

The OpenInterface Framework:
A tool for multimodal interaction

Abstract
The area of multimodal interaction has expanded
rapidly. However, the implementation of multimodal
systems still remains a difficult task. Addressing this
problem, we describe the OpenInterface (OI)
framework, a component-based tool for rapidly
developing multimodal input interfaces. The OI
underlying conceptual component model includes both
generic and tailored components. In addition, to enable
the rapid exploration of the multimodal design space
for a given system, we need to capitalize on past
experiences and include a large set of multimodal
interaction techniques, their specifications and
documentations. In this work-in-progress report, we
present the current state of the OI framework and the
two exploratory test-beds developed using the
OpenInterface Interaction Development Environment.

Keywords
Multimodal Interaction, development environment,
prototyping, software component.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Input devices and strategies, Interaction
styles, Prototyping, User interface management
systems (UIMS); D.2.2 [Software Engineering]: Design
Tools and Techniques – User interfaces

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

ACM 978-1-60558-012-8/08/04

Marcos Serrano

Grenoble Informatics Laboratory

University of Grenoble

Grenoble, France

marcos.serrano@imag.fr

Laurence Nigay

Grenoble Informatics Laboratory

University of Grenoble

Grenoble, France

Laurence.nigay@imag.fr

Jean-Yves L. Lawson

Université Catholique de Louvain

Louvain, Belgium

jean-yves.lawson@uclouvain.be

Andrew Ramsay

Computing Science Department

University of Glasgow

Glasgow, UK

adr@dcs.gla.ac.uk

Roderick Murray-Smith

Computing Science Department

University of Glasgow

Glasgow, UK

rod@dcs.gla.ac.uk

Sebastian Denef

Fraunhofer FIT

Sankt Augustin, Germany

sebastian.denef@fit.fraunhofer.de

Introduction
Even though multimodal interaction has expanded
rapidly and real multimodal applications are being
implemented, the design and development of
multimodal interfaces remains a difficult task. This is
especially true in mobile/ubiquitous environments or
with novel interaction techniques. Available tools for
developing interfaces are still designed for a limited set
of techniques and interaction paradigms.

In this context, the aim of the OpenInterface project is
to provide better ways of developing systems that use
multimodal interaction. We are developing tools and
methods for multimodal interaction development driven
by exploratory test-beds for navigating large
information spaces and multi-player mixed-reality
games on mobile phones. In this paper, we introduce
the OpenInterface framework, the generic and tailored
components that have already been implemented and
two test-beds we have built using our framework.

Related work
To date, most tools are designed for specific interaction
paradigms, such as camera-based interaction [9] or
tangible interfaces [7]. Concerning component-based
toolkits for multimodal interaction, two main references
have guided our study. The first is the Input
Configurator [5] (ICON), which is a tool for building
input reconfigurable interfaces. The main limitation of
ICON is that the level of abstraction of its components
is too low and assemblies of components become too
complex. The second is our ICARE tool [2], which is our
previous attempt to create a high level component-
based approach for building multimodal interaction.
ICARE defines a set of generic components. Our past
experience showed that only a limited set of those

components were really generic. In the OpenInterface
framework, we therefore adopt a more realistic mixed
approach that enables the designer/developer to use
both generic components and tailored components.
Tailored components are designed for specific
application needs, while generic components implement
high-level reusable functionalities.

OI framework structure
The OpenInterface (OI) framework is composed of the
OI Kernel, a component-based runtime platform, and
the OpenInterface Interaction Development
Environment (OIDE), a graphical tool built on top of the
platform.

OI Kernel
The OI Kernel [1] is a component-based platform that
handles distributed heterogeneous components based
on different technologies (Java, C++, Matlab, Python,
.NET). The heterogeneity of the platform constitutes a
great advance from previous approaches. It will allow
the integration of existing interaction techniques
written in different languages. The platform includes a
tool for creating new components from existing code
without modifying the original code. The OI kernel
manages the creation and the connection between
components by dynamically loading and interpreting
the OI application descriptions or “pipelines”. Pipelines
can be created graphically using the OIDE, built on top
of the OI kernel.

OIDE
The OIDE is a graphical environment that allows direct
manipulation and assembling of components in order to
specify a "pipeline” defining a multimodal interaction.
Figure 1 gives an example of a pipeline.

OpenInterface Project

The OpenInterface Project [11] is
an ongoing European IST
Framework 6 STREP (Specific
Targeted Research Project)
funded by the European
Commission. The project is
multidisciplinary and involves ten
European academic and industrial
partners including HCI
researchers/practitioners,
designers, psychologists,
ergonomics and software
engineers. The project started on
September 2006 and ends on
May 2009.

www.oi-project.org

Dynamic assembly
The OI kernel and the OIDE allow the dynamic
assembly of components: components can be launched
individually. As seen in figure 1, each component has a
button that allow a designer to start the component.

Figure 1. OpenInterface Interaction Development
Environment (OIDE): A graphical editor for assembling
components.

Component Repository
Already available components include device drivers,
interaction techniques, multimodal fusion facilities,
development services and developer-defined
combinations. OIDE supports descriptions, querying
and access in an extensible set of description schemas.

OI Conceptual Component-based model
Our model defines a set of generic and tailored
components. Generic components define reusable
generic operations. Tailored components are
components implemented in an ad-hoc way for a
specific interaction technique or interactive application.

This adopted mixed approach improves the expressive
leverage of the OI framework.

Our model includes three main levels for components:
devices, transformation chain and tasks, as shown in
Figure 2. Both task and device components can be
generic or tailored. For example generic task
components are based on Foley’s interactive tasks [6]
while generic device components are based on device
taxonomies [3]. The transformation chain level defines
two types of components: transformation components
and composition components.

Figure 2. The OI model within an ARCH software architecture.

OI Components: Tools and Techniques
The OI framework has so far been populated with a
variety of construction tools and interaction techniques
in order to improve the development of multimodal
interfaces.

Construction tools
The OI framework offers a set of debugging and
monitoring tools to help designers in building
multimodal applications. Those tools include an
oscilloscope component that displays multiple
continuous data streams (figure 4), a DataViewer
component that can display numeric and textual data, a
logging component that saves data streams in files,
timestamping the data events, and a Generator
component that can generate events based on
mathematical formula.

Device and Tasks components
The OI framework has already been populated by a
large set of interaction techniques at different levels of
abstraction, such as speech recognition or image
analysis (ARToolkit, TrackIR), and devices including the
SHAKE [12], the interface-Z [8], the Wiimote, GPS
units, the Diamond Touch [4], mice and keyboard.
Figure 3 shows the representation of two devices. For
each of them a tailored component is defined
corresponding to the driver of the device. We then
define three generic components that partially describe
the various captured events.

Transformation components
The transformation chain of our conceptual model is
composed of transformation and composition
components. For each type of component, we aim at
defining generic reusable components.

Figure 3. Device components: Shake and Wiimote devices.

Generic Composition components are based on our
previous work ICARE. We define four types of
transformation based on the CARE properties
(Complementarity, Assignation, Redundancy and
Equivalence) [10]. Those composition components
perform temporal fusion of input modalities. Future
work will focus on other types of composition, such as
spatial or semantic composition.

Generic transformation components implement
reusable operations that are usually performed on
specific devices. For now we have identified three
generic components: Command Filter, Threshold and
Continuous-Discrete components. The Command Filter
component generates a command from an input
according to a mapping table. For example, we can
generate commands from 3D gestures performed using
the Wiimote. The Threshold component operates a filter
on input values according to a configurable threshold.
This component allows fine tuning of the interaction.
The Continuous-Discrete component modifies the
frequency of the input events. This modification can
completely change the interaction: if we use the
gesture and the shake for zooming, we would be able

The Interface-Z [8] contains
several innovative sensors, such as
an atmospheric pressure sensor.

The Shake [12] packages a variety
of sensors, including a triple axis
accelerometer, two capacitive
sensors and a vibrotactile actuator.

The Track IR is an IR camera-based

tracker.

to transform a continuous zoom (moving the hand
down means continuous zoom-in) into a discrete zoom
(moving the hand down means one zoom-in action).

Multimodal Map Navigation
Using the OI framework, we built a multimodal map
navigation application. The user can navigate and zoom
using several interaction techniques, such as (speech
and gesture) or (pressure and gesture). Pressure is
achieved using the interface-Z sensor.

The use of the OI framework for building the
multimodal interaction of the map navigator offers
many advantages to both designers and developers.
For example, the developer can replace the Diamond
Touch component by the Mouse component in order to
perform tests on a simple computer. The designer can
easily modify the interaction, as part of a user-centered
design process, for example by tuning the intensity of
the pressure of the balloon for zooming.

Gaming on a Mobile Phone
Using the OI framework, we built a 3D game on mobile
phone. The main goal of the “Funny Rabbit” game is to
find a rabbit that is hidden in a chest. The game runs
on a mobile phone (Figure 4), while the different
interaction techniques are hosted by a PC running the
OI kernel. We use a variety of interaction techniques to
control the game: speech commands, 3D gesture
commands with the Shake and 3D gesture commands
with the camera and ARToolkit.

The interaction can be rapidly modified using the OIDE.
For example, the Shake component can easily be
replaced by the ARToolkit component, implying minor
modifications of the assembly of components. This

improves the iterative player-centered design of the
multimodal interaction of the game.

Figure 4. 3D Game on mobile phone with the Shake and
oscilloscope visualization tool.

Conclusion and Future Work
The long term goal of this work is to define a flexible
and integrating software framework for providing better
ways of developing multimodal interaction based on
generic and tailored components. We have already
developed two test-beds, one on a game and one on a
map-based application which consider two settings,
namely an augmented environment and a mobile
platform. Ergonomic evaluation has been performed
and we further plan participatory design activities using
our framework.

Concerning the framework, our future plans include
creating a repository of high level interaction technique
descriptions, actual instances of these techniques (OI

Multimodal Map Navigation using
the Diamond Touch and speech
commands.

Multimodal Map Navigation using
the Diamond Touch and the balloon
of the interface-Z. The user can
zoom by pressing the balloon.

kernel pipelines) and component descriptions. This
repository will be accessible through a web interface,
but will also be embedded in the OIDE to allow
designers and developers to search the repository and
extract relevant components or techniques for use in
their application. Similarly, it will be possible to import
data into the repository from the OIDE, meaning that
after a new multimodal application has been created, it
can easily be published in the repository and made
available to all OIDE users.

Finally we also continue to enrich the framework with
new components. In our approach we aim at
integrating existing toolkits. ARToolkit [1] has already
been embedded in our software framework and we are
currently working on the integration of the phidgets
[7]. We welcome contributions from the CHI
community as designers of innovative multimodal
interaction, as users of the platform for developing a
multimodal application, or as developers of new
components: new devices, new interaction techniques
or new specifications of generic components for
multimodality. The open source platform and the tool to
add new components are free to download at
forge.openinterface.org.

References

[1] Benoit, A., Bonnaud, L., Caplier, A., Damousis, I.,
Tzovaras, D., Jourde, E., Nigay, L., Serrano, M. and
Lawson, J-Y. 2006. Multimodal Signal Processing and
Interaction for a Driving Simulation: Component-based
Architecture. Journal on Multimodal User Interfaces,1,
1,49-58.

[2] Bouchet, J., Nigay, L. (2004). ICARE: A
Component-Based Approach for the Design and

Development of Multimodal Interfaces. Extended
Abstracts CHI’04, ACM, pp. 1325-1328.

[3] Buxton, W. (1983). Lexical and Pragmatic
Considerations of Input Structures. ACM SIGGRAPH CG,
17(1), pp. 31-37

[4] Dietz, P. and Leigh, D. (2001). DiamondTouch: a
multi-user touch technology. Proc. of the 14th annual
ACM symposium on User interfaces software and
technologies, UIST’01, pp. 219-226.

[5] Dragicevic, P., and Fekete, J. D. (2001). Input
device selection and interaction configuration with
ICON. Joint Proc. of IHM’01 and HCI’01,Springer
Verlag, pp. 543-558.

[6] Foley, J., Wallace, V.L. and Chan, P. (1984) . The
human factors of graphics interaction techniques.
IEEE Computer Graphics and Applications, 11, pp.
13-48

[7] Greenberg, S. and Fitchett, C. (2001). Phidgets:
Easy Development of Physical Interfaces throught
Physical Widgets. In Proc. of the UIST 2001 Annual
ACM Symposium on User Interface Software and
Technology, ACM Press

[8] Interface-Z, www.interface-z.com.

[9] Maynes-Aminzade, D., Winograd, T., and Igarashi,
T. (2007). Eyepatch: Prototyping Camera-based
interaction through Examples. In Proc. UIST’07

[10] Nigay, L., Coutaz, J. (1997). Multifeature Systems:
The CARE Properties and Their Impact on Software
Design. Intelligence and Multimodality in Multimedia
Interfaces, AAAI Press.

[11] OpenInterface European project. IST Framework 6
STREP funded by the European Commission (FP6-
35182). www.oi-project.org.

[12] Williamson, J., Murray-Smith, R., and Hugues, S.
(2007). Shoogle: Ecitatory Multimodal Interaction on
Mobile Devices. In Proc. CHI’07, ACM Press, pp. 121-1

Acknowledgements

The authors thank the contribution
of their OpenInterface colleagues:
• Arcadia Design (It)
• France Telecom (Fr)
• Fraunhofer Institute (De)
• Immersion (Fr)
• Multitel (Be)
• Phonoclick (Tr)
• TXT e-solutions (It)
• Université Catholique de

Louvain (Be)
• Université J. Fourier (Fr)
• University of Glasgow (Uk)

