
A Formal Model of Resource Sharing Conflicts in
Multi-Threaded Java ∗

Nadezhda Baklanova
Université de Toulouse / IRIT

118 route de Narbonne
F-31062 Toulouse Cedex 9

nadezhda.baklanova@irit.fr

Martin Strecker
Université de Toulouse / IRIT

118 route de Narbonne
F-31062 Toulouse Cedex 9
martin.strecker@irit.fr

ABSTRACT
We present a tool for analyzing resource sharing conflicts
in multi-threaded Java programs. We model execution of
Java programs on a single processor. A Java program is
translated into a system of timed automata which is verified
by the model checker Uppaal. We also present our ongoing
work on formalization of Java semantics and the semantics
of timed automata and partial verification of the translation
procedure.

1. INTRODUCTION
1.1 General overview
Along with increasing usage of multi-threaded programming,
a strong need of sound algorithms arises. The problem is
even more important in programming of embedded and real-
time systems where liveness conditions are extremely im-
portant. To certify that no thread would starve or would
be deadlocked, lock-free and wait-free algorithms have been
developed. Lock-free algorithms do not use critical sections
or locking and allow to avoid thread waiting for getting ac-
cess to a mutual exclusion object. Nevertheless, only one
thread is guaranteed to make progress. Wait-free algorithms
prevent starvation by guaranteeing a stronger property: all
threads are guaranteed to make progress, eventually. Such
algorithms for linked lists, described for example in [11, 23],
are very complex, difficult to implement and, consequently,
hard to verify.

What is worse, these algorithms seem to be incompatible
with hard real-time requirements: the progress guarantees
are not bounded in time. Thus, a lock-free insertion of an
element into a linked list by a thread may need several (pos-
sibly infinitely many) retries because the thread can be dis-
turbed by concurrent threads. Under these conditions, it is
not possible to predict how much time is needed before the
thread succeeds.

∗Research supported in part by the project Verisync (ANR-
10-BLAN-0310)

Critical sections or locks are used in many applications in
order to ensure concurrent access to objects. Even under
the idealizing assumption that we can show absence of dead-
locks, the temporal behavior of a thread cannot be predicted
in a modular fashion, because a thread may be delayed in-
definitely before getting access to the critical section or lock.
However, we claim that with some global control, locking is
not necessary if it is possible to verify that resource access
of several threads does not occur concurrently, based on the
temporal behavior of the threads.

The purpose of the article is twofold: Firstly, we present
a tool for checking resource sharing conflicts in concurrent
Java programs based on the statement execution time. This
gives a “time-triggered” [15] flavor to our approach of con-
current system design: resource access conflicts are resolved
by temporal coordination at system assembly time, rather
than during runtime via locking or via retries (as in wait-
free algorithms). We assume that a program is annotated
with WCET information known from external sources. The
checker translates a Java program into a system of timed
automata (TA) which is then model checked by a tool for
timed automata (concretely, Uppaal).

Secondly, we are interested in showing that this abstraction
is sound, in the sense that if the model checker does not de-
tect any conflicts, erroneous executions of the Java program
are indeed excluded. For this, we develop a formal seman-
tics of a real-time extension of Java, and use it to show a
simulation property between the runs of Java programs and
their corresponding TA abstraction.

In this paper, after an informal introduction (Section 2), we
describe a prototype analyzer written in OCaml (Section 3).
We then present the formal semantics of a multi-threaded,
timed version of Java (Section 4), define the abstraction
mechanism more formally and finally take a glance at the
proof of soundness of the abstraction (Section 5).

The paper makes some simplifying assumptions; we state
the most important ones here and take up some of them
again in Section 6 to indicate how we can lift them.

• We only model a modest subset of Java (more details
about the language features are in Section 4). In par-
ticular, method calls are not treated at all. We could
inline static, non-recursive calls, which is however con-
trary to our long-term goals, namely to obtain a mod-

ular analysis.

• Our analysis is geared towards verification and not in-
ference. In particular, the code has to be annotated
with timing information, which we do not infer our-
selves. We assume that this restriction can be lifted
by a coupling with WCET analyzers.

• We assume that there is a fixed number of lockable ob-
jects that are allocated at program initialization time.
This assumption is realistic in the restricted context of
some embedded systems, but requires deeper analysis
in the general case of programs allocating new objects.

• We assume that the execution of expressions takes no
time. This is a preliminary simplification introduced
in order to get our formal model straight and will be
removed, expectedly without difficulty, in a more com-
plete model. In a similar vein, at the present stage, we
do not yet commit to a specific dialect or version of
real-time Java.

A prototype of the analysis described in this paper is opera-
tional and can be obtained from the authors’ web page1. The
formal modeling of the semantics and the simulation proofs
are carried out in the Isabelle proof assistant [18]; regularly
updated snapshots are available from the same page.

1.2 Related work
Verification of concurrent systems with imposed timing con-
straints is a popular topic. Schedulability analysis of sys-
tems with timing and resource constraints is described in [8].
The authors consider not only periodic tasks but also spo-
radic tasks. They build a timed automata model addressing
both timing and resource constraints which is further model
checked with a Times tool.

An extension to multiprocessor systems is described in [6],
where the authors perform schedulability analysis of a hard
real-time system on a multiprocessor architecture. All tasks
have hard deadlines, and the authors apply brute-force search
combined with Uppaal for ensuring search completeness.

The paper [20] contains schedulability analysis of multi-
threaded SCJ (Safety Critical Java) programs and takes re-
source sharing into account. Resources are considered to
be locked during the whole execution of a task. Analysis
is performed by Uppaal modeling taking into account the
resource locks.

Concurrent systems with fixed timing constraints can be
modeled in timed automata with maximum n + 1 clocks
where n is the number of tasks ([7]). The proposed approach
can model both periodic and sporadic tasks.

The paper [25] tells about a tool JPF for model checking of
Java concurrent programs during runtime by running it on
a special JVM. It also has an extension for verification of
Real-Time Java programs.

1http://www.irit.fr/~Nadezhda.Baklanova/jtres2013.
html

The paper [10] demonstrates code generation for Real-Time
Java from timed automata models. Based on a timed au-
tomata model Java code for tasks with hard deadlines can be
generated. The correctness of the model is verified with Up-
paal. The inverse direction, namely abstraction from Java
to TA, is described in [5]. This work, similar in spirit to
ours, differs in that we are in addition interested in resource
access conflicts, and a major concern for us is to obtain for-
mal soundness proofs of our abstractions, based on a formal
real-time Java semantics.

The use of abstractions of concurrent programs to a qualita-
tive temporal logic (and not quantitative, as in our case) is
described in [24]. Proof obligations extracted from the ab-
straction allow to show that a given program is linearizable
and that its threads can be verified modularly.

Another approach to building of verified real-time systems
are time-triggered architectures [15]. A timed-triggered sys-
tem is a set of nodes each of them has a timing interface.
The nodes can communicate with each other according to
the interface specifications.

A language Giotto for time-triggered systems is presented
in [12]. With the help of Giotto, hard timing constraints
for real-time systems can be easily ensured which makes it
suitable for real-time and safety-critical applications. The
further development of Giotto is described in [13]. The au-
thors discuss the concept of Hierarchical Timing Language
which is the extension of Giotto which enhances modularity
of programs.

Another tool for creating time-triggered systems is Periodic
Finite State Machines [19]. The authors extend the finite
state machines [9] with the notion of time and periodic tasks.

2. INTRODUCTORY EXAMPLE
To show the main idea, we present an example of a concur-
rent Java program (Figure 1). It is a primitive producer-
consumer buffer with one producer and one consumer where
both producer and consumer are invoked periodically. The
program is annotated with information about statement ex-
ecution time in //@ ... @// comments.

One of the possible executions is shown in Figure 2.

After having translated this program to a system of timed
automata, we run the Uppaal model checker to determine
possible resource sharing conflicts. The checked formula is

A� ∀(i : int[0, objNumber − 1])

∀(j : int[0, threadNumber − 1]) ¬waitForLocksSet[i][j],
(1)

where waitForLocksSet is an array of boolean flags indicat-
ing whether a thread j waits for a lock of a particular object
i. If all array members in all moments of time are false, no
thread waits for a lock; therefore no resource sharing con-
flicts are possible.

But in our case, there is a possible conflict, at instant 21
(in Figure 2, the red areas overlap). This conflict is also
detected by Uppaal, which produces a trace leading to this
error situation.

http://www.irit.fr/~Nadezhda.Baklanova/jtres2013.html
http://www.irit.fr/~Nadezhda.Baklanova/jtres2013.html

private class Run1 implements Runnable{
public void run(){

int value ,i;
//@ 1 @//
i=0;
while(i<10){

synchronized(res){
//@ 2 @//
value=Calendar.getInstance ().get(

Calendar.MILLISECOND);
//@ 5 @//
res.set(value);

}
Thread.sleep (10);
//@ 2 @//
i++;

}
}

}

private class Run2 implements Runnable{
public void run(){

int value ,i;
//@ 1 @//
i=0;
Thread.sleep (9);
while(i<10){

synchronized(res){
//@ 4 @//
value=res.get();

}
Thread.sleep (8);
//@ 1 @//
i++;

}
}

}

Figure 1: A concurrent Java program with possible resource
sharing conflict.

0 1 8 20

Thread 1

Thread 2

Figure 2: Possible execution flow. Black areas represent
execution without locks, red areas - execution within a crit-
ical section, grey areas - sleeping, white areas - waiting for
processor time.

3. ABSTRACTING JAVA TO TA
We consider a sequential model of program execution when a
Java program executes on a single processor. This seems to
be the focus of the current RTSJ (Real-Time Specification
of Java [21]) standard. We can also accommodate multi-
processor systems, but details are left for future work.

The translated Java programs must be annotated with tim-
ing information about execution time of the following state-
ment. The translation uses timing annotations to produce
timed automata which model the program. The obtained
system is model checked for possible resource sharing con-
flicts.

3.1 TA and Uppaal
Timed automata are a popular formalism for modeling timed
systems [2]. There are several model checkers like Uppaal,
CADP, Kronos. We selected Uppaal [4] because of its

committedinitial

invariant (true | false)

channel!

guard (true | false)
channel?
foo=5,
bar=true

Figure 3: Uppaal primitives.

popularity and good community support.

Timed automata consist of locations, transitions and back-
ground clocks. Several TAs can be run in parallel and share
clocks and channels. All clocks advance uniformly. Uppaal
extends classical timed automata with a small C-like pro-
gramming language and allows to use variables in guards,
invariants and updates.

A TA has one initial location. Locations can have invariants
- Boolean conditions involving clocks (see Figure 3). A TA
can stay in a location as long as its invariant is true; invari-
ants enforce a TA to move ahead. In Uppaal, a user can
declare some locations to be committed; this means that an
automaton must leave this location immediately after it has
entered it.

Transitions can have guards, channels and updates. Guards
are Boolean conditions involving clocks which allow an au-
tomaton to take the transition only if the guard is true.

Channels serve to communication between automata. Au-
tomata in Uppaal can listen or call channels. If an automa-
ton calls a channel, another one must be listening to this
channel, and both automata advance simultaneously.

Updates can update variables and also reset clocks to 0.

The properties to be model checked are represented as TCTL
(Timed Computation Tree Logic) formulas [1]. Uppaal can
provide a counterexample (trace) if the model to be checked
does not satisfy the property.

3.2 General principles
We suppose that the translated program has a fixed number
of threads and shared fields, all of them defined statically.
The initialization code for threads and shared fields must be
contained in the main method. The classes implementing the
Runnable interface must be nested classes in the class con-
taining the main method. The required program structure
is shown in Figure 4.

Each thread created in the program is translated into one
automaton, and one more additional automaton modeling
the Java scheduler is added to the generated system.

Java statements are translated into building blocks for con-
dition statement, loop etc. which are assembled to obtain
the final automaton. An annotated statement is translated
into its own block. Method calls and wait/notify statements
are not translated for now.

The timed automata system contains an array of object

public class Main{
Res1 field1; // shared fields declaration
public static void main(String [] args){

Run1 r1; // declarations of Runnable object
instances

Thread t1,t2; // thread declarations
r1=new Run1(); // Runnable objects

initialization
field1=new Res1(); // shared fields

initialization
t1=new Thread(r1,"t1"); // thread creation
t1.start(); // thread start

}
private class Run1 implements Runnable{

public void run(){ // thread logic
implementation

...
}

}
}
private class Res1{ // resouce classes

...
}

Figure 4: Required program structure

monitors representing acquired locks on shared objects. When
a thread acquires a lock of an object, the monitor corre-
sponding to this object is incremented, and when the lock
is released, the monitor is decremented.

There is a number of checks which are performed before on
the program source code which guarantee correctness of the
generated model. One of the most important is the require-
ment that the whole parse tree must be annotated, i.e. for
any leaf of the AST there is a timing annotation somewhere
above this leaf. With this requirement the behavior of the
generated system can be determined in each moment of time.

3.3 Execution model
In the sequential model we assume that at each moment of
time only one of the threads or the scheduler can execute.
Threads which do not execute at a particular moment of
time wait for processor time. Also threads can wait for a
lock; waiting does not consume CPU time.

Automata communicate with the scheduler through chan-
nels: if the scheduler has selected one thread, it sends a
message to it so the thread starts executing. After finishing
its execution, the thread sends a message to the scheduler,
and the next scheduling cycle starts. The scheduler uses
channels run[i] to call the i-th automaton, and the au-
tomata use the channel scheduler to give the control back
to the scheduler.

There is an array of clocks c[i], each of them corresponding
to one thread automaton. These clocks are used to calculate
time of annotated statements execution or sleeping time.
There is also one clock cGlobal used for tracking global
time.

The building blocks and their translation are the following
for the sequential model (also refer to Section 4.1 for the
abstract syntax of our Java fragment):

(a) Assignment (5a). Three new locations and two tran-
sitions between them are added. The transition from
START to MIDDLE listens to the channel run[i], and the
transition from MIDDLE to FINAL calls the channel sched-
ule. The location MIDDLE is committed since we assume
that any statement except the annotated one does not
take time for execution.

(b) Sequence (5b). Having two automata with start and fi-
nal locations called start1, start2 and final1, final2
correspondingly, the locations final1 and start2 are
merged.

(c) Annotation (5c). Three new locations and two tran-
sition between them are added. The transition from
START to MIDDLE listens to the channel run[i], sets the
variable execTime[i] to the value of the current annota-
tion and resets the clock c[i] to 0. The transition from
MIDDLE to FINAL calls the channel schedule and resets
the variable execTime[i] back to 0. The location MID-

DLE has an invariant forbidding the automaton to stay
in this location if the value of the clock c[i] bypasses
execTime[i]. The transition from MIDDLE to FINAL has
a guard enabling this transition only if the value of c[i]
is greater or equal to execTime[i]. The invariant and
the guard ensure that the automaton would be in the
MIDDLE location as long as the annotation claims.

(d) Loop (5d). Two meaningful locations and two auxil-
iary locations are added. One transition from the START

goes to the next loop iteration, another one exits the
loop. Both transitions from START to auxLoop and aux-

End listen to the channel run[i]. The transitions from
auxLoop to start1 and from auxEnd to FINAL call the
channel schedule. Both auxLoop and auxEnd are made
committed. The final location of the automaton cor-
responding to the loop body is merged with the START

location.

(e) Lock (5e). Two meaningful locations and three auxil-
iary locations are added. The transition from START to
auxIn listens to the channel run[i], has a guard check-
ing whether a lock for the object in the argument of the
synchronized statement is not taken by other threads
and increments the monitor value for the locked object.
The transition from final1 to auxOut listens to the
channel run[i] and decrements the monitor value for
the locked object. The transition from START to auxWait

listens to the channel run[i], has a guard checking whether
a lock for the necessary object has already been acquired
and updates the wait-for-lock set adding the current au-
tomaton to the wait-for-lock set corresponding to the
locked object. The transitions from auxIn to start1,
from auxOut to FINAL, from auxWait to START call the
schedule channel.

(f) Condition (5f, 5g). Three new locations and four tran-
sitions are added. If both if and else branches are pre-
sented, the final locations of automata representing the
branch internals are merged. The locations auxIf and
auxElse are auxiliary locations introduced to divide lis-
tening and calling transitions; therefore they are made
committed. Two transitions from START to auxIf and
auxElse listen to the channel run[i], and the transi-
tions from auxIf to start1 and from auxElse to start2

schedule!

run[i]?

START

MIDDLE

FINAL

(a) Assignment

start1

final2

final1_start2

(b) Sequence

START

c[i]>=execTime[i]

MIDDLE

FINAL

c[i]<=execTime[i]

execTime[i]=<annot>,
c[i]=0

execTime[i]=0
schedule!

run[i]?

(c) Annotation

schedule!

run[i]?

schedule!

run[i]? start1

FINAL

START

auxLoop

auxEnd

(d) Loop

<class_name>_monitor[j]==0

<class_name>_monitor[j]>0

<class_name>_monitor[j]--,
resetWS(j)

run[i]?

schedule!

schedule!

<class_name>_monitor[j]++

waitSet[j][i]=true

run[i]?

schedule!

run[i]?

FINAL

START

final1start1

auxWait

auxOutauxIn

(e) Lock

schedule!
run[i]?

schedule!
run[i]?

start1

final1START

auxIf

auxElse

(f) Condition I

schedule!
run[i]?

schedule!
run[i]?

start1

start2

final1_final2START

auxIf

auxElse

(g) Condition II

execTime[i]=0

execTime[i]=<annot>,
c[i]=0

schedule!

run[i]?schedule!

run[i]?

c[i]>=execTime[i]

START

MIDDLE

FINALauxSleep auxWake

(h) Sleeping

Figure 5: Building blocks for automata. Elements added on the current step are red; blue and green elements have been
generated in the previous step.

(or to final1 in case of absence of the else branch) call
the channel schedule.

(g) Sleeping (5h). The automaton for sleep statements re-
sembles the automaton for annotated statements with
additional elements for returning control to the sched-
uler during sleeping. There are three meaningful and
two auxiliary locations with transitions connecting them
into a chain. The auxiliary locations, auxSleep and
auxWake, are committed. The transition from START to
auxSleep listens to the channel run[i], sets the variable
execTime[i] to the duration of the sleeping period and
resets the clock c[i] to 0. The transition from auxSleep

to MIDDLE calls the channel schedule so that the sched-
uler can schedule other threads. The transition from
MIDDLE to auxWake listens to the channel run[i] and has
a guard enabling this transition only if c[i] is greater
or equal to execTime[i]. The update on this channel
resets the value of execTime[i] back to 0. Unlike the
automaton for the annotated statement, there is no in-
variant in the MIDDLE location because a thread is not
obliged to continue its execution right after it has woken
up. It may wait for processor time before. The transi-
tion from auxWake to FINAL calls the schedule channel.

3.4 Scheduler
We currently only model an abstract scheduler and not a
particular scheduling policy, which should be a refinement

of the abstract one. It is the most non-deterministic sched-
uler one can conceive, and its sole purpose is to grant an
exclusive right to run to a thread. Conflict-free programs
can be expected to be conflict-free also under a more re-
strictive policy. Conversely, however, our liberal scheduler
may allow conflicts to arise that might be prevented under
a specific policy.

The scheduler model (Figure 6) has three locations: schedul-
ing, runThread, wait. The scheduler starts in the location
scheduling which has transitions for updating thread eligi-
bility statuses. When all thread statuses are updated, the
scheduler moves to the location runThread calling the chan-
nel run[i] for some thread with index i which is eligible
for execution. While the thread is executing, the sched-
uler stays in the location runThread. When the thread has
finished its execution, it calls a channel schedule, and the
scheduler returns back to the scheduling location, and the
new scheduling cycle starts. If there was no thread eligible
for execution, the scheduler goes to the wait location where
it can stay for some time and repeat scheduling.

Each thread gets two transitions for status updates. One
assumes that a deadline for an action performed by a thread
has passed, another one assumes that the deadline has not
been reached yet. In the first case the flag isEligible[i]

is set to true, and the thread with index i can be scheduled
for execution. Otherwise, isEligible[i] is set to false, and

isEligible[1]=false,
isUpdated[1]=true,
updateAllStatuses()

isEligible[0]=true,
isUpdated[0]=true,
updateAllStatuses()

isEligible[0]=false,
isUpdated[0]=true,
updateAllStatuses()

resetStatusUpdated()

isEligible[1]=true,
isUpdated[1]=true,
updateAllStatuses()

resetStatusUpdated()

i:int[0,1]

wait runThread

run[i]!

scheduling

schedule?

c[1]<execTime[1]&&
!isUpdated[1]

c[0]>=execTime[0]&&!isUpdated[0]

c[0]<execTime[0]&&
!isUpdated[0]

isEligible[i]&&
statusUpdated

c[1]>=execTime[1]&&!isUpdated[1]

noScheduled&&
statusUpdated

Figure 6: Scheduler for a system with two threads.

the thread with index i cannot be scheduled.

3.5 Model checking
After having built the system of timed automata from the
initial Java program, we search for possible resource sharing
conflicts by model checking. The property to be verified
(1) ensures that at every execution path at every moment of
time any wait-for-lock set is empty. That means, no resource
sharing conflicts are found.

4. JAVA MODEL
One of the main purposes of this work is to formally prove
the correctness of our abstraction. The general setup is
similar to a formal compiler correctness proof, such as in
the Jinja project [14] and its multi-threaded extension Jin-
jaThreads [17] or the formal verification of a C compiler in
the Compcert project [16]. This section takes a glimpse at
the formalization of our fragment of real-time Java, and Sec-
tion 5 provides a correctness argument of the abstraction.

4.1 Syntax
The abstract syntax is displayed in Figure 7. We make a
distinction between expressions and statements: expressions
are pure, i.e. they cannot change the state of a program, and
they always return a value. Statements can change the state
of a program, like heap values or locks, and they do not re-
turn anything. Expressions are evaluated at once, without
any time loss, whereas statements are unfolded and eval-
uated step by step, and each of them takes some time to
execute.

For now, we do not consider method calls or exceptions and
concentrate on a straightforward execution flow. Neither do
we work with wait and notify statements, nor with static
variables.

Statements InAnnot, InSync, WaitForSync, InSleep cannot
be present in a fresh initial program: they are used in inter-
mediate steps during the execution.

4.2 Semantics

expr ::= Val literal | Var vname | Bop expr bop
expr | Field expr vname cname

stmt ::= Empty
| VarAssign vname expr
| FieldAssign expr vname cname expr
| Seq stmt stmt
| If expr stmt stmt
| While expr stmt
| Annot annot stmt
| InAnnot time stmt
| Sync expr stmt
| InSync expr stmt
| Sleep expr
| InSleep expr

Figure 7: Java grammar of the model. vname and cname ar-
guments are strings, literal is an integer or boolean literal,
or address (incl. null), bop is a binary operation like +, *,
&, | etc.

full_state ::= {
threads , // set of available threads
th_info , // thread info: statement to be

evaluated and state
lk_info , // locks acquired by threads
pl_info , // global time
gl_info , // global state information;

currently only heap , might also include
static vars

wl_info , // wait -for -lock sets
pendingAct , // action still to be carried out

by platform / scheduler
deadlines , // annotation deadline for each

thread
sleepUntil , // sleep time value , time until a

thread wakes up
iheap , // a stamp of initial heap
ilocals // a stamp of initial local variables

}

Figure 8: Program state structure.

The notion of program state (Figure 8) is complex and can-
not be described in detail here. The state stores thread-local
information for all threads such as local variable values and
the expression to be evaluated, the lock state of shared ob-
jects, current time, action to be passed to the next step,
wait-for-lock sets and deadlines of annotated and sleep state-
ments.

Each object has lock information associated with it. It stores
a flag indicating whether the object is locked or not, and a
thread name which has locked this object. One thread can
lock the same object several times, which corresponds to
the reentrant locks behavior in Java. If a thread cannot
acquire a lock, it puts itself into a wait-for-lock set for this
object where it is stored until the required object is unlocked.
Several threads can wait for the same lock; when the lock is
released, all the threads are pushed out of the wait-for-lock
set, and one of them finally acquires the lock.

When a thread enters an annotated or a sleep statement,
it sets the corresponding deadlines. A deadline of anno-
tated statement is absolute time before which the thread
must finish to execute this annotated statement: not later
than annotation value plus current time. Beyond annotated

preconditions state update

(e, s)
action−−−−→ (e′, s′)

Figure 9: General form of reduction rules.

statements, the deadline is infinity. A deadline of a sleep
statement is absolute time after which the thread is allowed
to continue its execution, and infinity beyond sleep state-
ments.

When a thread makes a step forward, it emits an action
whose effect will be processed in the next step. The action
depends on the type of the step: lock, start annotation,
simple evaluation etc.

A single Java execution step is represented by four conse-
quent substeps: scheduler, platform, evaluation and plat-
form. The evaluation semantics is the semantics of a sin-
gle thread, the scheduler semantics is responsible for thread
scheduling, the platform semantics formalizes the notion of
time advancement and works with deadlines.

• scheduler−−−−−−→ ◦ platform−−−−−−→ ◦ evaluation−−−−−−−→ ◦ platform−−−−−−→ • → ...

Such a model is similar to the TA execution model which
can be represented by repeating delay and transition steps:

• transition−−−−−−−→ ◦ delay−−−−−→ • transition−−−−−−−→ ◦ delay−−−−−→ • → ...

The scheduler behaves like a usual thread, which is allowed
only to change the currently running thread and update
threads’ execution statuses like“eligible for execution”,“sleep-
ing” or “running”. We do not model a particular scheduling
strategy which can be added to the general model later. Cur-
rently, there are no constraints for selecting a thread from
those eligible for execution.

For the moment, we have concentrated on the specification
and abstraction of single thread semantics, namely, the eval-
uation and platform steps. The evaluation step represents
small-step semantics of Java, where each step reduces an ex-
pression to be evaluated and also updates a part of the state.
The platform step updates the part of the state responsible
for time information: time and deadlines for annotated and
sleep statements.

Every rule for both evaluation and platform steps (see Fig-
ure 9 for the general format) has some preconditions above
the line, defining when this rule can be used, including parts
of the state which are to be updated, and the reduction itself
below the line. Below the line, there is a pair of statement
and state which is transformed into another pair. The action
above the arrow is used for communication between evalua-
tion and platform steps. The selection of the proper rule on
the evaluation step depends on the current statement to be
evaluated. On the platform step the rule is selected based
on the action produced by the previous evaluation step.

It is possible to reason about exact time values only on
start/end of annotated or sleep statements. Inside an an-
notated statement, the exact time is not known but only its
upper bound. If execution of annotated statement finishes

before the deadline, the thread waits the remaining time un-
til the deadline passes. If execution of annotated statement
took more, and deadline was violated, the semantics would
get stuck.

By means of example, two rules of evaluation semantics and
two rules of platform semantics are presented in Figure 10.
When reducing Seq e1 e2 statement, the first substatement
e1 is reduced up to the end, and then e2 is reduced. The
rules for reducing substatements are other rules of the eval-
uation semantics.

When an annotated statement starts to reduce, the rule
checks whether the deadline is correctly set to ∞ and up-
dates the state s by setting the pending action to StartAn-

not t where t is the annotation value. This action is passed
to the platform semantics which finds some δ > 0 which is
a duration of the evaluation step execution. If such a δ
is found, the semantics updates the deadlines to the value
when the execution will have to finish and also the current
time which is increased by δ.

The last rule is the rule of the platform semantics for end of
annotated statement. There, it also finds some δ which is a
duration of the evaluation step, resets deadlines to ∞ and
updates the time as the execution took exactly the amount
of time specified in the annotation. If execution of the an-
notated statement took less time than it was specified in
the annotaion, the semantics consumes the remaining time
so that its WCET becomes equivalent to the real execution
time.

5. CORRECTNESS OF ABSTRACTION
A common way to prove the semantics preservation between
two systems is to prove a simulation property. If a transition
system TS2 simulates another transition system TS1, any
step in TS1 has a similar step in TS2. We adopt general
definitions from [3] for our transition systems.

Let TS1 = (S1,→1) and TS2 = (S2,→2) be transition sys-
tems where Si is a set of states and →i is a transition re-
lation. For each si Post(si) = {s′i : si →i s

′
i} denotes a

set or states which have a transition from si to them, and
Ii = {si : ∃s′i. si →i s

′
i} is a set of all states which can be

starting states of some transition.

Definition 1. A simulation for (TS1, TS2) is a binary
relation R ⊆ S1 × S2 such that

1. ∀s1 ∈ I1. ∃s2 ∈ I2. (s1, s2) ∈ R

2. for all (s1, s2) ∈ R for any s′1 ∈ Post(s1) there exists
s′2 ∈ Post(s2) and (s′1, s

′
2) ∈ R.

Definition 2. A normed simulation for (TS1, TS2) is a
pair (R, ν1) consisting of a binary relation R ⊆ S1×S2 and
a function ν1 : S1 → N such that

1. ∀s1 ∈ I1. ∃s2 ∈ I2. (s1, s2) ∈ R

2. for all (s1, s2) ∈ R for any s′1 ∈ Post(s1) at least one
of the following conditions holds:

Seq
(e1, s)

act−−→ (e1′, s′)

(Seq e1 e2, s)
act−−→ (Seq e1′ e2, s′)

eval StartAnnot
es deadliness =∞ s′ = s {es pendingAct := StartAnnot t}

(Annot t e, s)
StartAnnot t−−−−−−−−−→ (InAnnot t e, s′)

eval

StartAnnot
∃δ > 0. es time s+ δ ≤ t+ es time s ∧ s′ = s {es deadlines := t+ es time s, es time := es time s+ δ}

(e, s)
StartAnnot t−−−−−−−−−→ (e′, s′)

pltf

EndAnnot
∃δ > 0. es time s+ δ ≤ es deadlines s ∧ s′ = s {es deadlines :=∞, es time := es deadlines s+ δ}

(e, s)
EndAnnot−−−−−−−→ (e′, s′)

pltf

Figure 10: Some semantics reduction rules.

• there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R.

• (s′1, s2) ∈ R and ν1(s′1) < ν1(s1).

s1

s2

s′1

s′2

R R
s1, ν1

s2

s′1, ν
′
1

ν′1 < ν1R
R

Figure 11: Two kinds of steps in weakly similar systems.

The second case in Figure 11 represents a silent step, when
two different states of one system are mapped to a single
state of another system.

We want to formalize and verify the translation procedure
from Java to TA. However, it is too complex to be verified
in one step, therefore we divided the whole translation into
two stages. On the first stage, we abstract from the con-
crete variables, if and while conditions, also fold constants
in expressions as well as remove the internal structure of
annotated statements so that they are translated into an
atomic construction. The other constructors are essentially
the same as on the Java level. After the first stage it re-
mains to generate a sequence of TA locations with names
for each constructor and to transform the preconditions of
the semantic rules into TA notions such as guards or invari-
ants. On each stage we want to prove that the system after
the translation simulates the system before the translation.

Java
simulation−−−−−−−→ NLTA

simulation−−−−−−−→ TA

The intermediate construction is called nameless timed au-
tomata (NLTA). It does not contain the information from
the Java level which is lost in the TA model, neither does
it contain explicit named locations from the TA definition.
The grammar is presented in Figure 12. The semantic rules
are similar to their analogs in Java semantics with the dif-
ference that NLIf and NLWhile do not have conditions so
that any of the branches can be taken. The concrete val-
ues of time and adresses do not need to be evaluated again.
Finally, NLAssign does not have any parameters since we
abstract from concrete variables and expressions.

Taking into account the abstractions made during the trans-
lation from Java to NLTA, its algorithm is quite straitfor-
ward (Figure 13). We translate each Java constructor to
the corresponding NLTA constructor and recursively trans-
late each argument, if any. The arguments of Sleep and
Sync statements are folded to a concrete value.

nlaut ::= NLEmpty
| NLAssign
| NLSeq nlaut nlaut
| NLIf nlaut nlaut
| NLWhile nlaut
| NLAnnot time
| NLInAnnot time
| NLSleep time
| NLWakeup time
| NLSync addr nlaut
| NLInSync addr nlaut

Figure 12: Grammar of nameless timed automata.

jToNL NLEmpty = NLEmpty
jToNL (VarAssign vname expr) = NLAssign
jToNL (FieldAssign expr vname cname expr) =

NLAssign
jToNL (Seq stmt1 stmt2) = NLCompos (jToNL

stmt1) (jToNL stmt2)
jToNL (If expr stmt1 stmt2) = NLIf (jToNL

stmt1) (jToNL stmt2)
jToNL (While expr stmt1) = NLWhile (jToNL

stmt1)
jToNL (Sleep t) = NLSleep (exprToInt t)
jToNL (InSleep t) = NLWakeup (exprToInt t)
jToNL (Annot time stmt) = NLAnnot time
jToNL (InAnnot time stmt) = NLInAnnot time
jToNL (Sync obj stmt) = NLSync (exprToObj obj)

(jToNL stmt)
jToNL (InSync obj stmt) = NLInSync (exprToObj

obj) (jToNL stmt)

Figure 13: Translation of statements.

The definition of a NLTA state (Figure 14) is remarkably
simplified in comparison with a Java state. It contains only
information about acquired locks, wait-for-lock sets, local
time of the automaton and the currently active automa-
ton. All the components have the same meaning as in the
Java state except the time (Figure 15). In contrast to Java
global time, each nameless automaton has its own local
time represented by a pair (current time, deadline) where
current time is the analog of Java time and is the same for
all automata, and deadline is the deadline computed based
on the time value of the current annotated or sleep state-
ment or infinity, if the automaton is not inside an annotated
or sleep statement.

Since the execution semantics are defined for a thread-local
(automaton-local) state, we use them in translation. The
local states extract the information related to the thread

nlGlState ::= {
gl_auts , // a set of automata
gl_monitors , // locks info
gl_locksWaitFor , // wait -for -lock sets
gl_time , // local times for each automaton
gl_runningAut // currently running automaton

}

Figure 14: NLTA global state.

esToLocState es = {
monitors =(es_locks es),
locksWaitFor =(es_waitForLocks es),
loc_time =(es_time es,

min (snd(es_deadlines es))
(snd(es_sleepUntil es))),

runningAut=runThread es }

Figure 15: Translation of states.

(automaton) from the global state.

The necessary parts of Java full state are simply trans-
lated to their analogs in NLTA except the time which is
constructed from Java time and deadline values. The first
component of NLTA time is the Java global time, the sec-
ond component is the minimum of deadlines for annotated
and sleep statements. Since we do not allow nested anno-
tated statements or a sleep statement inside an annotated
statement, at least one of the deadlines is infinity at each
moment of time. Note that we assume translated Java pro-
grams to be correct, i.e. they do not throw exceptions and
do not violate deadlines. In an exceptional situations Java
semantics gets stuck, and the correctness of translation is
not guaranteed.

Silent steps (see def. 2) can occur inside an annotated state-
ment only, therefore deadline of annotated statement is fi-
nite, and possible time values are bounded from above. As
a measure we use the Java global time. Each semantics step
on the Java level takes some positive time δ for execution
(an integer value, thus precluding Zeno behavior), therefore
the global time strictly increases during the execution. As a
function ν1 we could take

ν1(stmt, state) = es deadlines state− es time state.

If ν1(x) < 0, the deadline is violated, and the execution is
not correct, i.e. cannot be translated. Otherwise, ν1 mono-
tonely decreases when the execution advances.

Combining translation rules for Java statements and Java
states we can prove simulation of Java and NLTA. Currently,
we have finished the proof of correctness of the first stage of
translation from Java to NLTA for a single thread. To prove
the full case it remains to inject the scheduler semantics
between thread-local steps.

Theorem 1. The functions (jToNL,esToLocState) and the
introduced measure ν1 are a normed simulation of Java and
NLTA transition systems.

The final goal is to show the simulation between Java and TA
semantics and prove that the correctness formula established

by model checking (1) makes indeed a correct prediction
about the behaviour of our concurrent Java programs. A
Java program certified as free of resource access conflicts by
model checking has no execution traces in which two threads
access a resource at the same time.

6. CONCLUSIONS
We have presented a tool for static analysis of concurrent
Java programs which allows to find possible resource shar-
ing conflicts. We have also presented a formal semantics of
multithreaded Java with time aspect and a partial formal-
ization of the translation procedure performed by the tool.

In the nearest future we want to add support of SCJ con-
structs such as subclasses of Mission with their semantics,
in particular, CyclicExecutive. Another question open to
discussion is implementing a particular scheduling strategy
in order to restrict the number of possible executions and
make the analysis more precise.

We may now review some of the fundamental assumptions
of our approach and possible future work in the long-term.

• Obtaining WCET annotations: In the examples of this
paper, the WCET annotations are fictitious values. To
obtain realistic anotations, we plan to couple our anal-
ysis with WCET analysis tools especially geared at
Java, such as [22].

• Granularity: The size of code blocks we analyze (in-
cluded, for example, in annotation statements) is not
supposed to be in the order of a few instructions, but
in the order of several hundred instructions. This is
meant to reduce the relative error when estimating the
WCET, and also to obtain reasonably-sized timed au-
tomata.

• Non-interruptible annotation statements: We presently
assume that annotation statements are not interrupted,
without verifying it. Future work will try to extend our
approach in such a way

– that threads are annotated with more accurate
timing information (such as: periodicity) so that
the mentioned assumption can be verified;

– this assumption can be relaxed and interruption
by higher-priority threads is possible, again un-
der the hypothesis that the release parameters of
periodic threads are known.

Acknowledgements.
We are grateful to Marie Duflot-Kremer, Pascal Fontaine
and Stephan Merz (Loria), Martin Schoeberl (DTU) and
Jan-Georg Smaus (IRIT) for discussions about this work.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking

for real-time systems. In Logic in Computer Science,
1990. LICS ’90, Proceedings., Fifth Annual IEEE
Symposium on e, pages 414 –425, June 1990.

[2] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[3] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2008.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In J. Desel, W. Reisig, and
G. Rozenberg, editors, Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer Berlin / Heidelberg,
2004. 10.1007/978-3-540-27755-2.

[5] T. Bøgholm, H. Kragh-Hansen, P. Olsen, B. Thomsen,
and K. G. Larsen. Model-based schedulability analysis
of safety critical hard real-time Java programs. In
G. Bollella and C. D. Locke, editors, JTRES, volume
343 of ACM International Conference Proceeding
Series, pages 106–114. ACM, 2008.

[6] M. Cordovilla, F. Boniol, E. Noulard, and C. Pagetti.
Multiprocessor schedulability analyser. In W. C. Chu,
W. E. Wong, M. J. Palakal, and C.-C. Hung, editors,
SAC, pages 735–741. ACM, 2011.

[7] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi.
Schedulability analysis of fixed-priority systems using
timed automata. Theor. Comput. Sci., 354(2):301–317,
2006.

[8] E. Fersman and W. Yi. A generic approach to
schedulability analysis of real-time tasks. Nord. J.
Comput., 11(2):129–147, 2004.

[9] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite
state machines with multiple concurrency models.
IEEE Trans. on CAD of Integrated Circuits and
Systems, 18(6):742–760, 1999.

[10] N. Hakimipour, P. Strooper, and A. Wellings. A
model-based development approach for the verification
of real-time Java code. Concurrency and Computation:
Practice and Experience, 23(13):1583–1606, 2011.

[11] T. L. Harris. A pragmatic implementation of
non-blocking linked-lists. In Lecture Notes in
Computer Science, pages 300–314. Springer-Verlag,
2001.

[12] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: a time-triggered language for embedded
programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[13] C. M. Kirsch and A. Sokolova. The logical execution
time paradigm. In S. Chakraborty and J. Eberspächer,
editors, Advances in Real-Time Systems, pages
103–120. Springer Berlin Heidelberg, 2012.

[14] G. Klein and T. Nipkow. A machine-checked model for
a Java-like language, virtual machine, and compiler.
ACM Trans. Program. Lang. Syst., 28(4):619–695,
2006.

[15] H. Kopetz and G. Bauer. The time-triggered
architecture. Proceedings of the IEEE, 91(1):112–126,
2003.

[16] X. Leroy. A formally verified compiler back-end.
CoRR, abs/0902.2137, 2009.

[17] A. Lochbihler. Verifying a compiler for Java threads.
In A. D. Gordon, editor, European Symposium on
Programming (ESOP’10), volume 6012 of LNCS,
pages 427–447. Springer, Mar. 2010.

[18] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL.
A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2002.

[19] R. Obermaisser, C. E. Salloum, B. Huber, and
H. Kopetz. Modeling and verification of distributed
real-time systems using periodic finite state machines.
Comput. Syst. Sci. Eng., 23(4), 2008.

[20] A. P. Ravn and M. Schoeberl. Cyclic executive for
safety-critical Java on chip-multiprocessors. In
T. Kalibera and J. Vitek, editors, JTRES, ACM
International Conference Proceeding Series, pages
63–69. ACM, 2010.

[21] The Real-Time for Java Expert Group. The
Real-Time Specification for Java, Jan. 2006.

[22] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the 4th international
workshop on Java technologies for real-time and
embedded systems, JTRES ’06, pages 202–211, New
York, NY, USA, 2006. ACM.

[23] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank.
Wait-free linked-lists. In J. Ramanujam and
P. Sadayappan, editors, PPOPP, pages 309–310.
ACM, 2012.

[24] B. Tofan, G. Schellhorn, S. Bäumler, and W. Reif.
Embedding rely-guarantee reasoning in temporal logic.
Technical Report 2010-07, Informatik, 2010.

[25] W. Visser, K. Havelund, G. P. Brat, and S. Park.
Model checking programs. In ASE, pages 3–12, 2000.

	Introduction
	General overview
	Related work

	Introductory example
	Abstracting Java to TA
	TA and Uppaal
	General principles
	Execution model
	Scheduler
	Model checking

	Java Model
	Syntax
	Semantics

	Correctness of Abstraction
	Conclusions
	References

