{returnST} &:: 'a \Rightarrow ('a, 's) ST \\
\text{bindSR} &:: ('a, 's) SR \Rightarrow ('a \Rightarrow ('b, 's) SR) \Rightarrow ('b, 's) SR \quad \text{(infixr} \triangleright sr) \\
\text{bindST} &:: ('a, 's) ST \Rightarrow ('a \Rightarrow ('b, 's) ST) \Rightarrow ('b, 's) ST \quad \text{(infixr} \triangleright st) \\
\text{SRtoST} &:: ('a, 's) SR \Rightarrow ('a, 's) ST
\end{align*}
\]

defs

\[
\begin{align*}
\text{returnSR} \ a &≡ SR (\lambda \ s. \ a) \\
\text{returnST} \ a &≡ ST (\lambda \ (a, s)) \\
\text{bindSR} \ m \ f &≡ SR (\lambda \ s. (\lambda \ x. \ runSR (f x) s) \ (runSR m s)) \\
\text{bindST} \ m \ f &≡ ST (\lambda \ s. (\lambda \ (x, s'). \ runST (f x) s') \ (runST m s)) \\
\text{SRtoST} \ sr &≡ ST (\lambda \ s. (runSR sr s s))
\end{align*}
\]

abbreviation

\[
\begin{align*}
\text{thenST} &:: ('a, 's) ST \Rightarrow ('b, 's) ST \Rightarrow ('b, 's) ST \quad \text{(infixr} \triangleright st 55) \\
\text{where} \ a \triangleright st b &≡ a \triangleright st (\lambda -. \ b)
\end{align*}
\]

We can then verify the monad laws:

lemma \textit{monadSRlaws} :

\[
\begin{align*}
\forall \ v. \ (\text{returnSR} \ v) \triangleright sr f &≡ f v \\
\forall \ a. \ a \triangleright sr \text{returnSR} &≡ a \\
\forall \ (x;('s, 'a) SR) \ f g. \ (x \triangleright sr f) \triangleright sr g &≡ x \triangleright sr (\lambda v. ((f v) \triangleright sr g)) \quad \text{by (simp-all add: expand-SR-eq SR-run0)}
\end{align*}
\]

lemma \textit{monadSTlaws} :

\[
\begin{align*}
\forall \ v. \ (\text{returnST} \ v) \triangleright st f &≡ f v \\
\forall \ a. \ a \triangleright st \text{returnST} &≡ a \\
\forall \ (x;('a, 's) ST) \ f g. \ (x \triangleright st f) \triangleright st g &≡ x \triangleright st (\lambda v. ((f v) \triangleright st g)) \quad \text{by (simp-all add: expand-ST-eq ST-run0 split:prod.splits)}
\end{align*}
\]

We define also syntax translations to use the Haskell-like \textit{do}-notation.

The principal difference between the Haskell \textit{do}-notation and this one is the use of state-readers for which order does not matter. With some syntax transformations, we can simply compose several state readers into one as well as give them as arguments to state writers, almost as it is done in imperative languages (for which state is the heap). In an adapted context \(\text{-- i. e. in doSR\{\ldots\}}\) or \(\text{doST\{\ldots\}}\) we can so use state readers in place of expressions by simply putting them in \(\{\ldots\}\), the current state being automatically provided to them, only thanks to the syntax transformation which propagates the same state to all \(\{\ldots\}\).

For example with \(f \ a \Rightarrow ('b, 's) ST\), \(a \triangleright ('a,s) SR\), \(g ((\ldots) ('s) ST\) and \(h \triangleright 'd\), all these expressions are equivalent:
The notions introduced so far are appropriate for manipulating an existing set of references. We now define a type class allowing infinite generation of values, which will be useful for allocating new references:

```
class genr = eq +
  fixes gen:: 'a list ⇒ 'a
  assumes gen-def [rule-format, simp]:
    ∀ vs. (gen vs) ∉ set vs
```

We then define the heap we will use as the state in the state-reader/transformer monads. We represent references with a very simple datatype, only used as a tag:

```
datatype 'n ref = Ref 'n
```

We represent the heap by an extensible record containing a field `val` being an association list of references and objects in the heap. This choice allows to have a heap of finite size, making allocation to always be possible without restricting the state.

```
record ('n, 'v) heap =
  val :: ('n ref × 'v) list
```

We then also define some abbreviations for simplifying access to the heap:

```
abbreviation refs s ≡ map fst (val s)
```

```
abbreviation heap h n ≡ (case map-of (val h) n of Some v ⇒ v)
```

and we define primitives to read and write the heap:

```
consts
  read :: 'n ref ⇒ ('v, ('n, 'v, 'a) heap-scheme) SR
  write :: ['n ref, 'v] ⇒ (unit, ('n, 'v, 'a) heap-scheme) ST (infix .= 15)
  alloc :: ('n ref ⇒ 'v) ⇒ ('n ref, ('n::genr, 'v, 'a) heap-scheme) ST
  new :: 'v ⇒ ('n ref, ('n::genr, 'v, 'a) heap-scheme) ST
```

5 Constructing BDDs

5.1 Main steps of the construction

Our BDD construction algorithm is inspired by the presentation in [1]. In the following, we give a high-level summary of the main construction steps, before discussing the functions in detail further below:
1. We recall that the purpose of BDD construction is to convert an expression (of type \texttt{expr}) to a ROBDD, which is a canonical representation of this expression. This is accomplished by function \texttt{build} which traverses the expression, recursively builds up BDDs of the subexpressions and, depending on the Boolean function represented by the outermost constructor, combines these with the aid of a function \texttt{app}.

2. \texttt{app} takes a Boolean function and two BDDs and traverses them in parallel until reaching the leaf positions, where the Boolean function is applied to the leaf values. During recursive descent, two BDDs \texttt{l} and \texttt{h} are constructed, one for the “low” and one for the “high” branch, and are then combined (function \texttt{mk}) to form the root of the new BDD. Using memoization techniques, it is in some cases possible to avoid a descent down to the leaves. This has not been implemented here, but would not be a major difficulty.

3. \texttt{mk} takes a variable index \texttt{i} (determined according to a previously fixed variable order) and two BDDs \texttt{l} and \texttt{h}. If a BDD with root \texttt{i} and sub-BDDs \texttt{l} and \texttt{h} already exists, \texttt{mk} returns it, otherwise it constructs a new BDD.

It is at this point that we need to access a hash table associating triples \((i, l, h)\) to BDDs, and of course, this table is modified by our functions and therefore has to be passed on to subsequent operations. This motivates the monadic style of our functions, whose definitions are presented in Section 5.3.

5.2 Abstracting from hash tables

The precise structure of the hash table is immaterial for the BDD algorithm itself, as long as we know how to interact with it. We will now give a specification based on Isabelle’s locale mechanism [2], and provide two implementations in Section 6 further below. A similar structuring principle is employed in the Isabelle Collection Framework [8].

In Section 4, we have described the monadic background theory that introduces the notion of \texttt{heap} and provides support for handling references. We now extend the state space with components \texttt{trees} (the set of trees stored in the hash table) and \texttt{constTrue} and \texttt{constFalse}, representing the pre-allocated leaf nodes for \texttt{true} and \texttt{false};

```plaintext
record (\'a, \'r, \'v) bdd-state = (\'r, unit) heap +
trees :: (\'a * \'r ref, \'v * \'r ref) tree set
constTrue :: (\'a * \'r ref, \'v * \'r ref) tree
constFalse :: (\'a * \'r ref, \'v * \'r ref) tree
```

The locale defines the functions

- \texttt{add i l h} for allocating a new BDD node with variable index \texttt{i} and sub-BDDs \texttt{l} and \texttt{h}.
Additionally, the locale definition contains a morphism `to_bdd_state` mapping the representation `s` to its abstraction `(a, r, v) bdd_state`, and a representation invariant `invar` whose purpose will become clear once we describe implementations in Section 6. The axiomatisation of these functions is given in the `assumes` section, of which we only show selected clauses, referring the reader to [5] for the full definition.

```plaintext
locale tables =  
  fixes to-bdd-state :: 's ⇒ (bool, 'r::genr, 'v::linorder) bdd-state  
  and invar :: 's ⇒ bool  
  and add :: 'v ⇒ ('r ref, bool, 'v) rtree ⇒ ('r ref, bool, 'v) rtree  
    ⇒ (('r ref, bool, 'v) rtree, 's) ST  
  and lookup :: 'v ⇒ ('r ref, bool, 'v) rtree ⇒ ('r ref, bool, 'v) rtree  
    ⇒ (('r ref, bool, 'v) rtree option, 's) SR  
  and constLeaf :: bool ⇒ (('r ref, bool, 'v) rtree, 's) SR

assumes  
  member-run: invar ts ⇒ (runSR (lookup v l h) ts = None)  
    = (∀ r. (Node (v, r) l h) ∉ (trees (to-bdd-state ts)))  
  lookup-def: invar ts ⇒ ranSR (lookup v l h) ts = Some t  
    ⇒ ∃ r. ranSR (lookup v l h) ts = Some (Node (v, r) l h)  
        ∧ Node (v, r) l h ∈ (trees (to-bdd-state ts))  
  and invar-add: invar ts ⇒ ranSR (lookup v l h) ts = None  
    ⇒ invar (stateST (add v l h) ts)  
  and constLeaf-run: invar ts ⇒ ranSR (constLeaf b) ts  
    = (if b then constTrue (to-bdd-state ts) else constFalse (to-bdd-state ts))
```

Thus, there are two clauses defining the behavior of `lookup`: In case it yields `None`, the tree identified by the triple `(v, l, h)` is not contained in the (abstraction of the) BDD state. In the case `lookup` finds a tree `t`, it is a tree with the required attributes `(v, l, h)` having an undetermined reference (existentially quantified `r`).

5.3 Implementation of BDD operations

Based on the functions declared in the locale, we can now implement the functions sketched in Section 5.1.

`mk` tests whether its two argument trees are the same and, if this is the case, performs a simplification corresponding to the rewrite `if i then l else l → l`. Otherwise, it looks up the tree parameters in the table and constructs a new node in case of failure.

```plaintext
fun mk :: 'v ⇒ ('r::genr ref, bool, 'v) rtree ⇒ ('r ref, bool, 'v) rtree  
    ⇒ (('r ref, bool, 'v) rtree, 's) ST where  
    mk i l h =  
      (if (ref-equal (l, h))
then returnST l
else (doST {
    (case ⟨lookup i l h⟩ of
        None ⇒ add i l h
        | Some t ⇒ returnST t ) })

We have factored subtree selection out into a separate function:

fun select :: (('a : order * 'r) tree ⇒ ('a, 'v : order * 'r) tree)
⇒ ('a, 'v * 'r) tree * ('a, 'v * 'r) tree

where

select f (t1, t2) = 
(if levelOf t1 = levelOf t2 then
  f t1, f t2
else
  if levelOf t1 < levelOf t2 then
    f t1, t2
  else
    t1, f t2)

This keeps the monadically defined app compact:

function app :: (bool ⇒ bool ⇒ bool)
⇒ ((('r ref, bool, 'v) rtree) * ((('r ref, bool, 'v) rtree))
⇒ ((('r ref, bool, 'v:linorder) rtree, 's) ST)

where

app bop (n1, n2) = 
(if tpair-is-leaf (n1, n2)
  then SRtoST (constLeaf (bop (leaf-contents n1) (leaf-contents n2)))
  else (doST {
    l ← app bop (select low (n1, n2));
    h ← app bop (select high (n1, n2));
    (mk (varOJLev (min-level (n1, n2))) l h })
)

This is the only function whose termination proof is not automatic, but still
very simple: it suffices to show that select decreases the size of a pair of trees
(defined as the sum of the sizes of the trees).

Finally, build is a simple recursive traversal:

primrec build :: 'v expr ⇒ ((('r ref, bool, 'v) rtree, 's) ST)

where

build (Var i) = (doST{ mk i ⟨constLeaf False⟩ ⟨constLeaf True⟩})
| build (Const b) = SRtoST (constLeaf b)
| build (BExpr bop e1 e2) = (doST{
  n1 ← build e1;
  n2 ← build e2;
  app (interp-bbinop bop) (n1, n2) })

5.4 Correctness

We prove two kinds of properties, semantic and structural. They rely on a well-
formedness invariant wof_bdd_state which expresses, among others, that the trees
stored in the hash table have unique references (phrased in an object-oriented
terminology: structurally equal trees are the same object), and that the hash
table is closed by subtrees (if a tree is in the table, so are its subtrees).

Given this definition, we can state the semantic correctness criterion: The
BDD constructed by build has the same interpretation as the expression it
represents:

**Lemma interp-evalST-build:**

\[ wf-tables \; ts \implies interp (evalST (build \; e) \; ts) = interp-expr \; e \]

Furthermore, we can show that \textit{build} establishes the structural properties required of a ROBDD: variable order and non-redundancy. For orderedness, the lemma expresses that when running \textit{build} starting with a well-formed, ordered table, then the resulting tree is ordered (and so are the trees eventually added to the table).

**Lemma build-ordered:**

\[
\begin{align*}
\quad & [\runST (\text{build} \; e) \; ts = (t', ts'); \; wf-tables \; ts; \; \text{trees-prop} \; \text{ordered} (\text{to-bdd-state} \; ts)] \\
\implies & \quad \text{trees-prop} \; \text{ordered} (\text{to-bdd-state} \; ts') \land \text{ordered} \; t'
\end{align*}
\]

We can now combine this result with the canonicity of ROBDDs (lemma \textit{canonic-robdd} in Section 3) to show that two expressions having the same interpretation give rise to two structurally equal BDDs:

**Lemma canonic-build:**

\[
\begin{align*}
\quad & \quad \text{interp-expr} \; e_1 = \text{interp-expr} \; e_2; \; \quad \text{wf-tables} \; ts_1; \; \text{trees-prop} \; \text{robdd-refs} (\text{to-bdd-state} \; ts_1); \\
\quad & \quad \text{wf-tables} \; ts_2; \; \text{trees-prop} \; \text{robdd-refs} (\text{to-bdd-state} \; ts_2); \\
\quad & \quad \runST (\text{build} \; e_1) \; ts_1 = (t_1, ts_1'); \\
\quad & \quad \runST (\text{build} \; e_2) \; ts_2 = (t_2, ts_2') \]
\implies struct-equal (t_1, t_2)
\]

This result is instrumental in decision procedures for propositional formulas: The BDD constructed for a valid formula is necessarily the leaf node “true”.

### 6 Implementation

It is now time to implement the state space along with the abstracted functions \textit{add}, \textit{lookup} and \textit{constLeaf}.

We represent the state space as a couple composed of the heap containing BDDs and a hash table mapping triples \((i, l, h)\) to BDDs:

**Record** \((\text{r}, \text{v}) \text{tables-impl} = \)

\[
\langle \text{r}, \langle \text{ref}, \text{bool}, \text{v} \rangle \text{rtree} \rangle \text{heap } + \\
\text{h-table}::\langle \text{r} \text{ref}, \text{bool}, \text{v} \rangle \text{rtree } \times \text{v} \times \langle \text{r} \text{ref}, \text{bool}, \text{v} \rangle \text{rtree } \rightarrow \langle \text{r} \text{ref}, \text{bool}, \text{v} \rangle \text{rtree} \\
\text{constTrue} :: \langle \text{r} \text{ref}, \text{bool}, \text{v} \rangle \text{rtree} \\
\text{constFalse} :: \langle \text{r} \text{ref}, \text{bool}, \text{v} \rangle \text{rtree}
\]

To access the global variables \textit{h-table}, \textit{constTrue} and \textit{constFalse}, we define monadic functions accessing the state:

**Definition H-lookup where**

\[ H\text{-lookup} \; x \equiv SR \; (\lambda s. \; (h\text{-table} \; s \; x)) \]

**Definition H-update where**

\[ H\text{-update} \; x \; y \equiv ST \; (\lambda s. \; ((), \; s[h\text{-table} := (h\text{-table} \; s) (x \mapsto y)])) \]

**Definition gconstTrue \equiv SR \; (\lambda s. \; \text{constTrue} \; s) \]

12
\textbf{definition} $g\text{constFalse} \equiv SR (\lambda s. \text{constFalse} s)$

and then we define the functions:

\textbf{consts}

\begin{align*}
\text{add-impl} & :: 'v \Rightarrow ('r :: genr ref, bool, 'v) rtree \Rightarrow ('r :: genr ref, bool, 'v) rtree \\
& \Rightarrow (('r ref, bool, 'v) rtree, ('r, 'v) \text{tables-impl}) ST \\
\text{member-impl} & :: 'v \Rightarrow (bool, 'v \times 'r :: genr ref) tree \Rightarrow ('r ref, bool, 'v) rtree \\
& \Rightarrow (('r ref, bool, 'v) rtree \text{ option}, ('r, 'v) \text{tables-impl}) SR \\
\text{lookup-impl} & :: 'v \Rightarrow ('r :: genr ref, bool, 'v) rtree \Rightarrow ('r ref, bool, 'v) rtree \\
& \Rightarrow (('r ref, bool, 'v) rtree \text{ option}, ('r, 'v) \text{tables-impl}) SR \\
\text{constLeaf-impl} & :: bool \Rightarrow (('r ref, bool, 'v) rtree, ('r, 'v) \text{tables-impl}) SR
\end{align*}

\textbf{defs}

\begin{align*}
\text{add-impl} \ v \ l \ h & \equiv \text{doST}\{ \\
& r \leftarrow \text{alloc} (\lambda r. \text{Node} (v, r) \ l \ h); \\
& H\text{-update} (l, v, h) \langle \text{read } r \rangle; \\
& \text{returnST} \langle \text{read } r \rangle \}
\end{align*}

\begin{align*}
\text{lookup-impl} \ v \ l \ h & \equiv H\text{-lookup} (l, v, h) \\
\text{constLeaf-impl} \ b & \equiv \text{if } b \text{ then } g\text{constTrue} \text{ else } g\text{constFalse}
\end{align*}

It is at this point that we use the invariant component (invar) of the table locale for the first time: it must ensure that the heap is the inverse of the hash table and that references of nodes are their references in the heap:

\textbf{definition} \text{invar-impl} :: ('c, 'b) \text{tables-impl} \Rightarrow \text{bool} \\
\text{where} \text{invar-impl} \ s \equiv \\
(\forall v \ l \ r \ h. (h\text{-table} s \ l \ v \ h) = \text{Some} (\text{Node} (v, r) \ l \ h)) \\
\leftarrow ((r, \text{Node} (v, r) \ l \ h) \in \text{set} (\text{val} s)) \\
\land (\forall v \ l \ h \ t. h\text{-table} s \ l \ v \ h) = \text{Some} \ t \rightarrow (\exists r. t = \text{Node} (v, r) \ l \ h)) \\
\land (\forall r \ t. (r, t) \in \text{set} (\text{val} s) \rightarrow \text{ref} t = r) \\
\land \text{distinct} (\text{refs} s)

And with these definitions, we can interpret the locale \textit{i.e.} proving the hypothesis for our implementation, and then instantiate all the functions and properties parametrized by the locale.

Our formalization [5] contains another implementation of tables, as simple lists with sequential traversal for lookup.

\section{Conclusions}

In this paper, we have presented first steps of a formalization and verification of a BDD package. The emphasis of this paper is more on the development method than on a high-performance algorithm. Several optimizations can be integrated without a major effort, such as memoization in function \text{app} and an improved representation of hash tables. We expect a garbage collector reducing the size of the hash table to provide major speed-ups. Possibly, we can adapt our verified Schorr-Waite algorithm [6] for this purpose.
We have used Isabelle’s code extraction facility to produce an executable version of our algorithm in Caml and tested it on a few representative formulas, such as the valid formulas $U_n$ defined by $x_1 \Leftrightarrow (x_2 \Leftrightarrow \ldots (x_n \Leftrightarrow (x_1 \Leftrightarrow \ldots (x_{n-1} \Leftrightarrow x_n))))$. The execution times are horrid: 2 seconds for $n = 10$, almost 180 seconds for $n = 15$. Apart from the lack of optimizations, one of the sources of inefficiency is that the Caml version explicitly manipulates the state space.

In order to definitely use pointer equality (and not just to simulate it), we have manually translated our implementation to the Scala [9] programming language (the code is available at [5]), converting monadic constructs to their imperative counterparts, erasing our reference type, replacing tests of reference equality by tests of object equality and leaving it to the Scala / Java runtime system to manage the memory. As compared to the above figures, the savings are considerable: for $U_{15}$, the execution time is 0.5 seconds (which, of course, is still not competitive). In the future, we hope to be able to automate this translation from Isabelle to Scala.

We also plan to make a more systematic comparison with the Isabelle Collections Framework [8], in an attempt to find commonalities between its “stateless” and our “stateful” specifications. Locales offer a good support for structuring a formal development and providing different implementations for one interface. However, in our present development, there is an unsound mixture of the specification of a theory itself (the signatures, such as add and lookup, and their properties) and elements that pertain to theory morphisms (to_tables, invar) that clutter up the proofs and should appear only during refinements or instantiations. We are interested in exploring alternative means of expressing interfaces and their implementations that can eventually be mapped to locales.

References


