
Postulates for Paraconsistent Reasoning and

Fault Tolerant Logic Programming

Martin Caminada and Jonathan Ben-Naim

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-004

www.cs.uu.nl

ISSN: 0924-3275

Postulates for Paraconsistent Reasoning

and Fault Tolerant Logic Programming∗

Martin Caminada

Utrecht University

Jonathan Ben-Naim

University of Luxembourg

January 10, 2007

Abstract

In this paper we examine, from an abstract point of view, a number of properties to
be satisfied not only by formalisms for paraconsistent reasoning, but also for formalisms
that aim to improve on logic programming by warranting the existence of models.

1 Introduction

Paraconsistent logic can be described as a series of approaches to meaningful formal
reasoning in the presence of possibly conflicting information [3, 2, 1]. An important though
often neglected question is what it exactly is that one aims to achieve with a formalism
for paraconsistent reasoning. That is, what are the important properties a formalism for
paraconsistent reasoning should satisfy? An abstract treatment of this issue is important
not only for the existing field of propositional and first order paraconsistent reasoning,
but also for the field of logic programming and answer set programming, where similar
problems occur.

This paper is structured as follows. First, in section 2, we provide three general
postulates that we feel each formalism for paraconsistent reasoning should minimally
support. Then, in section 3, an analysis is given of which existing paraconsistent logics
support which of the postulates in section 2. In section 4, we broaden the discussion
to include semantics for logic programming. It will be shown that some of the issues in
paraconsistent logic also play a role in logic programming. In section 5, we round off the
discussion with a summary of the main results.

2 The Postulates

In order for the postulates to be applicable to a broad range of formalisms, we define the
basic concepts in a very general way.

Definition 1. Let L be the language of a logical formalism, composed using a countably
infinite set of atoms and a finite number of logical operators. Let F be the set of all well-
formed formulas in L. Let ` be the entailment operator of this formalism. Let S ⊆ F We
define Cn(S) to be {c | S ` c}.

Examples of logical formalism that satisfy Definition 1 are:

• classical propositional logic

∗This work was partly supported by the EU ASPIC project

1

• propositional default logic, using the sceptical or credulous approach

• grounded normal logic programs under the well-founded semantics

• grounded normal logic programs under the stable model semantics, using the scep-
tical or credulous approach

• grounded extended logic programs under answer set semantics, using the sceptical
or credulous approach

In the following definitions, we write atoms(S) for the atoms that occur in a set
of formulas S. For instance: atoms(p ∧ q; r ∨ p) = {p, q, r} and atoms(p ← q; r ←
s, t)) = {p, q, r, s, t}. Furthermore, if A is a set of atoms and S a set of formulas then
we write S|A for those formulas in S that contain only atoms from A. For instance:
{p ∧ q; q ⊃ r; s ∨ t; q}|{p,q} = {p ∧ q; q}.

The first property to be stated is that of non-interference. Non-interference roughly
means that, for two completely independent knowledge bases S1 and S2, S1 does not
influence the outcome with respect to the language of S2.

Definition 2 (non-interference). We say that a logical formalism satisfies non-interference
iff for every two sets of formulas S1 and S2 such that atoms(S1) ∩ atoms(S2) = ∅ it
holds that Cn(S1)|atoms(S1) = Cn(S1 ∪ S2)|atoms(S1) and Cn(S2)|atoms(S2) = Cn(S1 ∪
S2)|atoms(S2).

A property closely related to non-interference is that of contamination. Informally, a
set of formulas is said to be contaminating iff it yields the same outcome when merged
with a totally unrelated set of formulas. That is, a contaminating set of formulas makes
all other unrelated sets of formulas irrelevant when being merged with it.

Definition 3 (contamination). A set of formulas S1, with atoms(S1) 6= atoms(F), is
called contaminating iff for any set of formulas S2 such that atoms(S1) ∩ atoms(S2) = ∅
it holds that Cn(S1) = Cn(S1 ∪ S2).

Based on the concept of contamination, it is then possible to define the property of
crash resistancy.

Definition 4 (crash resistancy). We say that a logical formalism satisfies crash resis-
tancy iff there does not exist a set of formulas S that is contaminating.

The property of crash resistancy is perhaps best understood by examining what crashes
commonly mean in software engineering and operating systems. As any experienced com-
puter user knows, it sometimes can occur that a program misbehaves. Under some op-
erating systems, however, the fact that one program misbehaves (like executing illegal
instructions) causes the entire operating system to collapse, which then also has conse-
quences for all other programs that were running, even if they are totally unrelated to
the program that caused the original problem. The main point here is that one wants to
avoid local problems having global effects, and rendering all other things irrelevant. It is
this property that is expressed in the above definition of crash resistancy.

The last property to be discussed is that of backwards compatibility. The idea is,
roughly, that a formalism (like paraconsistent logic) is to improve on an existing, possibly
non crash resisting formalism (like propositional logic) it should yield the same outcome
for all non-contaminating input in the latter formalism.

Definition 5 (backwards compatibility). Let LF1 and LF2 be two logical formalisms
that use the same language. We say that LF2 is backwards compatible with LF1 iff for
every finite set S that is not contaminating in S1, it holds that CnLF1

(S) = CnLF2
(S).

2

3 Logics for Paraconsistent Reasoning

Paraconsistent logics have been introduced to overcome a weakness of classical logic,
namely there is no classical model for certain sets of formulas (called inconsistent sets)
and therefore everything can be concluded from them. Note that this is more a convention
to keep an elegant definition than an intuitively motivated choice. Many directions of
research have been explored to remedy this problem.

Some approaches are based on possible worlds semantics, for example, the non-adjunctive
logics and the relevance logics. Some, called non truth-functional logics, still define an
interpretation as a function v from the language considered to “true” and “false”, like
classical logic. But, the constraints on v are weakened, in particular the truth value of
¬α is not fully determined by that of α. Last but not least, some define an interpre-
tation as a function from the language to many epistemic states (e.g. “informed that
true”, “informed that false”, “informed of both”, “no information”). They are called the
many-valued logics.

All of the above approaches aim at avoiding contaminating sets of formulas. However,
as far as the authors know, only the many-valued community proposed some logics that
are backward compatible with classical logic. In our opinion, one of the most interesting
solution is the preferential version of the logic of Belnap [2, 3] proposed by [1].
Let us first recall very briefly some elements of classical logic. Let L be the language
consisting of a set of propositional symbols (or atoms) A and the usual connectives ¬ and
∨. Let F be the set of all well-formed formulas of L.
A classical valuation of L is a function v from F to {0, 1} (i.e. “false” and “true”) such
that ∀ α, β ∈ F the following holds: v(α) = 1 iff v(¬α) = 0; v(α ∨ β) = 1 iff v(α) = 1 or
v(β) = 1.
A classical model of a set of formulas Γ is a valuation v such that ∀ α ∈ Γ, v(α) = 1.
The classical consequence relation for L is the relation `c on P(F)×F such that ∀Γ ⊆ F ,
∀ α ∈ F , Γ `c α iff every model for Γ is a model for α.

It turns out that `c is not crash resistant because every inconsistent set of formulas
is contaminating. As said previously, paraconsistent reasoning has been developed to
overcome this problem. The logic of Belnap [3, 2] plays an important role in this field.
It uses four epistemic states denoted by {1}, {0}, ∅, {0, 1}. There are many possible
meanings for them. Some authors see them as respectively “true”, “false”, “neither true
nor false”, “both true and false”. Some others see them as the elements of a certain
bilattice representing degrees of knowledge and degrees of truth. But, we prefer by far
the intuitive meaning that follows.

Imagine some sources of information talking about the atoms (not the compound for-
mulas). For each atom p, a source can tell that p is true, or that it is false, or nothing
about p. We consider that an atom is globally told to be true (false) iff some source tells
that. Then, we develop this global information in the following way: if a formula α is told
to be true (false), then ¬α is implicitly told to be false (true), and vice versa. In addition,
if at least one of α and β is told to be true, then so is α∨β. Note that the converse is not
required as it would be counter-intuitive, however we automatically get it as the sources
can talk only about the atoms. Finally, if both α and β are told to be false, then so is
α ∨ β, and vice versa. This global and developed information constitutes a valuation in
the logic of Belnap.

More formally, a Belnap valuation is a function v from F to P({0, 1}) such that ∀α, β ∈ F ,
1 ∈ v(¬α) iff 0 ∈ v(α)
0 ∈ v(¬α) iff 1 ∈ v(α)
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β)
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and 0 ∈ v(β)

3

Intuitively, 1 ∈ v(α) (resp. 0 ∈ v(α)) means that α is told to be true (resp. false). In fact,
a Belnap valuation represents, for some sources of information, the global and developed
information obtained from what they say by the manner explained previously.
A Belnap model of a set of formulas Γ is a Belnap valuation v such that ∀α ∈ Γ, 1 ∈ v(α).
The consequence relation of Belnap, denoted by `B , is defined in the following usual way:
∀ Γ ⊆ F , ∀ α ∈ F , Γ `B α iff every Belnap model of Γ is a Belnap model of α.

It is easy to see that this logic is crash resistant for our simple language L. However,
it is not backward compatible with classical logic. Indeed, for instance, {α,¬α ∨ β} `c β

whilst {α,¬α ∨ β} 6`B β. That is why Arieli and Avron proposed a preferential version.
The idea is to consider that the epistemic states {0} and {1} are preferred to ∅ and {0, 1}.
Consequently, [1] introduced the preferential relation ≺ such that for any two Belnap
valuations v and w:
v ≺ w (v is preferred to w) iff {p ∈ A : w(p) is {0} or {1}} ⊂ {p ∈ A : v(p) is {0} or {1}}.
Then, given a set of Belnap valuations V , an element v of V is said to be preferred (in
V) iff there is no element of V which is preferred to v.

This leads to the preferential consequence relation `p such that ∀ Γ ⊆ F , ∀ α ∈ F ,
Γ `p α iff every preferred Belnap model of Γ is a Belnap model of α. It can be checked that
`p is both crash resistant and backwards compatible with classical logic. The same kind
of construction can be done with the standard three-valued logic [5]. More generally, the
efforts devoted to the study of such logics emphasize the importance of those properties
in the field on non-monotonic reasoning.

4 Logic Programming

It is interesting to observe that in the field of logic programming, similar problems play
a role as in the field of paraconsistent logic. Under the stable model semantics [7] the
program S1 = {a ← nota} is contaminating, since it yields the same outcome when it
is merged with an arbitrary syntactically disjunct program S2 (for instance S2 = {b ←
not c}). S1 as well as S1 ∪ S2 do not have any stable models. Therefore, the set of
credulously accepted statements is ∅ and the set of sceptically accepted statements is the
set of all literals.

Some alternative approaches to logic programming, such as the well-founded semantics
[10] actually satisfy non-interference and crash resistancy. At the same time, it must be
mentioned that the well-founded semantics, as well as approaches like [9, 11], are not
backwards compatible with the now well-established stable model semantics. For instance,
the program
a← not b

b← nota

c← not b, not c

has a unique stable model {b} whereas its well-founded model is the empty set.
We know of no existing formal semantics for logic programming that satisfies crash

resistancy and non-interference, while at the same time being backwards compatible with
stable model semantics. Nevertheless, such a semantics would be far from impossible.
Caminada, for instance, proposes the semi-stable semantics for abstract argumentation
[4]. Semi-stable semantics satisfies crash resistancy and non-interference, and is backwards
compatible with stable semantics. As logic programming can be seen as an instantiated
form of abstract argumentation [6], this means that we can directly apply semi-stable
semantics as a foundation for logic programming. This will then yield a semantics that
satisfies non-interference and crash resistancy and is backwards compatible with the stable
model semantics. How such could exactly be done is a topic for further research.

4

5 Summary

In this paper, we have stated three postulates that can be applied to paraconsistent
reasoning as well as to logic programming. It was observed that the original paraconsistent
logic of Belnap [3, 2] satisfies crash-resistancy but not backwards compatibility. The
approach of Arieli and Avron [1], at the other hand, satisfies both properties.

As for logic programming, it was observed that the stable model semantics does not
satisfy crash-resistancy. Approaches like the well-founded semantics [8] and that of [9,
11] do satisfy crash resistancy but are not backwards compatible with the stable model
semantics. However, it appears that a relatively new semantics (semi-stable, [4]) could be
applied to logic programming to yield an approach that is not only crash resistant, but is
also backwards compatible with the stable model semantics. This would make semi-stable
semantics a very suitable candidate for fault-tolerant Answer Set Programming.

References

[1] O. Arieli and A. Avron. The value of the four values. Artificial Intelligence, 102:97–
141, 1998.

[2] N. D. Belnap. How computers should think. In G. Ryle, editor, Contemporary
Aspects of Philosophy, pages 30–56. Oriel Press, 1977.

[3] N. D. Belnap. A useful four-valued logic. In J.M. Dunn and G. Epstein, editors,
Modern Uses of Multiple-Valued Logic, pages 7–37. Oriel Press, 1977.

[4] M.W.A. Caminada. Semi-stable semantics. In P.E. Dunne and TJ.M. Bench-Capon,
editors, Computational Models of Argument; Proceedings of COMMA 2006, pages
121–130. IOS Press, 2006.

[5] I.M.L. D’Ottaviano and N.C.A. da Costa. Sur un problème de Jaśkowski, Sciences. In
Comptes Rendus de l’Académie des Sciences de Paris, volume 270, pages 1349–1353,
1970.

[6] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77:321–357, 1995.

[7] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference/Symposium on Logic Programming,
pages 1070–1080. MIT Press, 1988.

[8] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–385, 1991.

[9] Teodor C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13(4):445–463, 1990.

[10] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. J. ACM, 38(3):620–650, 1991.

[11] Jia-Huai You and Li-Yan Yuan. A three-valued semantics for deductive databases
and logic programs. Journal of Computer System Sciences, 49(2):334–361, 1994.

5

