

 A Demonstration of the
OpenInterface Interaction Development Environment

Philip Gray and Andrew Ramsay
Computing Science Department

University of Glasgow, Glasgow UK
{pdg, adr}@dcs.gla.ac.uk

Marcos Serrano
LIG Laboratory, HCI group

University of Grenoble 1, Grenoble FRANCE
marcos.serrano@imag.fr

ABSTRACT
Multimodal interaction is hard to develop, especially in
mobile/ubiquitous settings with novel interaction devices.
This is true, at least in part, because prototypes in this do-
main are difficult to build, to change and to monitor in or-
der to analyse, interpret and evaluate interaction data. In
this demonstration we present the OpenInterface Interac-
tion Development Environment (OIDE) that addresses
these challenges via its component repository and its con-
struction, debugging and logging tools.
ACM Classification: D.2.2 [Software Engineering]: Design
Tools and Techniques. – User interfaces.
General terms: Design, Experimentation, Human Factors

Keywords: multimodal interaction techniques, develop-
ment environments, prototyping, usage monitoring

INTRODUCTION
Multimodal interaction is hard to develop, especially in
mobile/ubiquitous settings with novel interaction devices,
in part because we don‘t have well-validated theory or
practice on which to build and thus have to rely on explora-
tion and evaluation of techniques as we develop them.
Such empirically driven development is hard because pro-
totypes in this domain remain difficult to build, to change
and to monitor.
Tools are beginning to emerge that help with constructing
interaction techniques based on sensor input and analysing
and interpreting the low-level device data [3], but there is
still no environment that allows a designer to work at mul-
tiple levels of abstraction, from low-level physical device
properties through interaction abstractions (e.g., semantic
fusion) to application and task level operations and objects.

THE OI DEVELOPMENT ENVIRONMENT FEATURES
The OpenInterface Interaction Development Environment
(OIDE) is a component-based system built on top of a run-
time kernel, called the OpenInterface Platform [1]. OIDE
adds development tools offering access to interaction capa-
bilities at multiple levels of abstraction. The demonstration
presents the development environment in one of its appli-
cation contexts: navigation of a large information space on
a large display surface.

Run-Time Kernel
The OpenInterface Platform is responsible for creating and
managing connections between components, processing the
output of multiple components (e.g., for fusion and multi-
casting), loading and interpreting the OI application de-
scriptions, or “pipelines”. Pipelines can be created manu-
ally or semi-automatically using the editor described be-
low.
Component Repository
The demonstration will showcase a selection of compo-
nents from the OIDE component repository, both devel-
oped ”in-house” (e.g., speech recognition, video “finger
tracker”, accelerometer-based gesture recognition) and also
accessible via proxies to other component sets (e.g., Phidg-
ets, ARToolkit). Our components include device drivers,
interaction techniques, multimodal fusion facilities, devel-
opment services and developer-defined combinations.
OIDE supports descriptions, querying and access in an
extensible set of description schemas.

Construction Tools
Fig. 1 illustrates the OIDE Graphical Editor in which com-
ponents accessible via the repository can be inspected, con-
figured, linked to other components and to external ser-
vices or to application functionality. The result can be ei-
ther an individual technique or a fully functional user inter-
face to a real application.

The OpenInterface Project aims to address this problem via
an integrated development environment for rapid prototyp-
ing and empirical evaluation of multimodal interaction
techniques. This demonstration highlights key features of
the environment as described below.

Debugging and Logging Tools
The event logger is capable of recording multiple compo-
nent-specific formatted data streams while an OI applica-
tion is executing. The logger component can generate time-
stamps for each set of data it receives or it can use time-
stamps generated by the source component.

Copyright is held by the author/owner (s).
UIST’07, October 7-10, 2007, Newport, Rhode Island, USA.

As the logging format is controlled by the source compo-
nents, it is then simple to load the recorded data into exter-
nal visualization toolkits, such as Matlab or Replayer [4].

 ACM 978-1-59593-679-2/07/0010

Figure 1: The OIDE Editor.

A generic “oscilloscope” display can be used to view data
streams at runtime. The component can be extensively con-
figured while in use, including selection of data streams to
display, changing the scaling of the current data stream,
and adjusting the sample rate for incoming data.

EXAMPLE APPLICATION
As an illustration, consider navigation in Google Earth
using a novel input device. Three different techniques to
perform this task have been developed, 2 using custom
built hardware [2], and the 3rd using the SHAKE sensor
device [5] (Fig. 2). The SHAKE contains a variety of sen-
sors, including a triple axis accelerometer, two capacitive
sensors and a vibrotactile actuator.
OIDE hosts a SHAKE interface component, which is used
to process raw output from the SHAKE and emit events
when selected conditions are met, for example, when the
tilt of the device exceeds a certain threshold. Our OI pipe-
line links the SHAKE interface component to a generic
keypress event generator. When events are produced by
manipulations of the SHAKE, a virtual keypress event is
sent to Google Earth, running outside the OI environment.
Navigation is performed by tilting the SHAKE in the 4
main directions (left/right/forward/back) to move
west/east/north/south, and by pressing the two capacitive
sensors (zoom in and out).
Figure 2 shows a subset of the data visualization options
available in the OI framework. The first two oscilloscopes
show data at the lowest level of abstraction, direct from the
SHAKE itself, while the 3rd is showing application-level
data from Google Earth.
It is also possible to display further levels of abstraction.
For example, an intermediate stage between the raw and
application-level visualizations would be a display of the
virtual keypresses events being generated. A 4th instance of
the oscilloscope component could be used for this purpose.
In addition to sending events from OI to Google Earth, our
example also features feedback from Google Earth into the
OI environment, through a component which is able to use
the Google Earth API. This component obtains the current
terrain height from Google Earth, and triggers a vibration

event on the SHAKE device. The intensity of the vibration
is proportional to the height of the terrain.

Figure 2: Google Earth navigator with real-time “us-
age oscilloscope” components. The SHAKE is illus-
trated in the bottom left-hand corner.

CONCLUSIONS
This demonstration presents the OpenInterface Interaction
Development Environment. Its key features (component
repository, construction, debugging and logging tools) are
illustrated via explorations of interaction with a large in-
formation space. The ability of the environment to provide
conditional logging of the most relevant and/or interesting
data provides an added benefit to the interaction designer.
For more information, please visit www.oi-project.org.

ACKNOWLEDGMENTS
The OpenInterface Project is an IST Framework 6 STREP
funded by the European Commission. The authors ac-
knowledge the contribution to the demonstration of their
OI colleagues and of non-OI member Emmanuel Dubois.

REFERENCES
1. Benoit, A., Bonnaud, L., Caplier, A., Damousis, I.,

Tzovaras, D., Jourde, E., Nigay, L., Serrano, M. and
Lawson, J-Y. 2006. Multimodal Signal Processing and
Interaction for a Driving Simulation: Component-based
Architecture. Journal on Multimodal User Interfaces,1,
1,49-58.

2. Dubois, E., Truillet, P., and Bach, C. 2007. Evaluating
Advanced Interaction Techniques for Navigating
Google Earth. In Proc HCI 2007, Vol 2. to appear.

3. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.
R. 2007. Authoring sensor-based interactions by dem-
onstration with direct manipulation and pattern recogni-
tion. In Proc CHI '07. ACM Press, New York, NY, 145-
154.

4. Morrison, A., Tennent, P., and Chalmers, M. 2006. Co-
ordinated Visualisation of Video and System Log Data.
In Proc CMV2006. IEEE Computer Society, 91-102.

5. Williamson, J., Murray-Smith, R., and Hughes, S. 2007.
Shoogle: Excitatory Multimodal Interaction on Mobile
Devices. In Proc CHI '07. ACM Press, 121-124.

	ABSTRACT
	INTRODUCTION
	THE OI DEVELOPMENT ENVIRONMENT FEATURES
	Run-Time Kernel
	The OpenInterface Platform is responsible for creating and managing connections between components, processing the output of multiple components (e.g., for fusion and multicasting), loading and interpreting the OI application descriptions, or “pipelines”. Pipelines can be created manually or semi-automatically using the editor described below.
	Component Repository
	Construction Tools
	Debugging and Logging Tools
	EXAMPLE APPLICATION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

