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Abstract In many multi-agent systems, especially in the field of e-commerce,
the users have to decide whether they sufficiently trust an agent to achieve a
certain goal. To help users to make such decisions, an increasing number of
trust systems have been developed. By trust system, we mean a system that
gathers information about an agent and evaluates its trustworthiness on the
basis of this information. The aim of the present paper is to develop, and an-
alyze from an axiomatic point of view, new trust systems based on intervals.
More precisely, we assume that a set of grades describing the past perfor-
mances of an agent is given. Then, the goal is to construct an interval that
summarizes these grades. In our opinion, such an interval gives a good account
of the trustworthiness of the agent. In addition, this kind of representation for-
mat overcomes certain limitations (at a certain cost) of the approaches that
represent trustworthiness by a single number. We establish seven axioms that
should be satisfied by a summarizing method. Next, we develop two new meth-
ods. The first one is based on the idea that certain concentrations of grades are
strong enough to pull the bounds of the summarizing interval towards them-
selves. The second one represents data in the setting of possibility theory,
and then computes lower and upper expected values. Finally, we check that
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our methods satisfy the axioms introduced before, which provide theoretical
justifications for them.

Keywords Trust · Distrust · Intervals · Possibility Theory

1 Introduction

In many multi-agent systems, especially in the field of e-commerce, the users
have decisions to make about the agents. In particular, a user has to decide
whether he (or she) believes that an agent is more trustworthy than another,
or whether an agent is sufficiently trustworthy in the absolute sense. This is
the case for example in the famous auction system Ebay. Indeed, a buyer has
to decide whether he sufficiently trusts a seller to be honest and competent.
In order to help users to make such decisions, an increasing number of trust
systems have been developed, see e.g. [21] for a review on trust and reputation
systems, see e.g. [20] for an experiment that evaluates the influence of the
reputation system integrated into Ebay.

By trust system, we mean a system that gathers information about a par-
ticular agent (called the trustee), and then constructs on the basis of this
information, an object giving a good account of its trustworthiness. For ex-
ample, Ebay is equipped with a system that collects the ratings a seller has
received from buyers, and then attributes to that seller a certain score on the
basis of these ratings. This score gives an indication of how reliable the seller is.

Developing a trust system is a challenging problem that raises questions
such as: how trustworthiness may be represented, and from which information
it may be estimated? The aim of this paper is to develop, and analyze from
an axiomatic point of view, new trust systems based on intervals. More pre-
cisely, we assume that a set of grades describing the past performances of the
trustee is given. By convention, the value of a grade belongs to a discrete scale
starting with 0 and ending with 1. Each grade describes how well the trustee
has achieved a certain past goal. Naturally, 0 means that the goal has not at
all been achieved, whilst 1 means on the contrary that it has been achieved
perfectly.

Given a set of grades, the goal is to construct a real interval included in
[0, 1] that summarizes the grades. Such a summarizing interval unavoidably
describes the past behavior of the trustee with less accuracy than the grades,
but nevertheless it gives a good account of the essential parts of this behav-
ior. In our opinion, a summarizing interval constitutes a good overview of the
trustworthiness of the trustee, and thus provides trustors with a handy tool
for judging and comparing trustees.

To our knowledge, in many approaches, the trustworthiness of an agent
is represented by a single number, usually a real number. An advantage of
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this representation format is that it is obvious for a trustor how to compare
two agents. On the other hand, one might consider that a single number is
a too concise description of an agent, that is, it does not allow trustors to
distinguish between certain agents that are quite different. For example, if the
trustworthiness of an agent is defined as the mean of the grades this agent has
received, then we cannot distinguish between a first agent with very good and
very bad grades, and a second one with only average grades.

Our approach overcomes this limitation. On the other hand, an interval is
a slightly more complex object than a single number, thus it requires slightly
more efforts from trustors to compare two agents. To summarize, our sum-
marizing intervals constitute a good compromise, that is, they are sufficiently
simple for trustors to easily make decisions about trustees, and in parallel,
they are sufficiently complex for trustors to distinguish between two very dif-
ferent trustees.

Concerning the contributions of this paper, we first establish seven prop-
erties that should be satisfied by a summarizing method, that is, a method
that transforms any set of grades into an interval summarizing them. Next,
we develop two new methods. The first one is based on the idea that certain
concentrations of grades are strong enough to pull the bounds of the sum-
marizing interval towards themselves. This is called the pulling principle. The
second one is based on possibility theory. More precisely, we view the grades
as a basis for building a possibility distribution, and then we compute lower
and upper expected values from it. Finally, we check that our methods satisfy
all or part of the axioms introduced before, which provides theoretical justifi-
cations for them. This constitutes the core of the paper.

Next, we study three extensions of this work. In the first one, we propose
a method for constructing a trust interval from a summarizing one. By trust
interval, we mean an interval such that it is rational to believe (on the basis
of the past grades) that the future grades will essentially fall on it. In our
opinion, such an interval can be obtained by taking a summarizing one and
adding an adequate margin of error.

In the second extension, the idea is to compute, on the basis of the afore-
mentioned possibility distribution, a level of trust as the certainty (on the basis
of the past grades) that a future grade will be good, and a level of distrust
as the fear that a future grade may be bad. These levels provide additional
indications on the trustee.

Finally, the third extension consists in studying several ways to compare
two sets of grades. More precisely, we first present a particular pre-order called
stochastic dominance. Next, we introduce several bipolar variants of it that
distinguish between good and bad grades. And finally, we introduce pre-orders
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based on summarizing intervals.

This paper is a revised and extended version of the conference paper [3].
Concerning the difference with the conference paper, the journal paper has
been completely restructured in such a way that there is now a main line
(containing two summarizing methods) and three extensions. Several points
have been reworked or developed, in particular in the summarizing method
based on possibility theory, which is now described in much more detail and
contains a formal proposition and several examples. The two last extensions
(levels of trust and distrust, and comparison of grade structures) have also
been reworked and extended. Finally, we have added a new axiom called shift-
ing.

The rest of the paper is structured as follows. In Section 2, we discuss differ-
ent research trends on the problem of evaluating trustworthiness. In Section 3
and 4, we define formally what particular kind of trust system we investigate,
and we introduce seven axioms for the summarizing methods. In Section 5, we
develop a particular method based on the pulling principle. In Section 6, we
develop a second method that transforms the grades into a possibility distribu-
tion, and then computes expected values on the basis of it. We show that our
methods satisfy all or part of the axioms. Finally, we investigate three different
extensions of this work. In Section 7, we explain how summarizing intervals
may be used to construct trust intervals. In Section 8, we show how to con-
struct levels of trust and distrust on the basis of the aforementioned possibility
distribution. Finally, in Section 9, we investigate different ways to compare two
sets of grades, including a method based on summarizing intervals.

2 Evaluating trustworthiness: different research trends

The problem of evaluating the trustworthiness of an agent has several facets.
A first question is how to represent trustworthiness. Different representation
formats have been investigated. For example, trustworthiness may be repre-
sented by a number, an interval, or even a fuzzy interval.

In many approaches, trustworthiness is represented by a single number.
One of the first such approaches is [14]. Another example is PageRank [17],
which is used by the Google search engine. PageRank evaluates the trust-
worthiness of each web page. This system is based on a certain step-by-step
procedure in which a web surfer is jumping from pages to pages. Initially, the
surfer is at some page chosen at random (using a uniform distribution). In each
step, the surfer jumps from the page p it is at to a page q. We will not detail
how q is chosen, but the important point is that a page has more chances to
be chosen if p links to it. Finally, the trustworthiness of a page p is, roughly
speaking, the probability that the surfer will be at p after a large number of
steps. An important version of PageRank adapted to peer-to-peer systems can
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be found in [13].

Next, the same representation format may have different understandings.
For example, in some approaches (e.g. [12] and [26]), an agent is either trust-
worthy or not, and the authors manipulate a number that indicates the prob-
ability or the belief that it is trustworthy. In other approaches (e.g. [4]), an
agent is trustworthy to a certain degree, and the authors work with a number
that indicates to which degree. But, the probability of being (fully) trustwor-
thy is not the same thing as a degree of trustworthiness. For example, suppose
the trustworthiness of an agent is 0.5. In the first case, this means that one
goal out of two has been well achieved by the agent, while in the second case,
this means that all goals have been half-well achieved.

Other approaches motivate interval-based representation of trustworthiness
by the poorness of the information available, e.g. [18]. This view is compatible
with the understanding that trustworthiness is binary and the probability of
being trustworthy is imprecise, see e.g. [19]. Alternatively, it is also compat-
ible with the understanding that trustworthiness is graded and the degree of
trustworthiness is ill-known.

Another facet of the problem is that it may refer to quite different types of
input data. For example, these data may take the form of opinions of agents
about others, e.g. [1], [25], [16], and [11]. This is also the case in [23] and [24],
where trust evaluation is based on direct opinions, that is, opinions obtained
from past interactions. Then, indirect opinions are computed by chaining and
combining direct ones, either by means of inference rules [24] or by path semir-
ings [23]. Both approaches associate an uncertainty estimate to their trust val-
ues. Another option is to view trust assessment as a matter of argumentation,
that is, the idea is to balance arguments in favor of deciding to trust an agent
with arguments against this choice, see e.g. [18] and [22].

On the other hand, one may consider that the input data consist of mea-
sures or observations which are supposed to be rather objective. This is the
kind of information considered in this paper. More precisely, we evaluate trust-
worthiness from grades reflecting past performances. These grades are sup-
posed to be objective and harmonized. Although purely statistical methods
may be considered if enough data are available, we investigate other roads
here since data are not necessarily numerous in practice.

3 A framework based on grades and intervals

First of all, we define formally what we mean by a grade structure and a
summarizing method.

Definition 1 We fix a natural number N > 0 and we denote by S the follow-
ing discrete scale: { k

N : 0 ≤ k ≤ N}. A grade structure G is an ordered pair
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〈G, v〉, where G is a non-empty and finite set of grades and v is a function
from a superset of G to S. We call v(g) the value of the grade g.

A summarizing method I is a function that transforms any grade structure
into a real interval included in [0, 1].

The reader may wonder why the domain of v is a superset of G, while G
would be sufficient. The reason is simply that it helps to increase the readabil-
ity of certain definitions and proofs.

A grade structure can be visualized as a set of points above the real interval
[0, 1], each point being located above its value. For example, the structure G0

consisting of 0, 0.4, 0.4, 1, and 1 can be visualized as below. This structure G0

will be used as a running example through the paper.

Example 1

Now, the goal is to summarize a grade structure by an interval. What
properties should be satisfied by a summarizing method? In the next section,
we give some elements to answer this question.

4 Axioms

We introduce desirable properties for summarizing methods. For every x ∈ S,
we denote by weiG(x) the weight of x in the grade structure G. More precisely,
weiG(x) = |{g ∈ G : v(g) = x}|. When the context is clear we may drop the
subscript G . The same goes for all notations.

Here is a first obvious axiom: if two structures lead to the same values and
to the same weights, then they should naturally lead to the same interval.

Definition 2 (Equivalence) Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade
structures. We say that G and G′ are equivalent (in symbols G ≡ G′) iff v(G) =
v′(G′) and ∀ x ∈ v(G), weiG(x) = weiG′(x).

A summarizing method I respects equivalence iff for all grade structures G
and G′, if G ≡ G′, then I(G) = I(G′).

Another obvious property is that the summarizing interval should not ex-
ceed the limits of the zone in which the grades are located.

Definition 3 (Confinement) A summarizing method I respects confine-
ment iff for any grade structure G, I(G) ⊆ [min(v(G)),max(v(G))].

Next, assume that the grades are regularly scattered over some distance.
Then, the summarizing interval should cover exactly that distance.



Evaluating Trustworthiness from Past Performances: Interval-based Approaches 7

Definition 4 (Regularity) A grade structure G is regular iff the following
holds:
− ∃ r, s ∈ R, ∃ n ∈ N, v(G) = {r, r + s, r + 2s, . . . , r + ns};
− ∀ x, y ∈ v(G), wei(x) = wei(y).

A summarizing method I respects regularity iff for any regular grade struc-
ture G, I(G) = [min(v(G)),max(v(G))].

The second condition (∀ x, y ∈ v(G), wei(x) = wei(y)) might seem too
strong at first glance. But it is necessary. Take for instance the following set of
grades: {0, 1, 1}. Without this condition, regularity would say that the sum-
marizing interval should be [0, 1], which would be weird since the weight of
1 is greater than that of 0, and the interval should take this difference into
account, i.e. the summarizing interval obtained from {0, 1, 1} should be of the
form [α, 1] with 0 < α. Now, if the aforementioned condition is satisfied, then
regularity makes sense. For example, if the set of grades is {0, 0, 1, 1}, then it
is obvious that the summarizing interval should be [0, 1].

The next property says the following: if the grades are symmetric with
respect to some axis, then so should be the summarizing interval. Let x, a ∈ R.
We denote by mira(x) is the mirror image of x with respect to a, that is,
mira(x) = 2a − x.

Definition 5 (Symmetry) A grade structure G is symmetric with respect
to a ∈ R iff for any x ∈ v(G), mira(x) ∈ v(G) and wei(x) = wei(mira(x)).

A summarizing method I respects symmetry iff for any grade structure
G and ∀ a ∈ R, if G is symmetric with respect to a, then mira(minI(G)) =
maxI(G).

Note that we sometimes write minX , vX , etc. instead of min(X), v(X), etc.
We do it in order to increase readability. Next, assume that a grade structure G′

can be obtained from a grade structure G by shifting all grades to the right by
a quantity r. Then, the bounds of I(G′) should be obtained from those of I(G)
by shifting them to the right by r. The same goes for left. This axiom is due
to Yonatan Aumann (Bar Ilan University) following personal communication.

Definition 6 (Shifting) Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade
structures, and let r be a positive or negative real number. We say that G′ is a r-
shift of G iff v′(G′) = {x+r : x ∈ v(G)} and ∀x ∈ v(G), weiG(x) = weiG′(x+r).

Note that, since G′ is a grade structure, we have 0 ≤ x+ r. A summarizing
method I respects shifting iff for all grade structures G and G′, and for any
positive or negative real number r, the following holds: if G′ is a r-shift of G,
then minI(G′) = minI(G) + r and maxI(G′) = maxI(G) + r.

Next, we denote by meanG the mean of the grades of G and by cenG the
center of the zone in which they are located, that is, cenG is the middle of
[min(v(G)),max(v(G))]. Now, assume that mean is to the right of cen. Then,
intuitively, G is leaning to the right. The summarizing interval should reflect
this asymmetry, that is, it should “forget” at least a bit the grades on the
extreme left. The same goes when G is leaning to the left.
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Definition 7 (Leaning) A summarizing method I respects leaning iff for any
grade structure G, the following holds:
− if cen < mean, then min(v(G)) < minI(G);
− if mean < cen, then maxI(G) < max(v(G)).

Finally, take a grade structure G, add new grades to the right, and call G′

the structure so obtained. Then, the bounds of I(G′) should be at least as to
the right as the bounds of I(G). In addition, if some new grades are strictly
more to the right than the old ones, then the right bound of I(G′) should be
strictly more to the right than the right bound of I(G). The same goes for left.

Definition 8 Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade structures.
We denote by �r the relation such that:

G �r G′ iff G′ = G ∪ H, v|G = v′|G, and ∀ g ∈ G, ∀ h ∈ H, v′(g) ≤ v′(h)

We denote by ≺r the relation such that:

G ≺r G′ iff G �r G′ and ∃ g′ ∈ G′, ∀ g ∈ G, v(g) < v′(g′)

The definitions of �l and ≺l are obtained by replacing ≤ by ≥, and < by >.

Intuitively, G �r G′ means that G′ can be obtained from G by adding new
grades to the right, and G ≺r G′ means that some new grades are strictly more
to the right than the old ones. The meanings of �l and ≺l are similar, just
replace “right” by “left”. Note that v|G denotes the restriction of v to G.

Definition 9 (Coherence) A summarizing method I is coherent iff for all
grade structures G and G′, the following holds:
− if G �r G′, then minI(G) ≤ minI(G′) and maxI(G) ≤ maxI(G′);
− if G ≺r G′, then maxI(G) < maxI(G′);
− if G �l G′, then minI(G′) ≤ minI(G) and maxI(G′) ≤ maxI(G);
− if G ≺l G′, then minI(G′) < minI(G).

5 A summarizing method based on the pulling principle

Assume that a grade structure G = 〈G, v〉 is given. We construct an inter-
val Ip(G) that summarizes G. Initially, Ip(G) is [min(v(G)),max(v(G))], the
smallest interval that contains (the values of) all grades, which seems natural.
Next, the idea is to identify the “strong” groups of grades, that is, the groups
able to pull the bounds of Ip(G) towards themselves, despite the resistance of
certain grades. In the end, we move each bound of Ip(G) to the farthest value
x such that there exists a group able to pull it to x.

Here is a first simple way to identify a group able to pull the left bound of
Ip(G) towards the right (the case of the right bound is similar). Suppose that
the arithmetic mean m = meanG of the grades is to the right of the center
c = cenG of Ip(G). In our opinion, this means that the points above the right
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half of Ip(G) constitute a group S able to pull the left bound towards the
right. The more m is far from c, the more S is able to give a hard pull. More
precisely, S can pull the left bound “until c reaches m”, that is, it can pull
it to the value x such that if the left bound was equal to x, then c would be
equal to m.

For example, let G0 be the grade structure given in Example 1. In G0,
the two 1’s are able to pull the left bound of Ip(G0) to 0.12. Indeed, the
middle of [0.12, 1] is equal to 0.56, the mean of {0, 0.4, 0.4, 1, 1}. Put differently,
0.12 = 2 × 0.56 − 1.

Example 2

We turn to a more general way to identify a group able to pull the left
bound of Ip(G). Take some limit l, ignore the points of G to the right of l, and
let G′ be the grade structure so obtained. Next, let Ip(G′) be the smallest inter-
val that contains all points of G′. Suppose that the mean m′ = meanG′ of the
grades of G′ is to the right of the center c′ = cenG′ of Ip(G′). Then, the points
above the right half of Ip(G′) constitute a group S′ able to pull the left bound
of Ip(G

′) until c′ reaches m′. But, if the group S′ can pull the left bound of
Ip(G′) to a certain value x, then it can pull the left bound of Ip(G) to x as well.

Indeed, if a group of points can pull the left bound towards the right in
a certain context, then it can do it in any context obtained by adding new
points to the right of this group. In other words, if a group of points is able
to pull the left bound of Ip(G

′) to a certain value, then it is able to pull the
left bound of Ip(G) to the same value as well. This principle is based on the
intuition that he who can do more can do less.

For example, let G′
0 be the structure obtained from G0 by removing the two

1’s. Then, the two 0.4’s can pull the left bound of Ip(G′
0) to 0.133. Indeed, the

middle of [0.133, 0.4] is equal to 0.266, the mean of {0, 0.4, 0.4}. Put differently,
0.133 = 2× 0.266− 0.4. Consequently, the two 0.4’s can pull the left bound of
Ip(G0) to 0.133 as well.

Example 3
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In G0, there are only two groups able to pull the left bound of Ip(G0),
namely the two 1’s (to 0.12) and the two 0.4’s (to 0.133). So, we finally move
the left bound to 0.133. Note that any group (determined by some limit l)
is potentially able to influence the final position of the left bound. It is not
the case, for example, that the farthest group is necessarily the one that can
move the left bound to the farthest position. Indeed, in G0 for example, the
two 0.4’s are able to pull the left bound to a farther value than the two 1’s. At
first glance, this may seem surprising since the second group is farther than
the first one, but actually this is normal. Indeed, the two 1’s are farther but
they face a stronger resistance, that is, when pulling the left bound, they are
opposed to 0, 0.4, and 0.4, while the two 0.4’s are only opposed to 0. So, we
have to check every group determined by some limit l.

To summarize, we begin with the smallest interval Ip(G) that contains all
points of G, then we identify the groups of points able to pull the left bound
of Ip(G), and finally we move it to the farthest value x such that there exists
a group able to pull it to x. The same goes for the right bound.

Concerning the example of G0, no group is able to pull the right bound of
Ip(G0). So, here is the final interval Ip(G0) obtained from G0 by the pulling
method:

Example 4

Definition 10 Let G = 〈G, v〉 be a grade structure. We denote by Is
p(G) the

interval that superficially summarizes G according to the pulling method, that
is, the interval obtained by this method when no limit l is considered. More
formally:

Is
p(G) =






[min(vG), max(vG)] if cen = mean

[mirmean(max(vG)), max(vG)] if cen < mean

[min(vG), mirmean(min(vG))] if mean < cen

Definition 11 Let G = 〈G, v〉 be a grade structure. We denote by L(G) the set
of every L ⊆ G such that ∃ l ∈ R, L = {g ∈ G : v(g) ≤ l}. Similarly, we denote
by R(G) the set of every R ⊆ G such that ∃ l ∈ R, R = {g ∈ G : l ≤ v(g)}.
Finally, we denote by Ip(G) the interval that summarizes G according to the
pulling method, that is,

Ip(G) = [max{minIs
p〈L, v〉 : L ∈ L(G)}, min{maxIs

p〈R, v〉 : R ∈ R(G)}]
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Here are some additional examples to give the reader a better idea how
Ip behaves. We scattered five grades regularly over some distance. Then, as
desired, the interval obtained by the pulling method covers exactly the five
grades.

Example 5

Next, suppose that we bring closer together the three grades which are
closest to the middle, while keeping a symmetric situation. Then, the newly
formed concentration of grades makes us forget a bit the two extreme grades.

Example 6

If we do the same thing, but without keeping a symmetric situation, then
the concentration of grades makes us forget an extreme grade more than the
other.

Example 7

More formally, the summarizing method based on the pulling principle
satisfies all the axioms introduced in Section 4.

Proposition 1 The summarizing method Ip based on the pulling principle
satisfies equivalence, confinement, regularity, symmetry, shifting, leaning, and
coherence.

Proof Equivalence, confinement, regularity, shifting, and leaning are easy.

Proof for symmetry. Assume G = 〈G, v〉 is symmetric with respect to a ∈ [0, 1].
We will show later that:
(0) ∀ L ∈ L(G), ∃ R ∈ R(G), mir(minIs

p〈L, v〉) = maxIs
p〈R, v〉

(1) ∀ R ∈ R(G), ∃ L ∈ L(G), mir(maxIs
p〈R, v〉) = minIs

p〈L, v〉
By definition, ∃ L ∈ L(G), minIp(G) = minIs

p〈L, v〉.
By (0), ∃ R ∈ R(G), mir(minIs

p〈L, v〉) = maxIs
p〈R, v〉.

Therefore, maxIp(G) ≤ maxIs
p〈R, v〉 = mir(minIp(G)).

We show mir(minIp(G)) ≤ maxIp(G).
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Suppose maxIp(G) < mir(minIp(G)).
By definition, ∃ R ∈ R(G), maxIp(G) = maxIs

p〈R, v〉.
Thus, by (1), ∃ L ∈ L(G), mir(maxIs

p〈R, v〉) = minIs
p〈L, v〉.

Thus, minIp(G) = mir(mir(minIp(G))) < mir(maxIp(G)) = mir(maxIs
p〈R, v〉) =

minIs
p〈L, v〉, which is impossible.

Proof of (0) ((1) is similar). Let L ∈ L(G). Then, ∃ l ∈ R, L = {g ∈ G :
v(g) ≤ l}.
Let R = {g ∈ G : mir(l) ≤ v(g)}. We show mir(v(L)) = v(R).

“⊆”. Let y ∈ mir(v(L)). Then, ∃ x ∈ v(L), y = mir(x). But, x ≤ l.
Thus, mir(l) ≤ y. In addition, by symmetry, ∃ g ∈ G, v(g) = y.
But, g ∈ R. Therefore, y ∈ v(R).
“⊇”. Let x ∈ v(R). Then, mir(l) ≤ x. Thus, mir(x) ≤ mir(mir(l)) = l.
By symmetry, ∃ g ∈ G, v(g) = mir(x). But, g ∈ L. Thus, mir(x) ∈ v(L).
Therefore, x = mir(mir(x)) ∈ mir(v(L)).

In addition, L 6= ∅. Thus, R 6= ∅. Therefore, R ∈ R(G).
Let c, m, min, max be shorthands for cen〈L,v〉, mean〈L,v〉, min(v(L)), max(v(L)).
We show mir(c) = cen〈R,v〉.

By definition,
−−−→
c min +

−−−→
c max =

−→
0 . But ∀ x, y ∈ R,

−→
xy =

−−−−−−−−−→
mir(y)mir(x).

Therefore,
−−−−−−−−−−−→
mir(min)mir(c) +

−−−−−−−−−−−→
mir(max) mir(c) =

−→
0 .

But, mir(v(L)) = v(R). So, mir(min) = max(v(R)) and mir(max) =
min(v(R)).

Thus,
−−−−−−−−−−−−→
max(v(R))mir(c) +

−−−−−−−−−−−−→
min(v(R))mir(c) =

−→
0 . So, mir(c) = cen〈R,v〉.

We show mir(m) = mean〈R,v〉.

By definition,
∑

x∈v(L) wei(x)
−−→
m x =

−→
0 . Therefore,

∑
x∈v(L) wei(x)

−−−−−−−−−−→
mir(x)mir(m) =

∑
x∈v(L) wei(mir(x))

−−−−−−−−−−→
mir(x)mir(m) =

−→
0 .

Consequently,
∑

y∈v(R) wei(y)
−−−−−−→
y mir(m) =

−→
0 . Thus, mir(m) = mean〈R,v〉.

Finally, we show mira(minIs
p〈L, v〉) = maxIs

p〈R, v〉.
Case 1: c ≤ m. Then, minIs

p〈L, v〉 = mirm(max) and mira(m) ≤ mira(c).
Therefore, maxIs

p〈R, v〉 = mirmira(m)(min(vR)) = mirmira(m)(mira(max))
= mira(mirm(max)).
Case 2: m < c. Then, minIs

p〈L, v〉 = min and mira(c) < mira(m).
Thus, maxIs

p〈R, v〉 = max(v(R)) = mira(min).

Proof for coherence. Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade struc-
ture.
Suppose G �r G′. We show minIp(G) ≤ minIp(G

′).
There exists L ∈ L(G) such that minIp(G) = minIs

p〈L, v〉.
Let L′ = {g ∈ G′ : v′(g) ≤ max(vL)}. Then, L′ ∈ L(G′).
Let m, m′, c, c′ be shorthands for mean〈L,v〉, mean〈L′,v′〉, cen〈L,v〉, cen〈L′,v′〉.
Then, min(vL) = min(v′L′), max(vL) = max(v′L′), c = c′ and m ≤ m′.
Case 1: c ≤ m and c′ ≤ m′.
Then, minIs

p〈L, v〉 = mirm(max(vL)) ≤ mirm′(max(v′L′)) = minIs
p〈L

′, v′〉.
Case 2: c ≤ m and m′ < c′. Then, m′ < m, which is impossible.
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Case 3: m < c and c′ ≤ m′.
Then, minIs

p〈L, v〉 = min(vL) = min(v′L′) ≤ mirm′(max(v′L′)) = minIs
p〈L

′, v′〉.
Case 4: m < c and m′ < c′.
Then, minIs

p〈L, v〉 = min(vL) = min(v′L′) = minIs
p〈L

′, v′〉.
We show maxIp(G) ≤ maxIp(G′).

There exists R′ ∈ R(G′) such that maxIp(G
′) = maxIs

p〈R
′, v′〉.

Let R = {g ∈ G : min(v′R′) ≤ v(g)}.
Case 1: R = ∅. Then, maxIp(G) ≤ max(vG) < min(v′R′) ≤ maxIp(G′).
Case 2: R 6= ∅. Then, R ∈ R(G). Thus, maxIp(G) ≤ maxIs

p〈R, v〉.
Let m, m′, c, c′ be shorthands for mean〈R,v〉, mean〈R′,v′〉, cen〈R,v〉, cen〈R′,v′〉.
Then, min(vR) = min(v′R′), max(vR) ≤ max(v′R′), and m ≤ m′.
Case 2.1: c ≤ m and c′ ≤ m′.
Then, maxIs

p〈R, v〉 = max(vR) ≤ max(v′R′) = maxIs
p〈R

′, v′〉.
Case 2.2: c ≤ m and m′ < c′. Then, maxIs

p〈R, v〉 = max(vR) ≤ mirm(min(vR))
≤ mirm′(min(v′R′)) = maxIs

p〈R
′, v′〉.

Case 2.3: m < c and c′ ≤ m′.
Then, maxIs

p〈R, v〉 = mirm(min(vR)) < max(vR) ≤ max(v′R′) = maxIs
p〈R

′, v′〉.
Case 2.4: m < c and m′ < c′.
Then, maxIs

p〈R, v〉 = mirm(min(vR)) ≤ mirm′(min(v′R′)) = maxIs
p〈R

′, v′〉.
Suppose G ≺r G′. We show maxIp(G) < maxIp(G′).

The proof is similar to that of maxIp(G) ≤ maxIp(G′).
The difference is that this time we have max(vR) < max(v′R′) and m < m′.
This difference allows us to derive in all cases maxIs

p〈R, v〉 < maxIs
p〈R

′, v′〉.
The proofs for �l and ≺l and similar to those for �r and ≺r. ⊓⊔

6 A summarizing method based on expected values

We now investigate another possible summarizing method based on an in-
tuition quite different from the pulling principle. A grade structure is now
perceived, through a probability-possibility transformation, as a fuzzy inter-
val describing the range of the grade values obtained by an agent, where the
degree of possibility of a value somewhat reflects the plausibility of getting
this value for a grade. Then a summary can be obtained under the form of a
classical interval which is the expected value of the fuzzy interval.

Recall that the information available about the past behavior of an agent
is supposed to take the form of a grade structure G = 〈G, v〉 where the val-
ues of the |G| grades belong to a discrete scale S = { k

N : 0 ≤ k ≤ N}. Let

wk = wei( k
N ) = |{g ∈ G : v(g) = k

N }|, for 0 ≤ k ≤ N , be the number of

times the grade k
N was obtained. Note that if the grades are directly taking

their values in the real interval [0, 1], it is then always possible to partition the

unit interval into N +1 subintervals [0, 1
2N ], ( 1

2N , 3
2N ], . . . , ( (2k−1)

2N , (2k+1)
2N ], . . .,

( (2N−3)
2N , (2N−1)

2N ], ( (2N−1)
2N , 1], and to count the grades that are in each subin-

terval. These subintervals, except the ones at the two extremities whose length
is half, have the same length ( 1

N ), and can be associated with the value of their
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middle point xk = k
N .

For performing the first step, we begin by normalizing the weighting struc-
ture in a probabilistic-like manner, and then apply a probability-possibility
transformation, preserving as much information as possible. Namely, let

pk =
wk

|G|
, for k = 0, . . . ,N (1)

Then, the probability-possibility transformation [7], [10], [5] is defined by

πk =
∑

{pj : pj ≤ pk}, for k = 0, . . . ,N (2)

Clearly, when N is too small, viewing πk as a probability estimate is debat-
able. The above expression yields the smallest possibility distribution π such
that the associated possibility measure Π(A) = maxx∈A π(x) of event A domi-
nates the corresponding probability P (A) =

∑
x∈A p(x), i.e. ∀A Π(A) ≥ P (A)

holds. It can be checked that pi ≤ pj entails πi ≤ πj , which expresses that
the transformation is faithful with respect to the shape of the distribution.
In particular a uniform probability distribution is transformed into a uniform
possibility distribution (which takes the value 1 when it is non zero). The pos-
sibility degrees πk = 1

|G|

∑
{wj : wj ≤ wk} thus obtained directly reflect that

a value is all the less possible as it is observed with a low frequency and that
no other value is observed with such a frequency (or a smaller one).

Example 8 Consider Example 1 again. Namely N = 10, where G is defined
by |G| = 5, with w0 = 1, w4 = 2, w10 = 2. Then we get π0 = 1/5 = 0.2,
π4 = π10 = 1. Taking G′ defined by |G′| = 8, with w0 = 1, w4 = 2, w5 = 1,
w6 = 1, w7 = 1, w10 = 2, yields π0 = π5 = π6 = π7 = 4/8 = 0.5, π4 = π10 = 1,
while G′′ defined by |G′′| = 8, with w0 = 1, w4 = 2, w5 = 3, w10 = 2, gives
π0 = 1/8 = 0.125, π4 = π10 = 5/8 = 0.625, π5 = 1. This illustrates the
fact that in this view πk depends not only on the frequency with which xk

is observed, but also on the existence of other observations with similar or
smaller frequencies.

Using the possibility distribution π, one may look for the smallest interval
[x, x] such that we are certain that any value restricted by π is greater than x
and cannot be greater than x. It amounts to compute the largest value x such
that N(x ≤) = 1 (or more generally N(x ≤) ≥ θ), and the smallest x such that
Π(x ≤) = 0 (or more generally Π(x ≤) ≤ ρ), where θ and ρ are thresholds, Π
and N are possibility and necessity measures with Π(x ≤) = maxu:x≤u π(u)
and N(x ≤) = 1−Π(x >) = 1−maxu:x>u π(u). This provides a summarizing
interval [x, x]. However, it amounts to take the convex hull of the support of
π, i.e. the interval [min{x : π(x) > 0}, max{x : π(x) > 0}] for θ = 1 and ρ = 0,
which may seem too large and does not really take into account the relative
values of the possibility degrees. Choosing other values for the two thresholds
would introduce arbitrariness.
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However, let us introduce the two possibility distributions

π∗(x) = max
t≤x

π(t) and π∗(x) = max
t≥x

π(t) (3)

associated with π, which respectively represent the fuzzy sets of values that
are greater and the fuzzy sets of values that are less than the imprecisely
known value fuzzily restricted by π. Note that, while here π is defined on
S = { k

N : 0 ≤ k ≤ N}, π∗ and π∗ are defined on the interval [0, 1]. Then,
π̂ = min(π∗, π

∗) can be seen as a kind of fuzzy version of a summarizing
interval in the sense of Section 5. This fuzzy interval may be transformed into
a classical interval representing its mean or expected value [8]. The bounds of
the interval are computed as the lower and upper expected values E∗(π) and
E∗(π) (using Choquet integrals) by the following expressions:

E∗(π) =

N∑

k=1

xk(π∗(xk) − π∗(xk−1)); E∗(π) =

N−1∑

k=0

xk(π∗(xk) − π∗(xk+1))

(4)
These expected values are used to define a summarizing interval. More

formally:

Definition 12 We denote by Ie(G) the interval that summarizes G according
to the method based on possibility distribution transformation, that is,

Ie(G) = [E∗(π), E∗(π)]

where E∗(π) and E∗(π) are defined via (4) from π∗ and π∗, which are defined
via (3) from π, which is itself defined via (1) and (2) from G.

Example 9 Consider Example 1 again with N = 10, G is defined by |G| = 5,
with w0 = 1, w4 = 2, w10 = 2, and π0 = 1/5 = 0.2, π4 = π10 = 1. We get
E∗(π) = 0.4 × (1 − 0.2) = 0.32, and E∗(π) = 1.

It can be shown that the summarizing method Ie satisfies most of the
axioms presented in Section 4, namely we have:

Proposition 2 The summarizing method Ie based on possibility distribution
transformation satisfies equivalence, confinement, regularity, symmetry, shift-
ing and coherence. But, leaning does not hold.

Proof Equivalence, symmetry, and shifting are straightforward. Confinement
and regularity follow easily from the properties of E∗(π) and E∗(π).

More precisely, [E∗(π), E∗(π)] ⊆ {x : π̂(x) > 0}, which ensures confine-
ment.

Besides, [E∗(π[a,b]), E
∗(π[a,b])] = [a, b], with π[a,b](x) = 1 if x ∈ [a, b] and

π[a,b](x) = 0 otherwise. It holds as well as for π[a,b](x) = 1 if x ∈ [a, b] ∩
S and π[a,b](x) = 0 otherwise, provided that ∃r, ∃s, a = r

N , b = s
N . This

ensures regularity.
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Coherence also holds. To see it, it is enough to look on the effect on π∗

of the addition of h new observations having the smallest already observed
value, where π∗ is associated with a grade structure G and |G| = g in the
way explained above. Namely, let xs be the smallest grade with π∗(xs) >
0 and xt be the smallest grade such that π∗(xt) = 1. We have π∗(xs) =
π(xs) = 1

g

∑
{wj : wj = ws}. For xs < x < xt, we have 0 < π∗(xs) ≤

π∗(x) ≤ π∗(xt) = 1. Let G′ be a new grade structure obtained from G by
adding h new observations having value xs. Then the new associated possibility
distribution is such that π′

∗(xs) = π′(xs) = 1
(g+h)

∑
{wj : wj ≤ ws +h}. Again

0 < π′
∗(xs) ≤ π′

∗(x) ≤ π′
∗(xt) = 1 for xs < x < xt; let π∗(x) = w/g, then

π′
∗(x) = (w + h)/(g + h). Since w ≤ g, (w + h)/(g + h) ≥ w/g holds. As a

consequence, for xs ≤ x < xt, π′
∗(x) > π∗(x). From which, it follows that

E∗(π
′) < E∗(π). A similar situation take place if the new observations have

values x < xs. A symmetrical analysis can be done for E∗(π) when new values
greater or equal to the greatest previously observed value are reported.

This is illustrated by the following example. Let N = 10, with G1 defined
by |G1| = 9, with w1 = 1, w2 = 1, w4 = 2, w5 = 4, w7 = 1, we get π1 =
π2 = π7 = 3/9, π4 = 5/9, π5 = 1, and E∗(π

1) = 0.1× (3/9− 0) + 0.2× (3/9−
3/9)+ 0.4× (5/9− 3/9)+ 0.5× (1− 5/9) = (0.3 + 0.8 + 2)/9 = 3.1/9 = 0.344.
Consider now |G2| = 10, with w1 = 2, w2 = 1, w4 = 2, w5 = 4, w7 = 1, we
get π2 = π7 = 2/10 = 0.2, π1 = π4 = 6/10 = 0.6, π5 = 1, and E∗(π

2) =
0.1 × (0.6 − 0) + 0.2 × (0.6 − 0.6) + 0.4 × (0.6 − 0.6) + 0.5 × (1 − 0.6) = 0.26.

Finally, leaning does not hold. A counter-example can be easily built by
considering two grade structures, one where all values have a weight of 1,

〈G, v〉, and an unsymmetrical one 〈G′, v′〉 such that v(G) = { r
N , 0, . . . , 0, (r+2k)

N }

and v′(G′) = { r
N , (r+1)

N , . . . , (r+k)
N , 0, . . . , 0, (r+2k)

N }. Indeed these two grade

structures have the same expected interval summary [ r
N , (r+2k)

N ], while it would
not be the case with the summarizing method based on the pulling principle.
The reason is that the approach ignores what is between the two extreme val-
ues, which plays a central role in the leaning axiom. ⊓⊔

Due to the failure of the leaning axiom for the possibility distribution-
based method, there is a noticeable difference between the summarizing in-
terval computed in Section 5 with the one computed above. Although their
behavior is basically the same for unimodal distributions {pk : 0 ≤ k ≤ N}
(or equivalently possibility distributions π), i.e. for distributions such that
∄(r, s, t), r < s < t and ps < min(pr, pt), the two types of summary may be-
have differently for multi modal distributions. Indeed [E∗(π[a,b]), E

∗(π[a,b])] =
[E∗(π{a,b}), E

∗(π{a,b})], where π{a,b}(x) = 1 if x = a, or x = b and π{a,b}(x) =
0 otherwise. More generally, [E∗(π), E∗(π)] = [E∗(̊π), E∗(̊π)], where π̊(x) =
π(x) if x 6∈ (a, b) where [a, b] = [min{xk : π(xk) = 1}, max{xk : π(xk) = 1}],
and π̊(x) = 0 otherwise. This means that the existence of “hole(s)” in the
distribution makes no difference for the expected interval summary. Expected
interval summaries only account for worst and best grades and their relative
plausibility, while “pulling-based” interval summaries also account in general
for the existence, or not, of grades in between. Still this is not always the case,
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due to the following exception: the two grade structures 〈G, v〉 and 〈G′, v′〉

such that v(G) = { r
N , s

N }, v′(G′) = { r
N , (r+1)

N , . . . , (s−1)
N , s

N }, r + 1 < s and
all values have a weight of 1, have the same summary [ r

N , s
N ], with the the

above approach and the approach proposed in Section 5, due to the uniformity
of the distribution of the values (see Example 5).

Generally speaking, the possibility distribution-based approach favors the
“emerging” values, while the multiplicity of equally observed values make them
more possible. This is illustrated by the following examples:

Example 10 As already computed E∗(π) = 0.32 and E∗(π) = 1 for G defined
by |G| = 5 and w0 = 1, w4 = 2, w10 = 2.

Consider now G′ defined by |G′| = 8, with w0 = 1, w4 = 2, w5 = 1,
w6 = 1, w7 = 1, w10 = 2, which is obtained from G adding 3 observations
having distinct values that are between the most observed values x4 and x10.
Then, we get a larger interval, namely E∗(π

′) = 0.4 × (1 − 0.5) = 0.20 and
E∗(π′) = 1. This may thought surprising, except if we consider that x4 and
x10 are now less emerging with respect to the wider set of equal possibilities
x0, x5, x6, w7.

In contrast, if we take G” defined by |G”| = 8, with w0 = 1, w4 = 2,
w5 = 3, w10 = 2, where the 3 extra observations with respect to G are now
concentrated on one value x5, between the values x4 and x10 that are only
observed 2 times. Then, we have π0 = 1/8 = 0.125, π4 = π10 = 5/8 = 0.625,
π5 = 1, and we get E∗(π”) = 0.1×1/8+0.4×(5/8−1/8)+0.5×(1−5/8) = 0.40,
and E∗(π”) = 0.5 × (1 − 5/8) + 1 × (5/8 − 0) = 0.8125, which is now more
narrow than the interval obtained with G. As an expected interval, it may
quite narrow with respect to the maximal range of values, which is here the
whole unit interval.

7 From summaries to trust intervals

In certain circumstances, given a grade structure G = 〈G, v〉 describing how
well a certain trustee has achieved certain past goals, the trustors need a trust
interval rather than a summarizing one to make decisions about the trustee.
A trust interval is an interval such that it is rational to believe (on the basis
of the past grades) that the future grades will essentially fall on it. We think
that we can get such an interval T (G) by taking a summarizing interval I(G)
and then adding an adequate margin of error.

The question is of course: what is an adequate margin of error? The more
the number of past grades is big, the more the margin should be small. A
solution is for example to define the left bound of T (G) as the weighted mean
of two components: 0 on the one hand, and the left bound of I(G) on the
other hand. The weight of the first component is 1, while that of the second
component is the number of past grades, that is, |G|. Similarly, the right bound
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of T (G) is defined as the weighted mean of 1 (with weight 1) and the right
bound of I(G) (with weight |G|).

Definition 13 Let G = 〈G, v〉 be a grade structure and I a summarizing
method. We denote by TI(G) the trust interval obtained from G and I, that
is,

TI(G) = [
|G|minI(G)

1 + |G|
,

1 + |G|maxI(G)

1 + |G|
]

TI and I behave almost in the same way. The essential difference is that
two structures may lead to the same summarizing interval, but to different
trust intervals. This is possible because there exist structures that contain dif-
ferent numbers of grades, and yet lead to the same summarizing interval.

Here is an example. Suppose that G consists of only one grade of value
0.5. Then, TIp

(G) is centered and strictly smaller than [0, 1] (see Example 11
below), which reflects the idea that we are expecting future grades close to
0.5, but we remain cautious. Concerning Ip(G), it is equal to [0.5, 0.5].

Example 11

Next, add two other 0.5’s. Then, TIp
(G) is still centered but smaller than

before (see Example 12 below), which reflects the idea that we are now less
cautious. Concerning Ip(G), it is still equal to [0.5, 0.5].

Example 12

As a last example, here is TIp
(G0), where G0 is the grade structure of

Example 1:

Example 13

Provided that our view of a trust interval is convincing (“trust = summary
+ margin of error”), TIp

and TIe
provide trustors with an indication of what

they can expect from trustees.
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To summarize, the approaches discussed in this paper for providing summa-
rizing intervals do not really take into account the fact that a grade structure
G may be based on a more or less large set of observations. Indeed two grade
structures G and G′ may have the same summarizing interval, while |G| is sig-
nificantly higher than |G′|, leading to be more confident in the predictive value
of the summary for the agent associated with G. This has led to propose the
notion of trust interval in this section. Another way to handle this question
might be the use of methods for prediction based on poor statistics [15]. Note
that these methods assume a unimodal distribution of the grades.

8 Levels of trust and distrust as expectations of good or bad grades

In the previous section, the idea of trust was pertaining to the building of an
interval for which one may have a reasonable confidence that it will include
future grades of the considered agent, provided that the agent continues to
behave in the same way. We now discuss another type of evaluations, where
the idea of trust is related to levels of expectation, and which thus takes its
values in an abstract scale, and no longer lies in the set where grades range.
Namely, we propose to define:

– a level of trust as the certainty (on the basis of the past grades) that a
future grade will be good, and

– a level of distrust as the fear that a future grade may be bad.

The idea is that the level of trust should be high if always grades with good
values are reported, while the level of distrust should be high as soon as some
grades with bad values are reported. For computing such levels of trust and
distrust, we follow a two-step approach:

i) transform the grade structure G into a possibility distribution, as in Sec-
tion 6. This distribution is then viewed as restricting the possible value of
the next outcome;

ii) on this basis, compute the level of trust as the necessity measure that a
grade with a good value will be obtained, and the level of distrust as the
possibility that a bad grade value will be obtained, where “good” and “bad”
refer to the fuzzy sets Good and Bad. Here “good” means “good enough”,
while its antonym “bad” corresponds to the idea of “bad enough”, a notion
that in general may be more restrictive than the idea of “not good enough”
(which covers bad and not sufficiently good cases). These fuzzy sets are
respectively defined by increasing and decreasing membership functions on
S = { k

N : 0 ≤ k ≤ N}, and are such that Good(0) = 0, Good(1) = 1, while
Bad(0) = 1, and Bad(1) = 0. We may, for the example, simply take Bad as
the complement of Good, i.e. Bad(x) = 1 − Good(x).
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The second step amounts to the computation of the necessity and the
possibility of fuzzy events Good and Bad. These levels are computed from past
performances, represented by the distribution π, which are found good or bad,
in agreement with possibility theory. That is,

trust(G) = min
x

max(Good(x), 1− π(x)) distrust(G) = max
x

min(Bad(x), π(x))

Example 14 Consider Example 1 again with N = 10, G is defined by |G| = 5,
with w0 = 1, w4 = 2, w10 = 2, and π0 = 1/5 = 0.2, π4 = π10 = 1. We have

trust(G) = min(max(Good(x0), 1 − π(x0)), max(Good(x4), 1 − π(x4)),
max(Good(x10), 1 − π(x10))) = min(max(0, 0.8), max(0.4, 0), max(1, 0)) = 0.4.

distrust(G) = max(min(Bad(x0), π(x0)), min(Bad(x4), π(x4)),
min(Bad(x10), π(x10))) = max(min(1, 0.2), min(0, 6, 1), min(0, 1)) = 0.6.

This reflects the fact that the considered grade structure includes a value
x4 which is quite far to be really good and which is considered as fully possible.

The level of distrust is high as soon as there exists a really bad grade value
that is highly plausible. The level of trust is high as soon as any bad grade
value (including the less bad ones) is impossible or almost impossible. Such
definitions acknowledge the fact that one should be afraid by bad performances
in trust evaluation, which have a greater impact on the opinion of the trustor
than the good ones.

In this view, a high level of trust will decrease (and the level of distrust will
increase) as soon as really bad grades are reported repeatedly, thus making
higher and higher the possibility of a (new) bad grade (as computed in Sec-
tion 6). A small level of trust will increase if a sufficient number of really good
grades are reported thus decreasing progressively the possibility of a (new)
bad grade (and the level of distrust).

It can be checked that the sum of these two levels is always less or equal to
1 (as in most models of trust and distrust, e.g. [4]). This due to the fact that we
have not assumed here that the fuzzy sets Good and Bad are necessarily com-
plement of each other. Namely it is not assumed that Bad(x) = 1 − Good(x),
otherwise, we would have distrust(G) = 1− trust(G) in agreement with the du-
ality between the possible and the necessary in possibility theory for opposite
events. Rather Good and Bad may be viewed as antonyms whose representa-
tion only obey to Good(1 − x) = Bad(x), with a fully empty intersection, in
such a way that ∀x,Good(x) + Bad(x) ≤ 1.

Thus, from these two levels an interval pertaining to trust (resp. to dis-
trust) can be built as [trust(G), 1−distrust(G)] (resp. [distrust(G), 1−trust(G)]).
This interval has nothing to do with the trust interval computed in Section 7
which was pertaining to the range of grades. Clearly, these levels (and associ-
ated intervals) not only involve the grade structure information G, but also a
graded view of goodness and badness, and belong to another scale.
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Remark: Note that the above notion of distrust may be found quite weak
in the sense that distrust appears as soon as a really bad grade is regarded
as highly possible (which is in fact just a pessimistic attitude). This situation
might be viewed as a mere lack of trust (as long as actually good grades
are also highly possible), and might be rather termed mistrust (this may be
of interest in contexts where trust representations need to tolerate situations
where people are allowed to have malicious intentions). Then, a probably too
strong a notion of distrust would be captured here by the certainty of getting
bad grades, which is estimated by minx max(Bad(x), 1 − π(x)).

9 Comparing grade structures

Two grade structures may be directly compared without necessarily summa-
rizing them in a first step. Let us consider two grade structures G = 〈G, v〉
and G′ = 〈G′, v′〉 respectively characterized by the data sets (pk = wk

|G| : k =

0, . . . ,N ) and (p′k =
w′

k

|G′| : k = 0, . . . ,N ). Intuitively speaking, G may be pre-

ferred to G′ if the proportion of good (resp. bad) grades in the former is higher
(resp. smaller) than in the latter.

A natural way to express such a preference is to use stochastic dominance.
Namely,

G ≫stdo G′ iff ∀i = 0, . . . ,N ,
i∑

k=0

pk ≤
i∑

k=0

p′k

Indeed
∑i

k=0 pk represents the proportion of grades that are less or equal
to i

N and that are thus rather bad (all the worst as i is small). Similarly∑N
k=i pk is the proportion of grades that are at least equal to i

N and that are
thus rather good (all the best as i is large). It can be checked that we have

equivalently (since
∑N

k=0 pk = 1)

G ≫stdo G′ iff ∀i = 0, . . . ,N ,

N∑

k=i

pk ≥
N∑

k=i

p′k

Clearly, ≫stdo is a partial order. Other partial orders may be of interest
here. In particular, one may consider the “good” and the “bad” grades sepa-
rately. This means that the discrete scale S = { k

N : 0 ≤ k ≤ N} is now viewed
as a bipolar univariate scale where the two kinds of grades are distinguished
and possibly separated by one (or several) neutral value(s). This amounts to
identify a subset of bad grades in S, namely Bad = { j

N : 0 ≤ j ≤ m} and a

subset of good grades Good = { k
N : n ≤ k ≤ N} with m < n. Then G ≫bipo G′

iff
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N∑

i=0

Good(
i

N
) · pi ≥

N∑

i=0

Good(
i

N
) · p′i and

N∑

j=0

Bad(
j

N
) · pj ≤

N∑

j=0

Bad(
j

N
) · p′j

(5)
where Good(x) (resp. Bad(x)) equals 1 or 0 according as x belongs or not to
Good (resp. Bad). It can be checked that G ≫stdo G′ entails G ≫bipo G′.

Clearly, G ≫bipo G′ expresses that the grade structure G is at least as
trustworthy as G′ since G has a higher proportion of grades with good values
and a smaller proportion of grades with bad values than G′. A more refined,
actually complete, order can then be obtained by taking the difference of the
global amounts of grades with good values and bad values. Then G ≫bipo-diff G′

iff

N∑

i=0

Good(
i

N
) ·pi −

N∑

j=0

Bad(
j

N
) ·pj ≥

N∑

i=0

Good(
i

N
) ·p′i −

N∑

j=0

Bad(
j

N
) ·p′j (6)

However, Equation (6) makes no difference between a structure with a few
good grade values and no bad ones, and a structure with some bad ones and
a few more good ones. Note also that the two above expressions (5) and (6)
still make sense when Good and Bad are fuzzy sets as in Section 8. We then
recognize in (6) the expression of fuzzy (relative) cardinalities (see, e.g. [6]).

Besides, summarizing intervals provide another basis for comparing grade
structures. More precisely, given a summarizing method I and a pre-order �
over intervals (e.g., [a, b] � [c, d] iff a ≤ c and b ≤ d), we can define a pre-order
over grade structures:

G ≫inter-sum I G
′ iff I(G′) � I(G)

Such a summary-based pre-order remains partial. Note that it is not necessarily
compatible with the mean-based scalar summary:

G ≫mean G′ iff
1

|G|

N∑

i=0

wi ·
i

N
≥

1

|G′|

N∑

i=0

w′
i ·

i

N

which is weaker than ≫stdo.

10 Conclusion

The main contribution of the present paper is that we have developed two
intuitive methods for summarizing a set of grades by an interval, which pro-
vides a handy tool for judging and comparing agents. In addition, we have
showed that our methods satisfy several desirable properties, which provides
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theoretical justifications for them. We have also showed how to use summariz-
ing intervals to construct trust intervals, estimate levels of trust and distrust,
and compare two sets of grades.

Concerning the perspectives, new postulates could be investigated, for ex-
ample, a postulate expressing some agreement between stochastic dominance
and the pre-orders based on summarizing intervals. Indeed, stochastic dom-
inance seems to be very cautious and therefore rather uncontroversial. Ex-
tensions of stochastic dominance [2], or approaches for determining typical
intervals that summarize (when they make sense) a set of data are also worth
investigating directions for further research [9]. Other lines for further research
include a deeper comparison of the two approaches, the validation of the mod-
els from a cognitive psychology point of view, and modifications in order to
take into account the freshness of the information.
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